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Abstract

Scene recognition is one of the basic problems in
computer vision research with extensive applications in
robotics. When available, depth images provide helpful ge-
ometric cues that complement the RGB texture information
and help to identify discriminative scene image features.

Depth sensing technology developed fast in the last years
and a great variety of 3D cameras have been introduced,
each with different acquisition properties. However, those
properties are often neglected when targeting big data col-
lections, so multi-modal images are gathered disregarding
their original nature. In this work, we put under the spot-
light the existence of a possibly severe domain shift issue
within multi-modality scene recognition datasets. As a con-
sequence, a scene classification model trained on one cam-
era may not generalize on data from a different camera,
only providing a low recognition performance. Starting
from the well-known SUN RGB-D dataset, we designed an
experimental testbed to study this problem and we use it to
benchmark the performance of existing methods.

Finally, we introduce a novel adaptive scene recognition
approach that leverages self-supervised translation between
modalities. Indeed, learning to go from RGB to depth and
vice-versa is an unsupervised procedure that can be trained
jointly on data of multiple cameras and may help to bridge
the gap among the extracted feature distributions. Our ex-
perimental results confirm the effectiveness of the proposed
approach.

1. Introduction

Scene recognition consists in assigning a label as
kitchen, office, bakery, or beach to an image, and it is a
crucial vision problem for robot localization and decision-
making [20, 38]. An artificial learning agent needs to under-
stand its surrounding environment by recognizing objects
with their correlations and being robust to clutter which
causes large intra-scene variations and inter-scene overlap.
In this scenario, RGB images provide relevant appearance
cues, while depth (D) information is essential to model ob-
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Figure 1: Examples of RGB and Depth HHA [12] images
from all the cameras within the SUN RGB-D dataset [24].
The category classroom contains images taken in the ex-
act same place with Kinect v2, Realsense, and Xtion cam-
eras, while the physical location captured with Kinect v1 is
different although annotated with the same label. For the
category discussion area there is no room overlap: despite
the shared label, each camera captured images in a different
physical location. As can be noticed, the specific camera
characteristics contribute to produce significant appearance
differences. Best seen in color.

ject boundaries and capture the 3D space layout.
Although gathering RGB scene images may be relatively

easy (e.g. by crawling the web), collecting a large RGB-D
dataset is more difficult. This issue has initially moved re-
search faster in the direction of RGB data-driven represen-
tation learning, as in the case of CNN models trained on the
Places dataset [39]. In the last years, the diffusion of low-
cost depth sensors has allowed to access sizable amounts of



RGB-D images and several multi-modal learning methods
have been developed. Most of them feed depth and RGB
samples through separate deep learning paths and the ob-
tained representations are finally fused with different strate-
gies [1, 37, 25, 16]. Still, the existing literature leaves be-
hind some important analysis on the nature of the used data
which are considered as drawn from a single domain distri-
bution. The generic name “RGB-D” hides a plethora of 3D
cameras which may differ in many aspects, from the exact
depth sensing technology (structured light, time-of-flight,
active stereo), to the range and the field of view for the im-
ages. This sums over the existing variability within scenes
annotated with the same class label but captured in different
physical locations by heterogeneous cameras. Thus, sev-
eral causes contribute to a significant domain shift among
the data (see Figure 1) and question the robustness of the
developed approaches.

Domain adaptation addresses the problem of learning
models on some source labeled data distribution that gen-
eralizes to a different unlabeled target distribution [7]. Sev-
eral techniques have been proposed to close visual domain
gaps between synthetic and real images or photos and art
pictures, but in all those cases both the source and the tar-
get domain are composed of single-modal instances (only
RGB) or only one of the two domains has an extra modality
(source RGB-D, target RGB). Moreover, those works usu-
ally tackle cross-domain object classification [36, 9, 40], or
scene segmentation [29, 17, 23], overlooking the problem
of scene recognition.

With this work, we investigate for the first time a setting
that combines three keywords: scene recognition, multi-
modal learning and domain adaptation. Our contributions
can be summarized as follows:

• We introduce a benchmark testbed1 for a novel unsuper-
vised domain adaptation problem. We revisited the SUN
RGB-D [24] dataset, identifying a subset of scene classes
shared among four different 3D cameras. Each camera
is considered as an RGB-D domain and we get an exper-
imental framework with five multi-modal domain pairs
(source RGB-D, target RGB-D).

• We conduct a thorough study on state of the art methods
originally developed to deal with only one or two of the
considered keywords. Specifically we evaluate (a) the ro-
bustness of two multi-modal scene recognition models on
the proposed cross-domain scenario [8, 1]; (b) the effect
of several single-modal domain adaptation approaches
when extended on using multiple modalities for scene
recognition [36, 9, 40]; (c) the performance on scene
recognition of a very recent multi-modal domain adap-

1Dataset and code available at: https://github.com/
silvia1993/Multi-Modal_RGB-D_Scene_Recognition_
Across_Domains

tation approach originally developed for object classifi-
cation [18].

• Inspired by [8], we present a method able to exploit
inter-modal translation to adapt across domains that we
name Translate-to-Adapt. Learning to generate the depth
images from its RGB twin and vice-versa is a self-
supervised task that can run both on the labeled source
and on the unlabeled target data. We exploit both modal-
ity translation directions as auxiliary objectives in an end-
to-end classification model, obtaining promising results
across domains.

2. Related Work

Multi-Modal Scene Recognition How to combine RGB
and depth images for recognition task is an open question
that has attracted a lot of attention in the machine learn-
ing and robotics community in the last years. In particular,
multi-modal scene recognition research has rapidly evolved
from models based on handcrafted features [2, 11] to multi-
layered networks able to learn the representation from a
large amount of data [32, 13, 25]. Fusing the modalities
at input level has been one of the first adopted solutions,
with D considered as an extra image channel together with
RGB [6]. Some work also proposed output score fusion
techniques [5]. However, the largest part of the developed
methods are based on multi-modal mid-level feature com-
bination strategies [24, 25, 33]. Recently the feature fusion
approaches have been enriched with techniques that better
capture the cross-modal relation, identifying both their cor-
relative and distinct features with solutions ranging from
CCA [16] to the introduction of cross-modal graph convo-
lution [37] and clustering [1]. Translate-to-Recognize [8]
belongs to this last group of methods and adopts an explicit
translation from RGB to depth and vice-versa. The two-
directional mappings are trained separately and combined
only in a second stage with a scene classification model
learned on pre-extracted features.
Domain Adaptation The performance of a learning model
naturally drops when training and testing data come from
different distributions. Unsupervised Domain Adaptation
is an extensively explored strategy to address this problem
and it focuses on how to transfer knowledge learned from
a labeled dataset (source domain) to another unlabeled one
(target domain), whose data are available at training time
[7]. In the most recent domain adaptation literature we can
identify three main solutions. Discrepancy-based methods
[19, 28, 36] measure and minimize the distance between
source and target distributions acting at feature level. Adver-
sarial learning techniques [9, 30, 22, 40] train a generator
and a domain discriminator adversarially so that the optimal
solution is the one in which the generator produces target
features indistinguishable from those of the source. The last
and more recent research line comprises the approaches that

https://github.com/silvia1993/Multi-Modal_RGB-D_Scene_Recognition_Across_Domains
https://github.com/silvia1993/Multi-Modal_RGB-D_Scene_Recognition_Across_Domains
https://github.com/silvia1993/Multi-Modal_RGB-D_Scene_Recognition_Across_Domains


Class name Kinect v1 Kinect v2 Realsense Xtion
0. bathroom 147 150 67 260
1. bedrooom 442 121 0 521
2. classroom 49 535 73 366
3. computer room 6 65 40 68
4. conference room 5 69 53 163
5. dining area 0 192 125 80
6. discussion area 6 62 30 103
7. kitchen 291 86 20 183
8. office 295 418 46 287
9. rest space 6 407 285 226
Total 1247 2105 739 2257

Table 1: Number of images in the considered classes.

enhance the generalization ability of the network by intro-
ducing an auxiliary self-supervised task [4, 35]. The unla-
beled target data can be used to optimize the self-supervised
objective which helps to produce a robust representation for
the main supervised task.
Multi-Modal Domain Adaptation Most of the existing do-
main adaptation works consider single modality images.
The main focus is on RGB data, with only few efforts made
to investigate the domain shift across depth images [21], or
considering both RGB and D modalities. In the last case,
the proposed approaches either identify RGB as source and
D as target [26, 14], or deal with a multi-modal source
(RGB-D) and a single-modal (RGB) target [15], or simply
use the depth information as an additional input channel for
source and target, extending standard RGB domain adap-
tation methods to the RGB-D case [34, 3]. Only recently
Loghmani et al. [18] highlighted the importance of exploit-
ing the inter-modal relation for adaptive learning. They pro-
posed to predict the relative rotation between the RGB and
its twin D image: since this task does not need sample an-
notation can run both on the labeled source and unlabeled
target, helping to learn a domain agnostic representation.
This approach was designed for object classification and
does not seamlessly apply to scene recognition where the
rotation task can be solved by exploiting shortcuts based on
not semantically meaningful cues (e.g. uniform pavement
and ceiling), resulting in low accurate scene prediction.

As it is clear from the cited literature, no previous work
focused on learning robust multi-modal scene recognition
models across domains. Here we propose the task, we de-
fine its experimental testbed and a first learning approach
that exploits self-supervised modality translation.

3. Dataset

The largest existing multi-modal cross-domain scene
data collection, SUN RGB-D [24], contains 3784 Microsoft
Kinect v2 images, 3389 Asus Xtion images, 2003 Microsoft
Kinect v1 images, and 1159 Intel RealSense images.

The Asus Xtion, as well as the Kinect v1, belong to the
family of near-IR light pattern cameras. The raw depth

Figure 2: Physical place overlapping. Some of the scene
classes contain images of the exact same places taken with
multiple cameras, while others are collected from different
locations. We use the following color code: black indi-
cates a class that contains images taken in the exact same
place by multiple cameras, while blue/green/red/violet in-
dicate classes with specific room images captured only with
Kinect v2 / Realsense / Xtion / Kinect v1.

maps from both sensors have low noise but an observable
quantization effect [24].

The time-of-flight based Kinect v2 has the largest field
of view among the considered cameras. The raw depth map
is less smooth than the structured light sensors and it may
fail more frequently for black objects and slightly reflective
surfaces, but for ranges greater than 2 meters is more pre-
cise. The Intel Realsense is a lightweight and low-power
consuming IR active stereo camera. Along with the Kinect
v2, the RGB camera has the highest resolution of all tested
cameras. However, its raw depth is worse than that of other
RGB-D sensors: failures of the stereo matching may lead to
several artifacts and the effective range for reliable depth is
shorter (depth gets very noisy around 3.5 meters) [24, 10].

As shown in Figure 1 there is an ample variation in the
appearance of the obtained images. This implies that a user
who wants to leverage existing scene recognition models
should pay particular attention in choosing one trained on
images of the correct camera to avoid incurring in a sig-
nificant drop in performance. To study in detail this do-
main shift, we searched for the scene classes shared among
the four SUN RGB-D cameras and containing the largest
amount of samples per class. To get a higher cardinality
we merged the office kitchen with the kitchen class. The fi-
nal collection subset is summarized in Table 1. Overall we
have 10 classes, however the dining area and the bedroom
are missing respectively for Kinect v1 and Realsense.

Some of the scene classes contain the same physical lo-
cation recorded with multiple cameras. We visualize the
overlap in Figure 2. For instance, the same group of of-
fice rooms has been visited with Kinect v2, Realsense, and
Xtion cameras and the captured image constitutes the class
office. The class kitchen has some instances recorded in
the same places with Kinect v2 and Realsense, while others
come from rooms shared between Xtion and Kinect v2. For
the class discussion area, each camera recorded images in



bathroom bedroom classroom computer room conference room dining area discussion area kitchen office rest space

R
G

B

bathroom bedroom classroom computer room conference room dining area discussion area kitchen office rest space

D
ep

th

Figure 3: Tsne [31] visualization of the three domains of our multi-modal cross-domain scene classification testbed. Each
domain is composed by images of a different camera: Kinect v2 (blue), Realsense (green), Xtion (red).

different physical locations. Finally, the data captured with
Kinect v1 do not share any location with the other cameras.

We decided to focus on the Kinect v2 (K) and Xtion (X)
to define a 10 class domain adaptation problem with both
the camera used as source and target in turn. Moreover, due
to its limited number of samples, we considered the Re-
alsense (R) images only as target, with K, X, and their com-
bination KX as source. Finally, we kept the Kinect v1 (Kv1)
out of our current classification setting due to its severe class
unbalance, but we will use it as a testbed for modality hallu-
cination (see Section 5). In all the cases we employ geocen-
tric HHA (Horizontal disparity, Height above ground and
Angle with gravity) [12] to encode depth images which has
been shown to help in capturing the geometrical properties
of depth data.

The qualitative tsne [31] data analysis in Figure 3 shows
that the samples from each camera belong to different dis-
tributions and tend to occupy a different region of the space.
This is more evident for the depth modality where the sam-
ples from Realsense are well separated from the other do-
mains. We also verified quantitatively that the observed ap-
pearance variation among the images of the different cam-
eras causes a domain shift problem. We defined a sim-
ple experiment focusing on the K and X cameras and or-
ganizing their images into three 70%/30% train/test splits.
We trained a simple ResNet-18 classification model and we
evaluated it both within each camera and across cameras:
the average results over the splits are respectively reported
in the first and second row of Table 2 for each of the two
modalities. The drop in performance (summarized in the
last row) clearly demonstrates the existence of a signifi-
cant domain shift. Moreover, the confusion matrices of the
K!X case show how the domain shift affects the per-class
recognition accuracy.

4. Method

Intuition Several recent works have discussed how self-
supervised learning supports visual domain generalization
[4, 35]. When dealing with multi-modal source and target
domains, one basic self-supervised task is that of transform-
ing one modality into the other and vice-versa. In our set-

RGB Depth RGB Depth
K ! K 77.09 72.09 X ! X 79.98 72.79
K ! X 51.90 42.07 X ! K 57.50 54.43

drop 25.19 30.02 drop 22.48 18.36

Table 2: Accuracy (%) across domains for single modal-
ity. The performance drop shows the effect of the domain
shift. The confusion matrices for the case K!X also in-
dicate that the behavior across domains is different for the
two modalities: classes 2 (classroom) and 7 (kitchen) are
the ones mainly affected by the domain shift, respectively
for the RGB and depth modalities.

ting, this means predicting the depth information from an
RGB instance and generating the RGB information from a
depth image. This second direction is of course more dif-
ficult than the first, however by optimizing for both these
objectives, we train a model that captures the core relation
between the two modalities. When this is done at the same
time over source and target, the model focuses on what
makes the relation between RGB and depth domain invari-
ant. Thus, we expect the obtained multi-modal representa-
tion to help in cross-domain scene classification.
In more Technical Terms Starting from the source labeled
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Figure 4: Overview of our Translate-to-Adapt method for RGB-D scene recognition across domains. The main components
are the encoders (E), the inter-modality decoders (D), the semantic feature extractor (F), and finally the Classification and
Similarity evaluation heads. The two encoders are identical and each deals with one of the image modality: RGB or depth.
The obtained features are concatenated and enter into the classifier. The two decoders have the same structure but each
focuses on one modality translation direction: from RGB to depth or vice-versa. Every image generated by the decoders is
paired with its corresponding original version: the features are extracted via F and compared by the similarity head. Note that
only the supervised source data enter the classification task, while both source and target data go through the inter-modality
generation self-supervised task. We use the notation presented in Section 4.

and the target unlabeled multi-modal images, our goal is to
predict the scene class of the target data. In the following
we will indicate with S = {(xsc

i ,xsd
i ),ys

i}N
s

i=1 the source
samples. The superscripts c, d refer respectively to the color
(RGB) and depth modality, while ys

i 2 R|Y| denotes the
one-hot encoded scene class label and |Y| indicates the
number of classes. The target samples T = {(xtc

i ,x
td
i )}Nt

i=1

are unlabeled and are drawn from a different distribution
with respect to the source, but shares with it the same class
set. The relation between the two data modalities may con-
tain helpful cues for scene recognition. One way to extract
and exploit those cues is to add to the main classification
task the auxiliary objective of inter-modal translation: both
x⇤c ! x⇤d and x⇤d ! x⇤c. We used the star ⇤ to indicate
a generic domain: since this mapping is self-supervised it
can be applied both on source and target. Thus, it bridges
the two domains adapting the learned representation.
Network architecture and Optimization The architecture
of our Translate-to-Adapt method is presented in Figure
4. It consists of six main components: two modality-
specific encoders (E), two decoders (D), one for each
modality translation direction, a feature extractor (F) and
the final classifier. Both source and target data enter
the two encoders that map the original images into a
feature embedding of equal dimensionality for the two
modalities e⇤ci = Ergb(x⇤c

i ), e⇤di = Edepth(x⇤d
i ). The

main classification task runs on the concatenated fea-
tures of the source data {esci , esdi }Ns

i=1. The obtained
representations for both source and target are fed as in-
put to the corresponding decoders that translate them in
the twin modality: x̃⇤d

i = Drgb�depth(Ergb(x⇤c
i )) and

x̃⇤c
i = Ddepth�rgb(Edepth(x⇤d

i )). The generated im-
ages are paired with their original version and the differ-
ence among the features extracted by F is minimized for
each case: {x̃sc

i ,xsc
i }Ns

i=1, {x̃sd
i ,xsd

i }Ns

i=1, {x̃tc
i ,x

tc
i }N

t

i=1,
{x̃td

i ,xtd
i }Nt

i=1. Overall, the two objectives of classification
and instance similarity are jointly optimized respectively
via a cross-entropy loss function Lcls and the content simi-
larity loss Lsim among the generated-original sample pairs.
The latter is an L1 loss

LX

l=1

||F l(x̃⇤c
i )�F l(x⇤c

i )||1+ ||F l(x̃⇤d
i )�F l(x⇤d

i )||1 (1)

measured over multiple internal layers of the F module (l=
layer1-layer4 in ResNet-18). Finally, the total loss is

Lcls + ↵sLs
sim + ↵tLt

sim . (2)

Implementation Details The defined optimization problem
guides the training of encoders and decoders, while for F we
used a frozen model. All the components have a ResNet-18
structure pre-trained on Imagenet. The loss hyperparame-
teres ↵s and ↵t are set respectively to 10 and 3 (see the
ablation analysis in Section 5).

We designed the network modules by following [8], but
the learning procedure differs. Besides including the target
data, in our Translate-to-Adapt the multi-modal fusion strat-
egy for classification is learned end-to-end with all the other
network components, rather than with a two-step process.
We trained the model with ADAM stochastic optimization,
setting the batch size to 40 and a total of 70 epochs. The ini-
tial learning rate is 2 ⇥ 10�4 and decreases linearly for the



last 50 epochs. Depth images are encoded offline to HHA
[12] and together with the RGB images are resized and ran-
domly cropped. At test time, we used the central crops.

5. Experiments

Reference Methods To understand the challenges of learn-
ing a multi-modal cross-domain scene recognition model,
we perform a benchmark analysis with existing approaches
originally developed either for multi-modal scene recogni-
tion or single-modal cross-domain object classification.

From the first family we consider the approach named
Translate-to-Recognize (Tran-Rec) [8], and the recent Cen-
troid Based Concept Learning (CBCL) [1] which outputs
class assignments on the basis of the linear combination of
multi-modal sample distances. Both those methods were
developed to work on training and test data drawn from
a single domain. We also consider as baseline the basic
ResNet-18. In general, those methods are Source Only,
meaning that during training the target test data is not avail-
able. We use Fusion to indicate a simple multi-modal strat-
egy where a separate network is trained for each modality
until convergence. The feature extractors are then frozen,
while the produced representations are concatenated and fed
as input to a fully connected layer that is trained on them
for scene classification. We indicate instead with Fusion++
a network that deals at once with the two modalities, by
training end-to-end both the feature representation and the
multi-modal classifier.

For the second family of methods, the unlabeled target
data are provided together with the labeled training. GRL
[9] relies on a domain classifier exploited in an adversarial
fashion to reduce the feature distribution difference between
source and target. AFN [36] starts from the observation that
target samples are often characterized by feature norm val-
ues much lower than those of the source data and proposes
to progressively increase them. CycleGAN [40] is an un-
supervised generative approach that can be used to change
the style of the source data and make them resemble the
target. We use it to produce target-like RGB and depth im-
ages from the annotated source samples. Finally, the models
trained on them are combined with the Fusion strategy.

Up to our knowledge, there is only one previous work
that focused on multi-modal cross-domain object classifica-
tion. We indicate the proposed method as Relative Rotation
(Rel. Rot) [18]: it exploits the homonym auxiliary self-
supervised task to infer the correlation between RGB and
depth in order to produce robust domain-invariant features
for the main recognition task.

All those reference methods are compared against our
Translate-to-Adapt (Tran-Adapt) which is designed as a Fu-
sion++ approach with the encoders, decoders, and classifi-
cation model trained at once.
Results and Ablation Table 3 shows the classification ac-

Method K ! X X ! K K ! R X ! R KX ! R AVG

ResNet-18

RGB 47.56 57.55 38.34 44.88 41.82 46.03
Depth 38.76 54.42 26.56 26.87 30.98 35.52
Fusion 50.66 62.91 44.54 46.54 42.56 49.44
Fusion++ 47.54 60.27 39.56 36.32 43.71 45.48

Tran-Rec [8]

RGB-D 52.54 61.68 38.63 46.24 44.59 48.74
D-RGB 37.13 53.49 29.77 29.06 32.25 36.34
Fusion 53.92 63.40 39.35 43.40 48.29 49.67
Fusion++ 51.17 62.62 39.53 41.38 50.87 49.11

CBCL [1] Fusion 55.35 60.57 50.51 42.45 49.94 51.76

GRL [9]

RGB 50.11 59.88 53.30 51.18 46.82 52.26
Depth 45.25 54.29 37.30 32.41 37.80 41.41
Fusion 48.28 64.73 53.53 51.91 47.51 53.19
Fusion++ 50.94 61.91 53.45 48.90 48.85 52.81

AFN [36]

RGB 51.59 56.73 52.11 47.63 46.86 50.98
Depth 40.22 51.88 34.20 32.33 35.20 38.77
Fusion 51.29 61.88 47.84 50.25 50.07 52.27
Fusion++ 56.74 57.89 52.13 49.05 45.66 52.30

CycleGAN [40] Fusion 54.25 63.19 53.02 48.02 54.65 54.63
Rel. Rot. [18] Fusion++ 50.98 65.99 48.33 52.24 53.53 54.21

Tran-Adapt

RGB-D 52.11 61.91 46.93 51.27 54.88 53.42
D-RGB 48.09 55.69 38.95 38.78 40.79 44.46
Fusion 55.61 65.23 41.90 43.59 48.03 50.87
Fusion++ 56.79 64.41 48.13 51.02 55.31 55.13

Tran-Adapt Aug Fusion++ 55.65 65.92 53.01 52.56 55.59 56.55

Table 3: Accuracy (%) of several methods for RGB-D do-
main adaptation. Top results in bold. The confusion ma-
trices show the K!X per-class results for the ResNet-18
baseline and Tran-Adapt (Fusion++).

curacy values obtained by the considered reference ap-
proaches and by our Tran-Adapt method. Specifically, the
top part contains the Source Only baselines whose results
indicate that combining the two modalities of the source
data improves the recognition performance across domains.
For completeness, we also developed the Fusion++ version
of the Tran-Rec method, although the end-to-end training
procedure was not included in the original paper [8]. The
CBCL Fusion approach outperforms the others.

The central part of the table presents the results of the
domain adaptive methods. Even in this case, the multi-
modal versions improve over the corresponding single-
modal ones. The advantage is more evident for the style-
transfer-based CycleGAN method than for the feature align-
ment approaches GRL and AFN. Finally, the performance
of Rel. Rot., the only existing method that exploits the inter-
modality relation in both the domains, is slightly lower than
that of CycleGAN.

The bottom part of the table shows the results of our
Tran-Adapt. Specifically, the Fusion++ version outper-



Original Rel. Rot. Tran-Adapt

Figure 5: Visualizations obtained by guided backpropagation [27] that show the most important pixels used by Rel. Rot. [18]
and our Tran-Adapt.

forms all the considered competitors. By looking at the con-
fusion matrices of the K!X experiment we observe that for
most of the classes there is a clear performance gain when
using Tran-Adapt. A reduction in the wrong assignments is
evident between class 7. kitchen and 1. bedroom, as well as
between 2. classroom and 3. computer room.

We can also take advantage of the generative nature of
Tran-Adapt by exploiting the produced images as data aug-
mentation. More precisely, the depth images generated by
the RGB-D model and the RGB images produced by the D-
RGB model can enter the Fusion++ network as both source
and target input data. By following [8] we used a random
subset of the generated data with the number controlled as
30% of the batch size. The obtained Tran-Adapt Aug ver-
sion shows a further gain in performance, producing the top
average accuracy 56.55%.

As specified in the previous section, for Tran-Adapt we
set ↵s = 10 and ↵t = 3. The first value is the same used by
Tran-Rec in [8] and we kept it fixed. The second tunes the
importance of the self-supervised task running on the target
data: to get discriminative features the main focus should
remain on the annotated source, with ↵t < ↵s. We chose
↵t = 3 from a preliminary validation analysis on the sep-
arate RGB-D and D-RGB directions and we maintain that

value also for the Fusion and Fusion++ versions of our ap-
proach. An ablation analysis on the role of the source/target
self-supervised translation task can be done considering that
we get back to Tran-Rec (↵s = 10, ↵t = 0, Fusion++
49.11%) when turning off the target contribution. Instead,
by turning off the source contribution while maintaining the
target one (↵s = 0, ↵t = 3, Fusion++ 54.22%), we ob-
serve an adaptation effect, which improves when leverag-
ing on both the source and target components (↵s = 10 and
↵t = 3, Tran-Adapt, Fusion++ 55.13%). In particular keep-
ing ↵s = 10, but changing ↵t = {1, 2, 3, 4} causes a min-
imal average result variation for Fusion++ {54.71, 54.44,
55.13, 54.81} (%).
Self-supervision for Cross-Domain Scene Recognition

Both Rel. Rot. and Tran-Adapt exploit self-supervised tasks
(rotation recognition and RGB-depth image mapping) to
learn inter-modality cues that support cross-domain adap-
tation. Still, considering the observed performance differ-
ence, we decided to investigate more in depth their behav-
ior. Specifically, we searched for possible shortcuts fol-
lowed by the rotation auxiliary task that might have misled
the scene recognition process. Indeed, Rel. Rot. was origi-
nally designed for object recognition on datasets where the
objects are typically well centered in the images and the



Class name Kinect v1 Kinect v2 Realsense Xtion
corridor 15 153 23 182
printer room 4 43 9 21
study space 7 121 26 38
Total 26 317 58 241

Table 4: Number of samples in extra classes considered for
the missing modality prediction.

background information are marginal. When dealing with
scenes, the risk of focusing on low semantically meaning-
ful cues to predict the image orientation increases, affecting
also the final scene class assignment. In Figure 5 we show
the results of the guided backpropagation [27] approach.
By visualizing the most relevant pixels used by Rel. Rot.
and Tran-Adapt we can claim that both the methods focus
on object boundaries, but Rel. Rot. includes spurious in-
formation on uniform regions, and relies on neat lines (see
the third image row and the columns in the image) in the
background.
Missing Modality prediction on Novel Target Scenes

Since the final purpose of the proposed model is scene
recognition we mainly focused on the classification perfor-
mance output. Still, the similarity objective and the de-
coders included in Tran-Adapt provide a generative tool that
can be exploited for side tasks. One possibility is that of
producing the RGB or depth modality for single-modal in-
put images. Indeed in case of problems with the sensing de-
vices, it might happen that one of the modalities is missing
and needs to be hallucinated. When this lost modality is-
sue affects images belonging to scene categories never seen
during training the task becomes particularly challenging.
To evaluate Tran-Adapt in this setting, we selected from
SUN RGB-D three classes not originally included in our
collection and we created a new small dataset over all the
four available cameras (see Table 4). We tested the gener-
ation performance on both the image modalities of the pre-
trained Tran-Rec and Tran-Adapt models. Specifically, we
measured the pixel-to-pixel L2 difference between the gen-
erated and original image: the results in Table 5 show that
Tran-Adapt is better able to approximate the ground truth
image than Tran-Rec, further demonstrating its generaliza-
tion abilities. Some examples of the generated images are
shown in Figure 6.

6. Conclusion

In this work, we focused on cross-domain learning for
multi-modal scene recognition. We started by observing the
large variability introduced by the plethora of 3D cameras
used to collect images in existing scene databases and high-
lighted that this can cause a significant domain shift that
needs a tailored solution. We defined a testbed for study-
ing this problem and performed an evaluation benchmark

Tran-Rec [8] Tran-Adapt Tran-Adapt Aug
RGB Depth RGB Depth RGB Depth

K ! X 0.33 0.13 0.37 0.14 0.28 0.12
X ! K 0.25 0.12 0.19 0.12 0.21 0.12
K ! R 0.26 0.22 0.22 0.17 0.25 0.18
X ! R 0.26 0.20 0.24 0.22 0.23 0.17

KX ! R 0.24 0.22 0.26 0.18 0.22 0.19
AVG 0.27 0.18 0.26 0.17 0.24 0.15

Table 5: Pixel-to-pixel L2 distance between real and gener-
ated images from unseen classes of the target domain. Top
results in bold (the lower the better).

Original
Generated

Tran-Rec [8] Tran-Adapt Tran-Adapt Aug

Figure 6: Qualitative comparison of real and generated im-
ages on the unseen class corridor. In these examples, the
improvement of Tran-Adapt and its Aug version is particu-
larly evident on the RGB images where the uniform regions
(walls and floor) appear smoother than in Tran-Rec.

on several existing methods to evaluate how approaches
originally developed for single-domain multi-modal scene
recognition and multi-modal cross-domain object classifi-
cation work on the considered task. Moreover, we presented
a classification model that exploits self-supervised inter-
modality translation as an auxiliary task to reduce domain
shift. Our Translate-to-Adapt successfully outperforms the
competitors, showing the effectiveness of its self-supervised
task in scene recognition.

We believe that the novel setting can be of interest to the
computer vision and robotics community: the testbed and
the experimental analysis are proposed as baselines to pave
the way for future research.
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