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Abstract. In domain generalization the target domain is not known at
training time. We show that a style transfer based data augmentation
strategy can be implemented easily and outperforms the current state of
the art domain generalization methods. Moreover, we observe that those
methods, even if combined with the described data augmentation, do not
take advantage of it, indicating the need of new generalization solutions.
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1 Introduction

Domain Generalization (DG) research develops algorithms that are robust to do-
main shifts with the objective of obtaining good performance on a target domain
that is not known at training time. Most of the existing DG strategies try to in-
corporate the observed data invariances, capturing them at feature [6] or model
(meta-learning [5] and self-supervision [11]) level, in the hypothesis that analo-
gous invariances hold for future test domains. An alternative solution consists in
extending the source domains by synthesizing new images and including a larger
variability in the training set. Some methods do this through generative models
which are often difficult to train, but give quite effective results [14]. Still we
noticed that newly introduced feature and model-based DG approaches avoid
benchmarks against data augmentation strategies [10,3], probably considering
them unfair competitors due to the extended training set.

We believe that the field needs some clarification and we dedicate our work
on this topic. Specifically our main contributions are: (1) The proposal of
a simple and effective style transfer data augmentation approach for
domain generalization based on AdaIN [2]. (2) The design of tailored
strategies to integrate style transfer data augmentation with the cur-
rent state of the art methods. We show that the original advantage of those
techniques almost always disappears when compared with the data augmented
baseline. This suggests the need of rethinking domain generalization baselines.
On one side simple data augmentation strategies should be envisaged to increase
source data variability compatible with orthogonal feature and model general-
ization approaches. On the other, new cross-source adaptive strategies should be
designed to build over images generated by style transfer.
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2 Source Augmentation by Style Transfer

We focus on multi-source DG. Our strategy consists in the following two steps.
Training the Style Transfer Model. We use AdaIN [2] that allows style

transfer in real time, by taking the style from a style image and applying it over
a content image. We train AdaIN on source data: all the train splits of the source
domains are used together both as content dataset and style dataset.

Training the Classification Model on the augmented source data.
A standard classification model (AlexNet or ResNet18) is trained on the source
domains, exploiting the style transfer model to apply data augmentation. For
each image of a training minibatch, we decide with probability p if we want to
apply the style transfer. In this case we randomly choose another image of the
minibatch and borrow its style. The content image is then substituted with its
augmented version. Considering that each batch contains equal parts coming
from the different source domains, we obtain a high variability in image styles.

3 Experiments

Datasets. We consider three standard benchmark datasets which differ in num-
ber of classes and covered domains. PACS [4] contains images of 7 object classes
spanning 4 visual domains: Photo, Art Painting, Cartoon, Sketch. OfficeHome
[9] is similar to PACS, it covers 4 domains (Art, Clipart, Product and Real-
World) but shows a much larger set of 65 object classes. VLCS [8] is built
upon 4 different datasets: PASCAL VOC 2007, Labelme, Caltech and SUN and
contains 5 object categories. All its domains are composed of real world photos
with the shift mainly due to camera type, illumination conditions, point of view,
etc. For all our experiments we used the same experimental protocols described
in [1], train splits for model training and validation splits for model selection.
All our results are average performance over 3 runs.

Reference methods. We consider as main Baseline a classification model
learned on all the source data and näıvely applied on the target. We indicate
with Original the standard data augmentation with horizontal flippling and
random cropping, while we use Stylized to specify the cases where we add style
transfer data augmentation. The behavior of four among the most recent DG
methods is evaluated under both these augmentation settings. We integrate the
style transfer in each of the considered approaches without undermining their
nature: we carefully avoid to mix domains when methods require to access them
separately. DG-MMLD [7] does not need the source domain labels, thus the
style transfer data augmentation is applied exactly as done for the Baseline. Epi-
FCR [5] is a meta-learning method which splits the network in two modules,
each one is trained by pairing it with a partner that is badly tuned for the
domain considered in the current learning episode. Since the network is also
trained on all source data to build the classification ability, the style transfer
data augmentation is applied here and not in the previous step. DDAIG [14]
is a data augmentation strategy that uses a generator to produce augmented
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Table 1. PACS classification accuracy
(%). We used AdaIN with p = 0.75 for
AlexNet-based experiments and p = 0.90
for those based on ResNet18.

AlexNet

Painting Cartoon Sketch Photo Average

Original

Baseline 66.83 70.85 59.75 89.78 71.80
Rotation 65.66 71.89 62.15 89.88 72.39

DG-MMLD 69.27 72.83 66.44 88.98 74.38
Epi-FCR 64.70 72.30 65.00 86.10 72.03
DDAIG* 62.77 67.06 58.90 86.82 68.89

Stylized

Baseline 71.96 72.47 76.47 88.34 77.31
Rotation 71.74 73.39 75.98 89.22 77.59

DG-MMLD 70.50 70.84 75.39 88.43 76.29
Epi-FCR 65.19 69.54 71.97 83.43 72.53
DDAIG 69.35 71.10 70.99 87.70 74.79

Mixup
pixel-level 66.03 68.00 51.18 88.90 68.53

feature-level 67.04 69.10 55.40 88.88 70.11

ResNet18

Original

Baseline 77.28 73.89 67.01 95.83 78.50
Rotation 78.16 76.64 72.20 95.57 80.64

DG-MMLD 81.28 77.16 72.29 96.06 81.83
Epi-FCR 82.10 77.00 73.00 93.90 81.50
DDAIG* 79.41 74.81 69.29 95.22 79.68

Stylized

Baseline 82.73 77.97 81.61 94.95 84.32
Rotation 79.51 79.93 82.01 93.55 83.75

DG-MMLD 80.85 77.10 77.69 95.11 82.69
Epi-FCR 80.68 78.87 76.57 92.50 82.15
DDAIG 81.02 78.75 79.67 95.07 83.63

Mixup
pixel-level 78.09 71.08 66.58 93.85 77.40

feature-level 81.20 76.41 69.67 96.31 80.90

Table 2. OfficeHome classification accu-
racy (%). We used AdaIN with p = 0.1.

ResNet18

Art Clipart Product Real World Average

Original

Baseline 57.14 46.96 73.50 75.72 63.33
Rotation 55.94 47.26 72.38 74.84 62.61

DG-MMLD* 58.08 49.32 72.91 74.69 63.75
Epi-FCR* 53.34 49.66 68.56 70.14 60.43
DDAIG* 57.79 48.32 73.28 74.99 63.59

Stylized

Baseline 58.71 52.33 72.95 75.00 64.75
Rotation 57.24 52.15 72.33 73.66 63.85

DG-MMLD 59.24 49.30 73.56 75.85 64.49
Epi-FCR 52.97 50.14 67.03 70.66 60.20
DDAIG 58.21 50.26 73.81 74.99 64.32

Mixup feature-level 58.33 39.76 70.96 72.07 60.28

Table 3. VLCS classification accuracy
(%). We used AdaIN with p = 0.75.

AlexNet

CALTECH LABELME PASCAL SUN Average

Original

Baseline 94.89 59.14 71.31 64.64 72.49
Rotation 94.50 61.27 68.94 63.28 72.00

DG-MMLD* 96.94 59.10 68.48 62.06 71.64
Epi-FCR* 91.43 61.36 63.44 60.07 69.07
DDAIG* 95.75 60.18 65.48 60.78 70.55

Stylized

Baseline 96.86 60.77 68.18 63.42 72.31
Rotation 96.86 60.77 68.18 63.42 72.31

DG-MMLD 97.49 61.02 64.23 62.37 71.28
Epi-FCR 92.69 58.18 62.59 57.87 67.83
DDAIG 97.48 60.48 65.19 62.57 71.43

Mixup feature-level 94.73 62.15 69.82 62.98 72.42

samples. In this method the label classifier is trained on all the source data, both
original and synthetic: we further extended this set with style transfer augmented
data. Rotation [11] exploits self-supervised learning: rotation recognition is
combined with classification in a multi-task model. Once again the style transfer
data augmentation application is trivial because no domain labels are used. We
also experiment with Mixup [13] as an alternative to AdaIN for interpolation of
source data. We tested data mixing both at pixel and at feature level [12].
We implemented the Baseline, Rotation and Mixup, while we used for the others
the code provided by the authors. We report the previously published results
whenever possible. We will indicate with a star (∗) the results we obtained by
running the authors’ code.

Results analysis. Table 1 shows results on PACS. We get two main out-
comes. (1) There is an evident improvement in the Baseline performance when
using the stylized augmented source data with respect to the original case. (2)
All the considered state of the art DG methods benefit from the source aug-
mentation. Indeed in absolute terms their performance grows, but at the same
time they lose in effectiveness as they cannot outperform the Baseline any more.
Table 2 shows results on OfficeHome. Even if in this case the improvement pro-
duced by the source augmentation by style transfer is more limited, the results
confirm what already observed for PACS. Table 3 reports results on VLCS. This
dataset is particularly challenging and shows a fundamental limit of tackling DG
through style transfer data augmentation. Since the domain shift is not originally
due to style differences, source augmentation by style transfer does not support
generalization. Finally, the results of Mixup show that it is not able to general-
ize across domains and it might perform even worse than the Original Baseline.
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Only the feature variant shows some advantage on PACS, so we focused on it
in the other tests. Still, its results remain lower than those obtained by the DG
methods both with and without style based data augmentation.

4 Conclusions

Among current DG methods some are based on data augmentation and use
complex generative approaches, while other propose source feature adaptation
and meta-learning strategies. Despite being orthogonal among each other, no
previous work tried to integrate them. We investigated here a simple and effective
style transfer data augmentation strategy for DG, showing how it overcomes its
competitors. However when combined with the the most relevant existing DG
approaches they lose their original effectiveness, not producing any improvement
over the new data augmented baseline. Our work suggests the need of a shading
new light on DG problems and calls for novel strategies able to take advantage
of the data variability introduced by cross-domain style transfer.
Acknowledgements Computational resources provided by hpc@polito:
(http://hpc.polito.it).

References

1. Carlucci, F.M., D’Innocente, A., Bucci, S., Caputo, B., Tommasi, T.: Domain
generalization by solving jigsaw puzzles. In: CVPR (2019)

2. Huang, X., Belongie, S.: Arbitrary style transfer in real-time with adaptive instance
normalization. In: ICCV (2017)

3. Huang, Z., Wang, H., Xing, E.P., Huang, D.: Self-challenging improves cross-
domain generalization. In: ECCV (2020)

4. Li, D., Yang, Y., Song, Y.Z., Hospedales, T.M.: Deeper, broader and artier domain
generalization. In: ICCV (2017)

5. Li, D., Zhang, J., Yang, Y., Liu, C., Song, Y.Z., Hospedales, T.M.: Episodic training
for domain generalization. In: ICCV (2019)

6. Li, H., Jialin Pan, S., Wang, S., Kot, A.C.: Domain generalization with adversarial
feature learning. In: CVPR (2018)

7. Matsuura, T., Harada, T.: Domain generalization using a mixture of multiple latent
domains. In: AAAI (2020)

8. Torralba, A., Efros, A.A.: Unbiased look at dataset bias. In: CVPR (2011)
9. Venkateswara, H., Eusebio, J., Chakraborty, S., Panchanathan, S.: Deep hashing

network for unsupervised domain adaptation. In: CVPR (2017)
10. Wang, H., Ge, S., Lipton, Z., Xing, E.P.: Learning robust global representations

by penalizing local predictive power. In: NeurIPS (2019)
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