
26 September 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Effective SAT-based Solutions for Generating Functional Sequences Maximizing the Sustained Switching Activity in a
Pipelined Processor / Deligiannis, Nikolaos; Cantoro, Riccardo; Faller, Tobias; Paxian, Tobias; Becker, Bernd; SONZA
REORDA, Matteo. - (2021), pp. 73-78. (Intervento presentato al convegno Asian Test Symposium (ATS) nel 22-25 Nov.
2021) [10.1109/ATS52891.2021.00025].

Original

Effective SAT-based Solutions for Generating Functional Sequences Maximizing the Sustained
Switching Activity in a Pipelined Processor

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/ATS52891.2021.00025

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2922112 since: 2021-09-08T10:08:05Z

IEEE

Effective SAT-based Solutions for Generating
Functional Sequences Maximizing the Sustained

Switching Activity in a Pipelined Processor

Nikolaos I. Deligiannis†, Riccardo Cantoro†, Tobias Faller∗, Tobias Paxian∗, Bernd Becker∗, Matteo Sonza Reorda†
† Politecnico di Torino, DAUIN - Torino, Italy ∗ University of Freiburg - Freiburg, Germany

Abstract—During device testing, one of the aspects to be
considered is the minimization of the switching activity of the
circuit under test in order to steer clear of introducing problems
due to device overheating. Nevertheless, there are also certain
scenarios during which the maximization of switching activity
of the circuit under test (CUT) or of certain parts of it could
be proven beneficial e.g., during Burn-In (BI), where internal
stress is often produced by applying suitable stimuli. This can be
done in a functional manner based on Software-based Self-Test in
order to avoid possible damages to the CUT and/or any kind of
yield loss. However, the generation of suitable test programs for
this task represents a non-trivial task. In this paper we consider
a scenario where the circuitry to be stressed is a pipelined
processor. We present a methodology, based on formal techniques,
able to automatically generate the best functional stress stimuli,
i.e., a short and repeatable sequence of assembly instructions,
which is guaranteed to induce the maximum switching activity
within a given target processor module over a pre-defined
time period. For the purposes of our experiments we used the
OpenRISC 1200. The gathered experimental results demonstrate
the effectiveness of the developed method. In particular, we show
that the time for generating the best instruction sequence is
limited in most cases, while the generated sequence can always
achieve a significantly higher sustained toggling activity than any
other solution.

I. INTRODUCTION

When considering the different steps composing the whole
test flow adopted by semiconductor companies to screen their
devices, we can identify a few of them, where the availability
of stress stimuli may be important. One of these steps is
Burn-In (BI), when the Circuit Under Test (CUT) is subject
to different types of external and internal stress in order to
artificially age it, so that any weak component evolves into an
observable defect and can be detected. While in the past BI
stress was mainly based on external solutions (e.g., applying
high temperature and voltage to the CUT), the recent trend
goes rather in the direction of creating internal stress, e.g.,
maximizing the switching activity [1]. While the internal stress
can be easily induced by relying on Design for Testability
(DfT) mechanisms, such as scan, in these solutions the CUT
works in test mode, thus ages in a way which may be differ-
ent than in operational mode, and thus possibly introducing
unnecessary test escapes or yield loss. As a result, it becomes
crucial to devise strategies, able to generate functional test
stimuli able to maximize the stress, i.e., the switching activity
while the CUT works in normal mode [2].

Maximizing the switching activity, either in the whole CUT
or in some parts of it, may turn to be effective even in other
test steps. For example, it has been speculated that testing for
delay faults while the circuit temperature is at the top of the
allowed range may enable the detection of a higher percentage
of defects [3] [4]. This result may be achieved by carefully
written functional stimuli able to maximize the internal stress.

More recently, the adoption of System Level Test (SLT) to
detect defects that could escape all the traditional test steps led
to the search for functional stimuli able to produce particularly
stressful conditions. Once again, this can be achieved by
maximizing the internal activity and creating temperature
gradients between different modules within the CUT while
resorting to functional stimuli [5].

To summarize, different steps in a typical test flow currently
adopted by semiconductor companies may benefit from effec-
tive solutions able to generate functional programs maximizing
the switching activity either in the whole CUT or in a specific
target module.

This paper addresses the issue of the automatic generation
of the sequence of instructions whose execution maximizes
the switching activity in a given module of a CPU. The idea
behind our approach is that the above task can be achieved
by generating a few instructions, assuming that they can
be executed repeatedly, thus creating a high and sustained
switching activity in the target CPU module. In this way, we
can use the generated programs not only to stress the target
module, but also to control the CUT temperature, driving it to
the maximum value allowed by functional conditions. For this
purpose we propose a solution based on formal techniques,
which guarantees that the generated program achieves the
absolute maximum switching activity.

Results gathered on an OpenRISC 1200 (OR1200) pipelined
processor show the effectiveness and feasibility of the method.
The method is relatively easy to be adopted since it does
not require in-depth knowledge of the processor’s architecture
but rather a basic/conceptual understanding of it. Also, the
method generates stress programs from the ground up and
does not require any dependency on pre-existing programs.
Furthermore, the generated test programs are relatively short
in length, typically composed of 2 instructions that can be
indefinitely repeated. Finally, by construction, the generated
programs induce the maximum switching activity in the target

module, and comparisons with other programs (e.g., test
applications) show that the switching activity achieved by our
method is by far higher.

The rest of the paper is organized as follows: Section II
reports about previous work in the area and provides some
background concepts. In Section III we better state the ad-
dressed problem and outline the proposed method. In Sec-
tion IV we describe the experimental setup we created to
assess the validity of the method along with the respective
results. Finally, in Section V we draw conclusions and provide
insight on our future work.

II. BACKGROUND & MOTIVATION

The significance of power consumption of integrated circuits
(ICs) during device design and testing is a well known
problem, strongly linked with the attribute of reliability. Re-
searchers have thoroughly studied the problem in the past. In
[6], [7], the authors present algorithms for accurate estimations
of maximum currents in combinational MOS ICs while ex-
plaining how such information can be proven beneficial to the
reliability of the design. For example, the design of a reliable
power and ground bus inside a circuit requires an accurate
estimation of the respective currents.

In [8] the authors highlight the role that an accurate power
estimation has in the reliability of a CMOS IC. They state that
the problem of accurate power consumption estimation nests
the problem of identifying two consecutive test vectors which
maximize the switching activity (SWA) of the IC, which is an
NP-Complete problem with a complexity of O(4n), where n is
the total number of primary inputs for the IC. They introduce
a methodology aiming to identify pairs of consecutive input
vectors (to instigate high stress amounts in the circuit), based
on automatic test generation algorithms, in order to effectively
calculate a power estimate for a combinational IC.

In [9] the authors present a method for the estimation of
the maximum power dissipation of a combinational circuit
by describing the power dissipation as a Boolean function of
the circuit’s primary inputs. They relate the problem of the
power dissipation estimation to maximizing gate output SWA
while introducing techniques for transforming the problem
into a weighted max-satisfiability (MaxSAT) problem and
present strategies to effectively solve it. The methods were
applied to relatively small combinational circuits due to the
high complexity imposed in order to (i) obtain the objective
function of the circuit and to (ii) optimize the objective
function.

In [10], [11] the authors propose methods aiming to max-
imize the SWA of combinational ICs in order to estimate
the power consumption while considering a variety of delay
models.

While the importance of a circuit’s SWA maximization is
important and plays a critical role during the design phase of
the devices, it is advantageous in the context of device testing
as well. During the multiple test “layers” that are introduced
in-between each step of the device manufacturing, it may
happen that faults do not manifest themselves during testing

and even escape from the final system level test. They are
the prime suspects behind the Infant Mortality behavior which
is typically resolved via Burn-In (BI), where the devices are
being exercised in elevated temperature and power conditions.
In [12] the authors present a probabilistic approach (random
excitation) to maximize the SWA of a combinational circuit to
further achieve the maximization of power dissipation during
BI testing. In [13] the author employs a genetic algorithm to
develop a technique for the maximization of a combinational
circuit’s SWA in order to also maximize the circuit’s heat
dissipation during BI testing.

The subject of SWA maximization in combinational cir-
cuitry has been thoroughly and extensively studied; moving
to sequential circuits, and more specifically to processors,
the authors of [2] present an evolutionary technique that
aims to maximize the sustained SWA of a processor by
extracting characteristics, i.e., high stress-inducing sequences
of instructions from suites of pre-existing test programs for
the target processor. In [14] the authors, while targeting a
32-bit processor, present a comprehensive methodology and
propose metrics for the comparison and the evaluation of
stress procedures that are applied on the circuit during BI. On
one hand, the circuitry is equipped with design for testability
infrastructures (e.g., scan), while on the other hand it is
not. Their experimental results demonstrate that while the
processor with scan is being stressed, a uniform elevation of
its temperature is observed inside the circuit. On the other
hand, when functional stimuli (stress programs) are applied at-
speed to the processor, a significantly higher thermal activity
is observed.

Knowing that it is crucial to maintain a minimal SWA within
a device during test, we can clearly see that there are certain
occasions where the maximization of the SWA can be proven
beneficial to the overall reliability of the device. In this paper,
while focusing on processors, we provide an algorithm for
the sustained maximization of the SWA of certain processor
modules by generating the appropriate functional stimuli i.e.,
sequences of instructions.

III. PROBLEM DEFINITION & PROPOSED APPROACH

Preliminaries

Various methodologies have been proposed in the past for
the maximization of the SWA focusing primarily on combi-
national circuits and assuming the full control of their inputs,
e.g., via DfT. Our goal in this paper is to propose an algorithm
that takes the gate-level description of a pipelined processor
as input and generates functional stimuli to effectively stress
any module within it. This means identifying two instructions
that are able (when executed in sequence) to induce the
maximum stress in the target module, meaning that the pair
of instructions is guaranteed to produce the highest possible
gate activity, from High to Low (HL) and Low to High (LH),
within the target processor module.

Furthermore, we are interested in the maximization of the
sustained SWA in the target processor module, which means
that we also require the generated sequence of instructions

to be repeatable. We assume that the processor, after its
proper initialization to remove potential X (Don’t Care) values
e.g., via the activation of the asynchronous RESET signal,
is functionally driven to a well defined and legal state σa.
Then, the first of the two stress-inducing instructions drives it
to a new state σb

max: this transition triggers the maximum
amount of nets switching within the module. Finally, the
second instruction drives the processor to a state σc

max for
which it must hold that σc

max ≡ σa. For each targeted module
specific constraints are considered in order to ensure that the
starting state of the stress segment (i.e., σa) is a valid one.
The aforementioned sequence of states can be summarized as
in Figure 1.

RST

σinit σa ≡ σc
max

σb
maxv

1

v

2

Fig. 1. Representation of a processor’s module sustained SWA maximization

By guaranteeing that the generated instruction sequence is
repeatable, we can maintain a sustained high gate activity
within the target module for an arbitrarily long period of time.
Assuming that the optimal repeatable pair of instructions (s̃)
has been generated by the algorithm, they can be used to
stress the target module (e.g., to create a hot-spot within the
processor). This can be achieved by repeating the sequence
s̃ for a high, yet discrete amount of times (e.g., s̃,s̃,s̃,...,s̃).
At the end of the sequence of repeated instructions we can
introduce an unconditional jump instruction to transfer the
code execution back to the start of the stress sequence. In this
way, the sequence can be applied an arbitrarily large amount
of times until it is stopped (e.g., via an interrupt).
SWA Metric and Optimal Sequence Length

The metric we use to measure the amount of created stress
is the average induced stress percentage. Given that the generic
target processor module consists of m nets and the assembly
stress program is composed of n instructions, we calculate the
average induced stress percentage as:

stress% =

∑m
i=1[HL(i) + LH(i)]

n×m
× 100

The numerator of the fraction represents the total amount of
HL and LH transitions that were performed by every net of the
target module, while the denominator represents the maximum,
when every net of the processor makes a transition when each
instruction of the stress program is executed. This value can
be negatively affected by the presence of uncontrollable lines
in the target module [15]. Moreover, it is clearly not given
that all nets can be toggled in the same clock period. Thus,
the 100% can be interpreted as a theoretical maximum.

Let us consider a sequence of instructions s̃ = (I1, I2)
that induce the maximum SWA (SWAmax

s̃) within a proces-
sor module T when executed (i.e., I1 → I2 → I1). The

SWAmax
s̃ corresponds to the sum of the number SWI1,I2

representing the number of nets changing their values when
I2 is executed after I1 plus the number SWI2,I1 when I1 is
executed after I2. If the first transition forces a certain net to
switch, then the second transition will force the same net to
switch (SWI1,I2 = SWI2,I1). Thus, maximizing the SWA can
be translated to finding the pair of instructions that induces
the highest gate switching when I2 is processed after I1 (or
vice-versa). The sequence s̃ that maximizes the SWA can be
repeated for a generic number of times N , for a total of 2×N
instructions (e.g., N = 2 : I1, I2, I1, I2). There is no other
sequence of 2×N instructions that induces a higher SWA in
the module.

Proof: Let’s assume a second sequence of instructions s̃′
= (I ′1, I ′2, I ′3, I ′4) for the module T that induces a higher
SWAmax

s̃′
value than SWAmax

s̃ . It holds that:

SWAmax
s̃′

= SWI′
1,I

′
2
+ SWI′

2,I
′
3
+ SWI′

3,I
′
4

(1)

SWAmax
s̃ = 3× SWI1,I2 (2)

This implies that a term exists in (1) that has a higher value
than any term of (2). However, we showed that sequence s̃ is
composed of the two instructions that maximize the number
of nets switching within T . Thus, no term of (1) can have a
higher value than any term of (2). Hence, the sequence s̃ is
the one maximizing the SWA value for N = 2. The same
reasoning can be repeated for higher values of N .

Approach using Formal Techniques

In order to effectively solve the problem, we rely on
formal techniques and specifically to the problem of the max-
satisfiability (MaxSAT) since the maximization of the SWA of
a processor’s module can be seen as an optimization problem
i.e., to sensitize as many nets of a circuit as possible during
a short time window. The core idea is to force constraints
that maximize the SWA over two consecutive clock cycles,
and then let the solver determine the satisfiability of the
corresponding conjunctive normal form (CNF) formula in
order to finally obtain the two vectors that can stress the
module to the maximum. For example, let us assume that we
intend to stress the adder of the arithmetic and logic unit. In
this scenario, the two input vectors that we request correspond
to the four operands (two for every addition) that will be
added. So, assuming two clock cycles for our scenario, one
for every addition instruction, we have three valid states for
the circuit:

σ1 instr1
add

−−−−→
clk↑

σ2 instr2
add

−−−−→
clk↑

σ3

But since it is required that the generated stress maximiza-
tion sequence is repeatable, as previously shown in Figure 1,
this further implies for the aforementioned states that σ3 ≡ σ1.

In order to achieve such a scenario i.e., transform the
problem of the circuit’s sustained SWA maximization into a
MaxSAT problem, we must first obtain its Boolean formula in
a CNF. This is achieved by first unrolling the circuit in time.
During circuit unrolling the circuit is duplicated a specified
amount of times and then the segments are connected to

Fig. 2. MaxSAT model

each other. The pseudo primary inputs (PPIs) of the nth

instance of the circuit are driven by the pseudo primary outputs
(PPOs) of the n − 1th instance, and so on. Each instance on
the now unrolled circuit represents a state of the processor
corresponding to a clock cycle and is called a timeframe. For
the purposes of the proper initialization of the circuit, we use
extra timeframes (the very first ones), during which we drive
the circuit to a well defined state. This is done to remove
potential X (Don’t Care) values and can be achieved either
by activating the RESET signal on that timeframe or by
forcing the circuit to execute a given initialization sequence.
For example, for the aforementioned scenario regarding the
maximization of the SWA of the adder, we would need to
unroll the circuit at least 1 + 3 times (once for every state).
Lastly, by encoding the unrolled circuit we obtain the Boolean
formula in a CNF (e.g., via symbolic simulation).

Once the CNF is generated we can further encode con-
straints as clauses to the formula. For instance, we can force
specific logic values on the circuit’s nets at certain timeframes
and we can require certain properties for nets at particular
timeframes in order to avoid some undesirable scenarios e.g.,
to prohibit the SAT-solver to act on the RESET signal in
order to sensitize a net. For partial weighted MaxSAT an
additional set of soft clauses, each one correlated with an
integer weight, is added. The optimization goal of MaxSAT
is then to maximize the sum of weights for the satisfied soft
clauses, whereas the original CNF, containing so called hard
clauses, has to be satisfied.

Figure 2 (which can be correlated with Figure 1) illustrates
the MaxSAT model we propose for the generation of stress
inducing sequences for a certain processor module. The first
timeframes are used to initialize the whole processor. Initially,
we force a constraint in the CNF formula, requiring the
RESET signal to be activated. Since the initialization phase
takes more than 1 clock cycle, the first timeframe (TF1) can
be interpreted as the last timeframe of the initialization phase.
In the following three states, we focus on the module of the
processor we intend to stress. As previously explained, the
first (TF2) and the last state (TF4) of the module must be
equivalent in order to guarantee repeatability. For that reason,
every literal that encodes a net of the targeted module during
TF2 (lnetitf2

), along with every literal that encodes a net of
the targeted module during TF4 (lnetitf4

) are linked together
by forcing the following logic implications as hard clauses to
the CNF formula, which dictates their equivalence during the
these two states:

ωhard : lnetitf2
←→ lnetitf4

≡ (¬lnetitf2
∨ lnetitf4

) ∧ (¬lnetitf4
∨ lnetitf2

)

Hence, the two states are now equivalent i.e., it is guaranteed
that all the nets of the module will hold exactly the same logic
values during TF2 and TF4.

Since we have encoded the equivalence between the afore-
mentioned states for every net of the targeted module, we
now develop soft clauses regarding the maximization of the
switching of the target module’s net between TF2 and TF3
i.e., we request to the solver to maximize as many of these
clauses during TF2 and TF3. For every net i of the target
module we encode an XOR gate on the CNF, whose inputs
are the corresponding literals for the net i in TF2 and TF3,
respectively. Then, we force a difference by requiring that
the output of every XOR gate generated during this process
to be 1. Note, that due to the equivalence between TF2
and TF4, it is redundant to further add soft clauses for the
switching maximization during TF3 and TF4, since that is
already implied through the states’ equivalence.

Finally, after the successful solving of the CNF formula we
extract the input vectors by transforming the relevant input
literals i.e., the ones that encode the PIs of the module, to
0/1 logic. For example, assuming that the targeted processor
module is the adder, we can extract the (A,B), (C,D) pairs
of operands from TF2 and TF3 respectively along with the
instruction register of the execute stage of the processor (which
nests the adder module) in order to reconstruct a valid stress
program. This can be achieved by extracting and disassembling
N -bit instruction that the instruction register holds in order
to find the assembly instruction to be used along with the
respective registers. Finally, we can extract the (A,B) (C,D)
operands from TF2 and TF3 respectively.

Validity Checking

Fig. 3. Validity Checker Module interaction with the Circuit Under Stress

While the basic constraints for the problem can be general-
ized to almost every module of a processor, in most cases
further actions must be performed in order to ensure that
there are no violations and unwanted behaviours within the
pipeline. Furthermore, we must also guarantee that the gen-
erated sequences of instructions represent valid and reachable
states. For instance, the SAT solver could generate an invalid
instruction and thus, trigger an exception at a certain point
or assign incorrect values to certain register bits. For such
reasons, we develop via propositional logic (acting on the CNF

TABLE I
EXPERIMENTAL RESULTS

Stress Program
Generation Approach

Average Induced Stress CPU Generation Time

Adder Multiplier Decoding Unit Adder Multiplier Decoding Unit
Formal Techniques (MaxSAT) 81.92% 62.15% 90.56% 3sec 85hrs 15min

Evolutionary Algorithm (EA) 61.34% 54.77% 62.57% 48hrs 50hrs 73hrs

Stuck-At Test Program 24.00% 6.34% 44.43% -

formula) suitable validity checking modules (VCMs), which
are specific to the processor module we aim to stress. A similar
approach is presented in [16], [17]. Figure 3 illustrates the
interaction of the VCM and the circuit under stress. The VCM
has access to the PIs/PPIs and POs/PPOs of the target module
and is able to access the internal state of the circuit.

For example, assuming that we aim to stress the decoding
unit of a processor, the stimuli we are looking for are not just
pairs of operands, but pairs of arbitrary instructions. Thus, we
ensure via the VCM that the appropriate instruction syntax
will be followed for every instruction of the processor’s ISA
by forcing constraints on the instruction register bits and
developing mechanisms (via propositional logic) that exclude
scenarios from the search space that would cause an exception
to be triggered e.g., invalid instruction or misaligned memory
accesses.

The Algorithm

The proposed approach is presented in a pseudo-code format
in Fig. 4. Note that the unrolling depth may vary depending
on the target processor module we intend to stress. For the
example behavior where every instruction of the processor
requires 1 clock cycle to move from one pipeline stage to
the next, 4 timeframes would suffice. But in some cases e.g.,
for multiplier circuits within the ALU, it is possible that > 1
clock cycles are required for the multiplication instruction to
be executed. For instance, assuming a certain processor whose
multiplier module requires 2 clock cycles per multiplication
instruction we would need at least 1 + 2 + 2 + 2 = 7
timeframes to model our problem (twice for every state). The
algorithm accounts for such scenarios, given that the circuit
has been unrolled a sufficient amount of times, since it allows
for explicit formulation and insertion of constraints at any
timeframe of the CNF formula.

IV. EXPERIMENTAL SETUP AND RESULTS

Our experiments were performed on a machine using an
Intel i9-9900 CPU running at 3.10GHz. The generated stress
programs were logically simulated via QuestaSIM by Mentor
Graphics.

The processor used in our experiments is the OpenRISC
1200 (OR1200) [18]. The OR1200 is a 32-bit scalar RISC
processor with Harvard micro-architecture. It is composed
of 5 integer pipeline stages. The RT-level description of the
core was synthesized using the Silvaco 45nm Open Cell
Library [19]. In this paper, we focus on the sustained maxi-

input : A triplet (G,M ,ud) where
G is the gate-level description of the processor
M is the target module we intend to stress
ud is the unrolling depth i.e.,
the number of timeframes to be used

output : Two instructions I1, I2 maximizing the SWA of M
1 CNF ← UnrollAndEncodeCircuit(G,ud)

// Initialization of the Whole Processor
2 ActivateResetAt(CNF, TF 0)

// Maximization Clauses and State Equivalence
3 foreach net ni ∈M do
4 AddDifferences (CNF, ni, TFσa , TFσb

max
)

5 AddImplications(CNF, ni, TFσa , TFσc
max

)
6 AddImplications(CNF, ni, TFσc

max
, TFσa)

7 end
// VCM Implementation for the Target Module

8 ConstraintsFromVCM(CNF,M)

9 MaxSolve(CNF)

// Extract Operands and Disassemble them to Instructions
10 I1 ← ExtractOperandsFrom(CNF, M , TFσa)
11 I2 ← ExtractOperandsFrom(CNF, M , TFσb

max
)

12 return I1, I2

Fig. 4. Instruction sequence generation routine

mization of the SWA of the adder, the multiplier and the
decoding unit within the OR1200.

Phaeton [17] is used as an underlying framework to model
the SWA maximization problem considered in this paper.
Originally, Phaeton was designed to identify sensitizable paths
and generate test pairs to exercise these paths using SAT-
solving. Phaeton supports a large number of models and
sensitization conditions and provides a generic interface that
can be used by different applications. Due to a number of
elaborated speed-up techniques, Phaeton scales to industrial
circuits, as demonstrated in experimental evaluations on nu-
merous differing applications [20].

Our implementation of the proposed method was developed
using Phaeton. It accounts for approximately 2,000 lines of
C++ code. Additionally, we wrote a tool in python (ap-
proximately 500 lines of code) that takes as input the values
generated by the Phaeton application and produces assembly
programs. Finally, the programs were logically simulated to
validate them and obtain statistics regarding the induced SWA.
In order to provide the reader with a reasonable comparison,
we have also developed stress programs for the same modules
via µgp3 [21], which is an evolutionary optimizer that was
initially developed to produce assembly programs maximizing
a given fitness function for a variety of processors. The

implemented evolutionary algorithm is similar to the one
described in [2]. Furthermore, we also measured the SWA
induced by a test program for the OR1200 that reaches 85%
stuck-at fault coverage [22]. The results of our experiments
are reported in Table I.

From Table I we can see that the test programs generated
by the proposed MaxSAT technique induce higher amounts
of stress on all the units that we have considered. There is
also a notable difference in the CPU generation time since
we can see that for both the adder and the decoding unit
the proposed method significantly outperforms the generation
times of the evolutionary algorithm approach.

It can be seen though, that in the case of the multiplier
the required CPU time is significantly higher than for the
other modules. It is well known that handling of arithmetic
multiplier circuits represents an arduous task for formal tech-
niques [23], [24]. For the purpose of our work, we employed
a sampling approach in order to ease the large complexity
imposed when targeting the multiplier as a target for SWA
maximization. Namely, instead of creating a maximization
soft clause for every net of the circuit (as dictated by the
algorithm in Fig. 4), we sampled a portion of the nets of the
circuit and forced the switching constraints only on them. This
implies, that since the circuit has not been fully considered
for maximization, the solution is a sub-optimal one, although
better than the one produced with other techniques.

V. CONCLUSIONS

While in most scenarios the minimization of the circuit’s
switching activity is crucial during the device testing to avoid
effects such as overheating, there are cases (e.g., during BI)
where the goal is the maximization of the switching activity
(of the whole CUT or certain sub-modules). During BI the
maximization of the system’s sustained switching activity via
functional stimuli could aid to maximize the stress and thus
to screen out early failures.

We proposed an algorithm, based on formal techniques, that
takes the gate-level description of a pipelined processor as
input and generates a sequence of assembly instructions able
to optimally stress any module within it by maximizing the
switching activity. We focused on the adder, the multiplier
and the decoding unit and demonstrated the effectiveness
of the generated stress programs while comparing with other
methods. Work is currently conducted to optimally account
also for the case of the multiplier (for which we are currently
not able to generate the absolute best sequence due to the
special characteristics of the module) while also extending the
method to other sub-modules and processors.

REFERENCES

[1] C. He, “Advanced Burn-In - An Optimized Product Stress and Test
Flow for Automotive Microcontrollers,” in 2019 IEEE International Test
Conference (ITC). Washington, DC, USA: IEEE, Nov. 2019.

This work was supported in part by the German Federal Ministry of
Education and Research (BMBF) within the project Scale4Edge under
contract no. 16ME0132.

[2] R. Cantoro et al., “On the maximization of the sustained switching
activity in a processor,” in 2015 IEEE 21st International On-Line Testing
Symposium (IOLTS). Halkidiki, Greece: IEEE, Jul. 2015.

[3] Y. Zhang et al., “Temperature-Aware Software-Based Self-Testing for
Delay Faults,” in Design, Automation & Test in Europe Conference
& Exhibition (DATE), 2015. Grenoble, France: IEEE Conference
Publications, 2015.

[4] N. Hage et al., “Instruction-based self-test for delay faults maximizing
operating temperature,” in 2017 IEEE 23rd International Symposium on
On-Line Testing and Robust System Design (IOLTS). Thessaloniki,
Greece: IEEE, Jul. 2017.

[5] I. Polian et al., “Exploring the Mysteries of System-Level Test,” in Asian
Test Symposium (ATS), 2020. Virtual Conference: IEEE, Nov. 2020.

[6] S. Chowdhury and J. Barkatullah, “Estimation of maximum currents in
MOS IC logic circuits,” IEEE Transactions on Computer-Aided Design
of Integrated Circuits and Systems, vol. 9, no. 6, Jun. 1990.

[7] H. Kriplani et al., “Maximum current estimation in CMOS circuits,”
in 1992 Proceedings 29th ACM/IEEE Design Automation Conference.
Anaheim, CA, USA: IEEE Comput. Soc. Press, 1992.

[8] Chuan-Yu Wang and K. Roy, “Maximum power estimation for CMOS
circuits using deterministic and statistical approaches,” IEEE Transac-
tions on Very Large Scale Integration (VLSI) Systems, vol. 6, no. 1, Mar.
1998.

[9] S. Devadas et al., “Estimation of power dissipation in CMOS combina-
tional circuits using Boolean function manipulation,” IEEE Transactions
on Computer-Aided Design of Integrated Circuits and Systems, vol. 11,
no. 3, Mar. 1992.

[10] C.-Y. Wang et al., “Maximum power estimation for CMOS circuits
under arbitrary delay model,” in 1996 IEEE International Symposium
on Circuits and Systems. Circuits and Systems Connecting the World.
ISCAS 96, vol. 4. Atlanta, GA, USA: IEEE, 1996.

[11] S. Manich and J. Figueras, “Maximizing the weighted switching activity
in combinational CMOS circuits under the variable delay model,” in
Proceedings European Design and Test Conference. ED & TC 97. Paris,
France: IEEE Comput. Soc. Press, 1997.

[12] Kuo Chan Huang et al., “Maximization of power dissipation under
random excitation for burn-in testing,” in Proceedings International Test
Conference 1998. Washington, DC, USA: Int. Test Conference, 1998.

[13] A. Sagahyroon, “Maximizing heat dissipation for burn-in testing,” in
IEEE CCECE2002. Canadian Conference on Electrical and Computer
Engineering. Conference Proceedings, vol. 1. Winnipeg, Man., Canada:
IEEE, 2002.

[14] D. Appello et al., “A comprehensive methodology for stress procedures
evaluation and comparison for Burn-In of automotive SoC,” in Design,
Automation & Test in Europe Conference & Exhibition (DATE), 2017.
Lausanne, Switzerland: IEEE, Mar. 2017.

[15] N. I. Deligiannis et al., “New Techniques for the Automatic Identifica-
tion of Uncontrollable Lines in a CPU Core,” in VLSI Test Symposium
(VTS), 2021. Virtual Conference: IEEE, Apr. 2021.

[16] S. Gurumurthy et al., “Automatic Generation of Instructions to Robustly
Test Delay Defects in Processors,” in 12th IEEE European Test Sympo-
sium (ETS’07), May 2007.

[17] M. Sauer et al., “PHAETON: A SAT-Based Framework for Timing-
Aware Path Sensitization,” IEEE Transactions on Computers, vol. 65,
no. 6, Jun. 2016.

[18] “OpenRISC,” https://openrisc.io, [Online; accessed 03-Jun-2021].
[19] “Silvaco 45nm Open Cell Library,” https://si2.org/open-cell-library,

[Online; accessed 03-Jun-2021].
[20] A. Riefert et al., “A Flexible Framework for the Automatic Generation

of SBST Programs,” IEEE Transactions on Very Large Scale Integration
(VLSI) Systems, vol. 24, no. 10, Oct. 2016.

[21] E. Sanchez et al., Evolutionary Optimization: the µGP toolkit, 2011th ed.
Berlin ; New York: Springer, Apr. 2011.

[22] R. Cantoro et al., “An analysis of test solutions for COTS-based systems
in space applications,” in 2018 IFIP/IEEE International Conference on
Very Large Scale Integration (VLSI-SoC), Oct. 2018.

[23] A. Mahzoon et al., “PolyCleaner: clean your polynomials before back-
ward rewriting to verify million-gate multipliers,” in Proceedings of
the International Conference on Computer-Aided Design. San Diego
California: ACM, Nov. 2018.

[24] D. Kaufmann et al., “Verifying Large Multipliers by Combining SAT
and Computer Algebra,” in 2019 Formal Methods in Computer Aided
Design (FMCAD). San Jose, CA, USA: IEEE, Oct. 2019.

