
20 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Perturbative Stochastic Galerkin Method for the Uncertainty Quantification of Linear Circuits / Manfredi, Paolo;
Trinchero, Riccardo; Ginste, Dries Vande. - In: IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS. I, REGULAR
PAPERS. - ISSN 1549-8328. - STAMPA. - 67:9(2020), pp. 2993-3006. [10.1109/TCSI.2020.2987470]

Original

A Perturbative Stochastic Galerkin Method for the Uncertainty Quantification of Linear Circuits

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/TCSI.2020.2987470

Terms of use:

Publisher copyright

©2020 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2921995 since: 2021-09-07T16:01:29Z

IEEE



1

A Perturbative Stochastic Galerkin Method for the
Uncertainty Quantification of Linear Circuits

Paolo Manfredi, Senior Member, IEEE, Riccardo Trinchero, Member, IEEE, Dries Vande Ginste, Senior
Member, IEEE

Abstract—This paper presents an iterative and decoupled
perturbative stochastic Galerkin (SG) method for the variability
analysis of stochastic linear circuits with a large number of uncer-
tain parameters. State-of-the-art implementations of polynomial
chaos expansion and SG projection produce a large deterministic
circuit that is fully coupled, thus becoming cumbersome to
implement and inefficient to solve when the number of random
parameters is large. In a perturbative approach, component
variability is interpreted as a perturbation of its nominal value.
The relaxation of the resulting equations and the application
of a SG method lead to a decoupled system of equations, corre-
sponding to a modified equivalent circuit in which each stochastic
component is replaced by the nominal element equipped with a
parallel current source accounting for the effect of variability.
The solution of the perturbation problem is carried out in an
iterative manner by suitably updating the equivalent current
sources by means of Jacobi- or Gauss-Seidel strategies, until
convergence is reached. A sparse implementation allows avoiding
the refinement of negligible coefficients, yielding further efficiency
improvement. Moreover, for time-invariant circuits, the iterations
are effectively performed in post-processing after characterizing
the circuit in time or frequency domain by means of a limited
number of simulations. Several application examples are used to
illustrate the proposed technique and highlight its performance
and computational advantages.

Index Terms—Circuit modeling, circuit simulation, pertur-
bation method, polynomial chaos, stochastic Galerkin method,
stochastic circuits, tolerance analysis, uncertainty quantification,
variability analysis.

I. INTRODUCTION

UNCERTAINTY quantification of electrical and electronic
circuits became of paramount importance to account for

process variations and uncontrollable operating conditions in
modern mass-production scenarios. While virtually all com-
mercial circuit simulators implement the brute-force Monte
Carlo (MC) method for variability analysis, it is well know that
it suffers from poor convergence properties [1], thus rapidly
becoming intractable for the accurate characterization of a
realistic design.

In the last decade, polynomial chaos expansion (PCE) was
extensively investigated and leveraged as a powerful alterna-
tive tool for uncertainty quantification in many engineering do-
mains, including electronics [2]. PCE-based methods comprise
a rather broad class of approaches that are based on expanding
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stochastic quantities of interest in terms of polynomials that
are orthogonal with respect to the probability density function
of the uncertain parameters [3]. The different implementations
can be grouped into two main categories: intrusive and non-
intrusive methods [4].

The main intrusive approach is the so-called stochastic
Galerkin (SG) method [5]. It consists in replacing stochastic
quantities inside the system of governing equations with their
respective PCEs, and applying a Galerkin projection to arrive
at an augmented system of deterministic equations in the
unknown expansion coefficients. It is recognized as the most
accurate numerical method for the evaluation of the PCE
coefficients [4], [6], but it requires a modification of the
equations, which may in turn require the development of a
dedicated solver. Applications of the SG method to circuit
simulations are found in [7]–[10], where a customized, SPICE-
like circuit solver was developed to handle the projected
equations. In [11] and [12], SPICE-compatible circuit models
were introduced for the Galerkin equations, allowing one to
perform the SG simulation in standard SPICE-type solvers
by systematically creating a compatible companion network.
The passivity of such models was also discussed in an earlier
paper [13].

The use of Galerkin projection limits the method to linear
systems or systems with polynomial nonlinearities [14]. Al-
ternative numerical strategies are required to embed generic
nonlinear circuit components [12], [15], [16]. Moreover, since
the resulting SG-augmented system is large and fully coupled,
it often becomes time and memory inefficient to simulate when
the number of random parameters is increased.

Another intrusive technique is the stochastic testing (ST)
method [17], which is based on point-matching the equations
in the stochastic space and internally decoupling them. It also
requires a customized solver to handle the modified equations.
A non-intrusive reformulation of the ST method was proposed
in [18], which recasts the technique as an interpolation in
the random space and allows for efficient handling of large
numbers of random parameters. A similar technique is the
sparse linear regression proposed in [19]. However, interpola-
tion strategies can lead to large errors, in particular for some
examples characterized by a large sensitivity of the response
with respect to random parameters, as shown later in this
paper.

The class of non-intrusive approaches is rather broad
and also includes techniques based on least square regres-
sion [20], [21], whose accuracy strongly depends on the
choice and number of regression samples, as well tensor-
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based approaches [22], which are mostly effective for scalar
outputs, while becoming cumbersome to characterize an entire
response in time or frequency domain.

This paper focuses on the accurate SG method and pro-
poses an improved reformulation for stochastic linear lumped
elements, by recasting it as a perturbation approach, which
leads to a decoupled problem that is solved iteratively. The
interpretation of the new equations yields an equivalent circuit
with the same complexity as the original one, in which
however, stochastic components are replaced by a nominal
element paralleled by an equivalent current source. Since only
the equivalent sources need to be updated throughout the
iterations, linear-time invariant (LTI) circuits are effectively
characterized in time or frequency domain by means of a
limited number of simulations, and the updates are carried
out in post-processing, thus providing further computational
improvement. Additional efficiency improvement is achieved
by adopting a sparse implementation that avoids the refine-
ment of negligible coefficients. Compared to the standard SG
implementation for high-dimensional problems, the advocated
method scales more favorably with the number of PCE co-
efficients, and it is compatible with general circuit solvers.
Furthermore, as the number of required iterations depends on
the amount of variability in the circuit parameters, the method
is most efficient for problems with a moderate uncertainty of
the circuit components.

Preliminary work on this topic was presented in [23] in
which, however, only a model for stochastic resistors was
presented. The present paper instead:

• covers the theory in much more detail;
• introduces models for generic linear elements and, specif-

ically, for inductors and capacitors;
• discusses two different strategies to update the equivalent

sources, highlighting their pros and cons;
• introduces a sparse implementation that avoids the un-

necessary refinement of negligible coefficients;
• introduces a more efficient implementation for LTI cir-

cuits based on time- or frequency-domain characteriza-
tion;

• provides more extensive validation examples and a com-
prehensive performance analysis.

In particular, the proposed method is illustrated by means
of several linear circuits, including filters (both passive and
active), a network with delay elements, and a switching
converter.

The remainder of the paper is organized as follows. Sec-
tion II provides the necessary basic notions about the PCE and
the SG method. In Section III, the proposed perturbative SG
method and the corresponding equivalent circuit models are
presented. Section IV discusses two strategies to update the
equivalent sources accounting for the component variability,
as well as a sparse implementation thereof. A more efficient
implementation for LTI circuits is introduced in Section V.
Extensive validation examples are provided in Section VI, and
the performance is carefully assessed and compared against
state-of-the-art techniques in Section VII. Finally, conclusions
are drawn in Section VIII.

II. POLYNOMIAL CHAOS OVERVIEW

This section reviews the necessary notions about state-of-
the-art polynomial chaos implementations, as needed in the
subsequent developments. Consider a circuit with d uncertain
elements, whose variability is parameterized by a vector of
normalized random variables ξ = (ξ1, . . . , ξd).

A. Polynomial Chaos Expansion

Any stochastic voltage or current in the circuit, generically
denoted with x, is approximated by a truncated PCE [3], i.e.,

x(t, ξ) ≈ x̂(t, ξ) =

K∑

k=1

xk(t)ϕk(ξ). (1)

The basis functions ϕk are orthonormal with respect to the
inner product

〈f, g〉 =

∫

Rd

f(ξ)g(ξ)ρ(ξ)dξ, (2)

where ρ(ξ) is the joint probability density function (PDF)
of the random variables ξ. For the univariate case, i.e.,
d = 1, and standard distributions, orthogonal polynomials
are readily available. For example, Hermite, Legendre, and
Jacobi polynomials are orthogonal when the distribution ρ(ξ)
is Gaussian, uniform, or beta, respectively. Normalization of
the basis functions is useful and readily achieved by properly
rescaling the polynomials.

For multiple and independent uncertain parameters, suitable
basis functions are constructed as a tensor-product combina-
tion of univariate polynomials in each variable:

ϕk(ξ) =

d∏

j=1

φkj (ξj), (3)

where φkj is a polynomial of degree kj . For non-standard
distributions, including dependent or correlated ones, suitable
orthonormal polynomials can be numerically constructed using
a Gram-Schmidt orthogonalization [24] or Cholesky decom-
position [25].

In (3), k is a positive integer that maps to a vectorial
multi-index element k = (k1, . . . , kd) ∈ K. The expansion
is typically truncated to retain all basis functions up to a total
degree p, meaning that the set of multi-indices is defined as

K = {k : ‖k‖1 ≤ p}, (4)

and its cardinality is K = |K| = (p+ d)!/(p!d!).
The basis functions are further assumed to be sorted in

ascending graded lexicographic order [26]. Under this as-
sumption, the first two statistical moments (i.e., mean and
variance) of the approximated quantity in (1) are readily given
by

E{x(t, ξ)} ≈ E{x̂(t, ξ)} = x1(t) (5)

and

Var{x(t, ξ)} ≈ Var{x̂(t, ξ)} =

K∑

k=2

x2k(t). (6)

Other moments, as well as distribution functions, are estimated
by randomly sampling (1).
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B. Non-Intrusive Techniques

There exist many different approaches for the determination
of the PCE coefficients in (1). Among non-intrusive methods,
regression-based approaches fit the PCE in a least-square
sense [20], [21], but they often require a rather large number
of simulation samples (� K, typically at least 2K) for the
regression problem to be sufficiently overdetermined, and
hence the solution accurate. Interpolation-based techniques
[18], [19] require K simulation samples, but the accuracy
is not always guaranteed, as will be shown by the pro-
posed application examples, and it is generally lower than
with Galerkin-based methods [27]. Other techniques based on
Gaussian quadratures [4] also require large sample sizes and
were proven to be, under certain conditions, an approximation
of the SG method [28].

C. SG Method

While all the aforementioned approaches do not require
explicit access to the system equations, the SG method [5] is
an intrusive approach which is however recognized as the most
accurate strategy for the evaluation of the PCE coefficients [4],
[6], [27]. In [12], an element-wise approach for stochastic
circuits was presented, where the governing equations of
uncertain linear lumped elements were expanded and Galerkin-
projected to arrive at deterministic and augmented systems of
equations. The approach is summarized below.

Consider a generic equation for a linear component of the
form

x(t, ξ) = X (ξ)
dα

dtα
y(t, ξ) (7)

where α = 0 for static elements (e.g., resistors) and α = 1
for dynamic elements (inductors and capacitors), x, y denote
a generic current or voltage variable, and X is the pertinent
element value. Replacing each stochastic (i.e., ξ-dependent)
quantity in (7) with its corresponding PCE (1) leads to

K∑

k=1

xk(t)ϕk(ξ) =

K∑

k=1

K∑

j=1

Xk
dα

dtα
yj(t)ϕk(ξ)ϕj(ξ) (8)

A Galerkin testing procedure, i.e., projecting the above equa-
tion onto the K basis functions using the inner product (2),
allows obtaining K coupled and deterministic equations for
each PCE coefficient:

xk(t) =

K∑

j=1

X̃kj
dα

dtα
yj(t), ∀k = 1, . . . ,K (9)

where

X̃kj =

K∑

i=1

Xi〈ϕkϕj , ϕi〉 (10)

The triple product term 〈ϕkϕj , ϕi〉 is analytically available for
standard polynomials. Anyhow, the values can be computed
a-priori up to a predefined maximum order and stored into
look-up tables.

In [12], the SG equations (9) for resistors, inductors,
and capacitors were interpreted as equivalent circuits com-
patible with (advanced) SPICE-type simulators. Eventually,

a deterministic and augmented counterpart of the original
stochastic network was systematically created by connecting
the models for stochastic and non-stochastic elements. The
nodal voltages and branch currents of the new companion
network corresponded to the PCE coefficients of those in the
original circuit. Therefore, a single deterministic simulation
of this equivalent circuit, carried out in a standard circuit
solver, allowed retrieving the sought-after PCE coefficients and
performing uncertainty quantification.

D. Limitations of the SG Method

Albeit very accurate, the SG method suffers from some
limitations. First of all, a new, augmented circuit needs to be
constructed. This is relatively simple but, in order to account
for all coupling in (9), extensive use is made of behavioral
controlled sources. Depending on the specific component type
and circuit simulator environment, the implementation of (9)
becomes cumbersome. Non-stochastic components must be
suitably incorporated in the augmented network, and this is
not always straightforward. Furthermore, the CPU time has
typically superlinear scaling because of the coupling. In the
next section, a new perturbative approach is put forward that
helps mitigate both the aforementioned inconveniences.

III. PERTURBATIVE SG METHOD

This section introduces a perturbative and iterative SG
method for the simulation of linear circuits. Although the same
rationale can be applied to the global system of equations
describing the entire circuit, an element-level approach is
adopted here, in line with [12], thus providing a modular tech-
nique that can be easily integrated into standard commercial
simulators.

A. Resistor

The proposed method is first introduced for a stochastic
resistor, whose governing equation reads

v(t, ξ) = R(ξ)i(t, ξ) (11)

with obvious variable definitions. The value of the stochastic
resistance is expressed as a random deviation from a de-
terministic nominal value, i.e., R(ξ) = R̄ + R(ξ). Under
the assumption that R(ξ) � R̄ (the proposed application
examples will help quantify this condition), replacing the
above expression into (11) and applying a relaxation leads
to

v(m)(t, ξ) = R̄ i(m)(t, ξ) +R(ξ)i(m−1)(t, ξ) (12)

where the superscript m ≥ 0 denotes the iteration index, and
i(−1) = 0. Application of the SG projection yields a set of K
equations

v
(m)
k (t) = R̄ i

(m)
k (t) +

K∑

j=1

R̃kji(m−1)j (t)

︸ ︷︷ ︸
v
(m)
eq,k(t)

, (13)

where v(m)
k and i(m)

k denote the PCE coefficients of the resistor
voltage and current at the mth iteration, respectively, whereas
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the coefficients R̃kj are constructed as in (10). It is noted that
the second term in the right-hand side of (13) depends on the
PCE coefficients of the current at the previous iteration, and
it is therefore known at any given iteration. As such, it plays
the role of an equivalent independent voltage source veq,k in
series with the resistor.

Since SPICE-base simulators mainly solve the circuit for
nodal voltages, a voltage-driven model is preferred to avoid the
introduction of additional nodes. Therefore, (13) is rewritten
as

i
(m)
k (t) =

1

R̄
v
(m)
k (t)−

K∑

j=1

R̃kj
R̄

i
(m−1)
j (t)

︸ ︷︷ ︸
i
(m)
eq,k(t)

, (14)

which corresponds to a resistor with resistance R̄ paralleled
by an independent current source ieq,k.

It is important to point out that, thanks to the relaxation, the
equations (14) are uncoupled, unlike (9), as the coupling be-
tween the PCE coefficients is translated into known equivalent
sources. The value of the independent sources in (14) differs
for each PCE coefficient that is solved for, and it is updated
throughout the iterations in a way that is discussed in detail
in Section IV.

B. Inductor

Similarly, the equation of a stochastic inductor

v(t, ξ) = L(ξ)
d

dt
i(t, ξ), (15)

with L(ξ) = L̄+ L(ξ), is relaxed as

v(m)(t, ξ) = L̄ i(m)(t, ξ) + L(ξ)
d

dt
i(m−1)(t, ξ). (16)

Application of the SG projection leads to

v
(m)
k (t) = L̄

d

dt
i
(m)
k (t) +

K∑

j=1

L̃kj
d

dt
i
(m−1)
j (t)

︸ ︷︷ ︸
veq,k(t)

(17)

which, by inverting the current-voltage relationship, is recast
in voltage-driven form as

i
(m)
k (t) =

1

L̄

∫ t

−∞
v
(m)
k (t)dt−

K∑

j=1

L̃kj
L̄
i
(m−1)
k (t)

︸ ︷︷ ︸
ieq,k(t)

(18)

The above equation corresponds to an inductor of inductance L̄
paralleled by an equivalent current source.

C. Capacitor

Finally, the equation of a stochastic capacitor

i(t, ξ) = C(ξ)
d

dt
v(t, ξ), (19)

with C(ξ) = C̄ + C(ξ), is relaxed as

i(m)(t, ξ) = C̄
d

dt
v(m)(t, ξ) + C(ξ)

d

dt
v(m−1)(t, ξ). (20)

Application of the SG projection produces

i
(m)
k (t) = C̄

d

dt
v
(m)
k (t) +

K∑

j=1

C̃kj
d

dt
v
(m−1)
j (t). (21)

By noting that

d

dt
v
(m−1)
j =

1

C̄
i
(m−1)
C,j , (22)

with i(m−1)C,j being the current flowing into the capacitor C̄ at
the previous iteration, the above equation is recast as

i
(m)
k (t) = C̄

d

dt
v
(m)
k (t) +

K∑

j=1

C̃kj
C̄
i
(m−1)
C,j (t)

︸ ︷︷ ︸
i
(m)
eq,k

, (23)

which has a similar form as (14) and (18), and avoids differen-
tiations in the evaluation of the equivalent current source ieq,k.
Similarly to the previous models, the equation corresponds to
a capacitor with capacitance C̄ paralleled by an independent
current source.

The models so far introduced for the basic RLC elements are
readily generalized to linear dependent sources with stochastic
coupling coefficients.

D. Independent Sources

The equivalent sources for stochastic elements in (14), (18),
and (23), add to the original independent (voltage or current)
sources that provide the actual excitation of the circuit. Vari-
ability is commonly assumed on circuit components, whereas
independent sources are often treated as deterministic. The
generic equation for a deterministic independent source is

x(t, ξ) = u(t), (24)

where x and U are either a voltage or a current. Replacing
the left-hand side with the corresponding PCE and applying
Galerkin projection leads to

xk(t) =

{
u(t) k = 1
0 k > 1

(25)

Therefore, the original independent sources are retained only
when solving for the first PCE coefficients, and set to zero
otherwise (cfr. [11], [12]) .

E. Summary and Implementational Details

Figure 1 summarizes the equivalent circuits for stochas-
tic RLC elements and deterministic independent sources. It
should be noted that, for capacitors, the equivalent current
source depends on the sole element current with positive sign,
whereas for resistors and inductors it depends on the total
branch current, taken with negative sign.

Briefly speaking, the modification of the original network
amounts to replacing stochastic elements with the nomi-
nal component equipped with a parallel independent current
source. Deterministic components remain unaffected. As a
result, the complexity of the equivalent circuit for the pertur-
bative SG simulation is greatly simplified compared to [12].
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i
(m)
k

−
K∑

j=1

R̃kj

R̄
i
(m−1)
j

R̄

v
(m)
k

(a)

i
(m)
k

−
K∑

j=1

L̃kj

L̄
i
(m−1)
j

L̄

v
(m)
k

(b)

i
(m)
k

i
(m)
C,k

+

K∑

j=1

C̃kj
C̄

i
(m−1)
C,j

C̄

v
(m)
k

(c)

{
u(t) k = 1
0 k > 1

(d)

Fig. 1. Perturbative circuit models for: (a) stochastic resistors; (b) stochastic
inductors; (c) stochastic capacitors; (d) deterministic independent sources.

The new circuit is iteratively simulated to retrieve the various
PCE coefficients of the stochastic voltages and currents, by
updating the equivalent sources of the uncertain elements until
convergence is reached.

As already noted for (14), also equations (18) and (23)
are uncoupled, as the effect of coupling between the PCE
coefficients is taken into account by the equivalent sources.
Hence, each PCE coefficient can be solved for individually,
either sequentially or possibly in parallel, depending on the
strategy for the update of the equivalent sources, which is dis-
cussed in Section IV. Throughout the iterations, the equivalent
current sources of stochastic elements are suitably updated,
whereas the original independent sources are switched off
when simulating for the PCE coefficients with k > 1. At each
iteration, a circuit of the same complexity as the original one
is simulated, which leads to a computational cost exhibiting a
favorable scaling with respect to the SG size factor K.

At iteration m = 0, all equivalent sources are zero.
Therefore, the first iteration for k = 1 is actually equivalent
to solving the circuit for the nominal configuration of the
components. This simulation thus immediately provides the
result of the nominal circuit to the circuit designer without
additional cost. As the circuit has no excitation for m = 0
and k > 1, the corresponding simulations can be skipped.

IV. UPDATE OF THE EQUIVALENT CURRENT SOURCES

The method outlined in Section III resembles the iterative
techniques for the solution of the linear system of equa-
tions [29]. Borrowing from linear algebra, there are two
common strategies that can be used to update the equivalent
sources, namely Jacobi and Gauss-Seidel updates. Each one
has both advantages and disadvantages, as discussed in the
following.

A. Jacobi Update

According to the Jacobi update, the K equivalent sources
for all the PCE coefficients are simultaneously updated at the
beginning of each iteration, based on the solutions of the ele-
ment currents at the previous iteration. The equivalent sources
are updated by means of a single matrix-vector multiplication
of the form

i(m)
eq (t) = X̃ i(m−1)up (t), (26)

where i(m)
eq and i(m−1)up are vectors in RK collecting all the

equivalent sources and all the currents needed for their update,
respectively, whereas X̃ ∈ RK×K is a (typically sparse)
matrix with entries that readily follow from (14), (18), or (23).
Since all the equivalent currents are available concurrently,
at each iteration the K circuit solutions for the various PCE
coefficients can, in principle, be carried out in parallel.

The pseudo-code for the perturbative SG solution with Ja-
cobi updates is provided by Algorithm 1. The main drawback
of this strategy is its slower convergence compared to a more
efficient alternative, i.e., the Gauss-Seidel update, which is
discussed next.

Algorithm 1: Jacobi iterations

Solve nominal circuit (k = 1, m = 0);
for m = 1, 2 . . . do

Update equivalent sources;
for k = 1, . . . ,K do

if k = 1 then
Switch original independent sources on;

else
Switch original independent sources off;

Solve circuit using the kth equivalent sources;
Update the kth solutions;

if convergence criterion met then
break;

B. Gauss-Seidel Update

In each iteration m, for the update of the kth coefficient,
we may also include the information already obtained for
the coefficients 1, . . . , k − 1 during the computation of the
equivalent current sources, as follows:

i
(m)
eq,k(t) =

k−1∑

j=1

X̃kji(m)
up,j(t) +

K∑

j=k

X̃kji(m−1)up,j (t), (27)

with X̃kj being the entries of the same matrix X̃ as in (26).
In practice, it suffices to update the equivalent sources inside
the inner loop by multiplying the kth row of matrix X̃ by the
updated vector of the currents, instead of pre-computing all of
them at the beginning of the outer loop. The pseudo-code is
provided by Algorithm 2.

This is a Gauss-Seidel approach, in which the equivalent
sources are updated sequentially inside the inner loop for k, by
exploiting the solutions that have already been computed at a
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given iteration [32]. Briefly speaking, the available information
is used immediately, rather than waiting for the next iteration,
thus introducing a substantial speed-up in the convergence.
The number of iterations is reduced roughly by a factor two,
as will be shown by the application examples. Despite the
obvious advantage of reducing the number of iterations, a
trade-off exists between Jacobi and Gauss-Seidel updates in
the efficiency of the calculations, as will be discussed in
Sections V and VII.

Algorithm 2: Gauss-Seidel iterations

Solve nominal circuit (k = 1, m = 0);
for m = 1, 2, . . . do

for k = 1, . . . ,K do
Update the kth equivalent sources;
if k = 1 then

Switch original independent sources on
else

Switch original independent sources off
Solve circuit using the kth equivalent sources;
Update the kth solutions;

if convergence criterion met then
break;

C. Sparse Implementation

It is known that PCEs are characterized by the principle
of sparsity of effects, meaning that most coefficients in a
high-dimensional expansion are negligible [22], [30], [31].
As opposed to the conventional SG implementation, which
simultaneously solves for all coefficients, the proposed pertur-
bative implementation can exploit this property by avoiding the
refinement of PCE coefficients that are detected to be smaller
than a prescribed tolerance. In this paper, a PCE coefficient
is considered to be negligible if, after the first iteration, its
maximum value over time (or frequency) is below a certain
fraction of the maximum value over time (or frequency) of the
nominal solution, i.e.,

max
t

{
x
(m)
k (t)

}
< δ ·max

t

{
x
(0)
1 (t)

}
(28)

This choice offers a reasonable criterion to identify sparse
coefficients at runtime. In the following examples, a threshold
of δ = 10−3 is considered to assess sparsity.

D. Summary of Workflow

Figure 2 illustrates the workflow for the simulation of an
RLC circuit. The topology is depicted in the upper box, and
all three RLC elements are stochastic. After performing the
solution of the nominal circuit, the circuit is re-simulated for
each of the K PCE coefficients by including the corresponding
equivalent sources (shown in red). The original voltage source
is displayed with dashed lines because it is activated only when
simulating for k = 1. Depending on whether Gauss-Seidel or
Jacobi updates are used, the sources are updated inside the

E

R̄

L̄
C̄

Simulate nominal circuit

Update equivalent source(s)

E

R̄

L̄
C̄

Simulate kth equivalent circuit

Gauss-Seidel

Jacobi

Update type?

NO
Converged?

YES

Solution

k = K k < K

Fig. 2. Flowchart of the proposed perturbative SG simulation strategy.

loop over k or once at the beginning of the loop, respectively.
The process is repeated until convergence is reached. If the
sparse implementation is adopted, starting from the second
iteration, the circuit is re-simulated only if the corresponding
PCE coefficient has been identified as non-negligible. It is
important to point out that the proposed method retains the
high accuracy of the SG method up to the selected tolerance
for convergence. Furthermore, despite the presence of the
additional equivalent sources, the circuit complexity remains
unaltered in terms of nodal equations.

E. Illustrative Example: Stochastic Resistor

For the sake of illustration, the trivial case of a stochastic
resistor subject to a constant voltage is discussed. The resis-
tance value is assumed to be normally distributed with a mean
value of 14 Ω and a standard deviation of 2 Ω. The voltage
source is E = 20 V. With the above parameters, the resistor
current i = E/R(ξ) has a mean value of 1.4598 A and a
standard deviation of 0.2235 A.

The value of the stochastic resistance is expressed as
R(ξ) = R̄+R(ξ), with R̄ = 14 Ω and R(ξ) = 2 · ξ Ω, where
ξ is a standard normal random variable. The overall equivalent
circuits for the perturbative SG solution with k = 1 and k > 1
are shown in Fig. 3. It is readily noted that, at each iteration,
i1 = E/R̄+ ieq,1, whereas ik = ieq,k for k > 1.
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E R̄ ieq,1

i1

(a)

R̄ ieq,k

ik

(b)

Fig. 3. Equivalent circuits for the perturbative calculation of the PCE
coefficients with k = 1 (a) and k > 1 (b).

Using a second-order PCE with orthonormal Hermite poly-
nomials

ϕ1 = φ0 = 1

ϕ2 = φ1 = ξ

ϕ3 = φ2 = (ξ2 − 1)/
√

2,

the SG matrix for the update of the equivalent sources reads

X̃ = − 1

R̄



R̃11 R̃12 R̃13

R̃21 R̃22 R̃23

R̃31 R̃32 R̃33


 = − 2

14




0 1 0

1 0
√

2

0
√

2 0


 .

The starting nominal solution is i1 = E/R̄ = 1.4286. Table I
collects the values of the PCE coefficients of the resistor
current and of the pertinent equivalent sources, obtained with
both Jacobi and Gauss-Seidel updates, for iterations m > 0.
It is readily observed that the Gauss-Seidel solution achieves
the same results as the Jacobi solution in about half of the
iterations. After eight and five iterations, using Jacobi and
Gauss-Seidel updates, respectively, the error on the mean
value and standard deviation is below 0.0002% and 0.8%,
respectively. Obviously, for this simple one-dimensional case,
all coefficients are significant and require updates.

For the sake of completeness, Fig. 4 shows the probability
distribution of the resistor current. The empirical distribution
obtained by MC sampling (gray bars) is in very good agree-
ment with the PDF of the PCE model (red line). It is noted
that the distribution is not Gaussian, but rather asymmetric
because of the inverse relationship between the current and
the resistance value.

0.8 1 1.2 1.4 1.6 1.8 2 2.2 2.4 2.6
0

0.5

1

1.5

2

Fig. 4. Probability distribution of the resistor current obtained by MC
sampling (gray bars) and by the PCE model (red line).

V. IMPROVED SOLUTION FOR LTI CIRCUITS

So far, the presented solution requires the equivalent sources
to be updated iteratively, and the circuit re-simulated for each
configuration thereof. When using a commercial circuit solver,
such as SPICE or Simulink, equivalent waveforms can be
supplied, e.g., in the form of piece-wise time-value pairs. The
same approach is readily applied in the frequency domain, by
using AC sources. With a customized solver, the probing of
the necessary currents and the update of the equivalent sources
could be carried out internally in a more efficient manner.
However, a still more effective approach for LTI circuits is
introduced in this section, taking advantage of the fact that the
variability is in fact translated from components into sources,
which are the only circuit elements changing throughout the
iterations.

It is well-known that the response of a LTI system is
fully characterized with respect to input signals in terms
of impulse responses (or transfer functions in the frequency
domain). Once the input-to-output impulse response (transfer
function) is known, the response to an arbitrary excitation is
obtained by a convolution (multiplication) between the two. As
already noted, only the independent, i.e., the original and the
equivalent, sources actually change throughout the iterations,
whereas the rest of the circuit remains unchanged. These
considerations allow introducing a further improvement in the
solution strategy, in which the circuit is characterized in a
single iteration in terms of the necessary responses in the
nominal configuration. The update of the equivalent sources
and of the corresponding PCE coefficients is calculated offline
as post-processing.

A. Time-Domain Analysis

In the equivalent circuit for the perturbative SG solution
(see, e.g., Fig. 2), the input signals that change throughout
the iterations are both the original independent sources and
the equivalent sources associated with stochastic components.
The output signals that need to be computed are the original
outputs of interest and the currents needed for the updates of
the equivalent sources. Let us introduce an impulse-response
matrix h such that(

iup(t)
xout(t)

)
= h(t) ∗

(
uin(t)
ieq(t)

)
(29)

where:
• iup ∈ Rd collects the currents needed for the update of

the equivalent sources for the d stochastic elements;
• xout ∈ Rno collects no voltage or current outputs of

interest;
• uin ∈ Rni collects ni voltage or current excitations of

the circuit;
• ieq ∈ Rd collects the equivalent current sources for the
d uncertain elements.

As such, h ∈ R(d+no)×(d+ni). The impulse-response matrix
is effectively characterized column-wise, by calculating the
step responses of the variables in the left-hand side of (29)
in which all sources in the right-hand side are set to zero,
except one that is set to a unitary value, and differentiating
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TABLE I
PERTURBATIVE SG SOLUTION OF THE CURRENT OF A STOCHASTIC RESISTOR SUBJECT TO A CONSTANT VOLTAGE.

Jacobi update Gauss-Seidel update
iteration m PCE index k equivalent source ieq,k PCE coefficients ik mean/std equivalent source ieq,k PCE coefficients ik mean/std

1 1 0 1.4286 1.4286 0 1.4286 1.4286
2 -0.2041 -0.2041 0.2041 -0.2041 -0.2041 0.2082
3 0 0 0.0412 0.0412

2 1 0.0292 1.4577 1.4577 0.0292 1.4577 1.4577
2 -0.2041 -0.2041 0.2082 -0.2166 -0.2166 0.2210
3 0.0412 0.0412 0.0438 0.0438

3 1 0.0292 1.4577 1.4577 0.0309 1.4595 1.4595
2 -0.2166 -0.2166 0.2205 -0.2173 -0.2173 0.2217
3 0.0412 0.0412 0.0439 0.0439

4 1 0.0309 1.4595 1.4595 0.0310 1.4596 1.4596
2 -0.2166 -0.2166 0.2210 -0.2174 -0.2174 0.2218
3 0.0438 0.0438 0.0439 0.0439

5 1 0.0309 1.4595 1.4595 0.0311 1.4596 1.4596
2 -0.2173 -0.2173 0.2217 -0.2174 -0.2174 0.2218
3 0.0438 0.0438 0.0439 0.0439

6 1 0.0310 1.4596 1.4596
2 -0.2173 -0.2173 0.2217
3 0.0439 0.0439

7 1 0.0310 1.4596 1.4596
2 -0.2174 -0.2174 0.2218
3 0.0439 0.0439

8 1 0.0311 1.4596 1.4596
2 -0.2174 -0.2173 0.2218
3 0.0439 0.0439

the results. This only requires d+ni circuit simulations. Once
the impulse-response matrix h is available, the SG iterations
can be performed offline without further calls to the circuit
simulator, and the equivalent sources, as well as the outputs
of interests, are suitably updated by means of convolutions.

Remark. Since typically d+ni � K, the proposed approach
requires a number of actual circuit simulations that is by far
smaller than any other state-of-the-art PCE-based approach.

B. Frequency-Domain Analysis

For AC analyses, a similar approach is adopted, in which
the frequency-domain counterpart of the impulse-response
matrix (29), i.e., the transfer function matrix H , such that

(
Iup(f)
Xout(f)

)
= H(f) ·

(
U in(f)
Ieq(f)

)
, (30)

is constructed. The iterative solution is carried out offline using
mere matrix multiplications between H and the vector of
independent sources.

C. Illustrative Example: RLC Circuit

As a first validation of the proposed simulation framework
for LTI networks, the trivial RLC circuit of Fig. 2 is consid-
ered. The resistance, inductance, and capacitance are d = 3
independent and normally distributed uncertain variables with
nominal values R̄ = 10 Ω, L̄ = 200 nH, and C̄ = 1 nF, and a
relative standard deviation of 10%. The voltage source is 1 V
and the output of interest is the voltage vLC across the LC
resonator.

For the sake of comparison, the stochastic problem is
simulated with:

1) the MC method;
2) the classical SG method [12];
3) the perturbative SG simulation for LTI circuits outlined

in this section, with Jacobi or Gauss-Seidel updates.

The convergence of the perturbative iterations is checked based
on the relative difference in norm-2 between the matrices col-
lecting the PCE coefficients from k = 2 to K for all simulated
time or frequency points at two subsequent iterations. The first
coefficient is excluded from the analysis because it is typically
dominant over the others. For this and for the following
examples, a threshold of 0.1% on the aforementioned metric
is set to stop the iterations.

Figure 5 illustrates the variability of voltage vLC resulting
from the uncertainty on the resistance, inductance, and ca-
pacitance values. The top panel shows a subset of samples
from the MC analysis (gray lines). The voltage mean (top
panel) and the standard deviation (bottom panel) computed
from the MC samples and with the classical and perturbative
SG techniques with second-order PCE (i.e., p = 2) are also
shown by solid blue, dashed red, and dotted green lines,
respectively. Very good agreement is observed between all
the curves for these two statistical moments. In particular,
there is no appreciable difference between the results of
the perturbative SG simulation with Jacobi and Gauss-Seidel
updates. Therefore, only one curve is displayed in Fig. 5.
Nevertheless, the two solutions require eight and five iterations
to converge, respectively. Simulation times are irrelevant for
such a trivial example, and therefore not discussed. In the
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Fig. 5. Variability of voltage vLC in the RLC circuit of Fig. 2. Top panel:
subset of MC samples (gray lines) and mean computed with the MC method
(solid blue line), the classical SG method of [12] (dashed red line), and
the proposed perturbative SG simulation (dotted green line). Bottom panel:
standard deviation of voltage vLC computed with the same techniques.

following, the results of the perturbative SG simulation will
be always displayed by means of a single curve, as both
Jacobi and Gauss-Seidel solutions virtually converge to the
same result within the specified tolerance.

VI. APPLICATION EXAMPLES AND RESULTS

This section provides further and more significant valida-
tion examples involving various numbers of random circuit
components. In this section, no distinction is made between
the sparse and non-sparse implementations, as this choice
mainly impacts efficiency, with negligible loss of accuracy.
An extensive discussion on the performance of the proposed
techniques is provided in the next section.

A. Seventh-Order Chebyshev Low-Pass Filter

port 1 port 2

2.7 pF

5.1 nH

4.3 pF

5.8 nH

4.3 pF

5.1 nH

2.7 pF

Fig. 6. Schematic of the seventh-order Chebyshev filter.

The first example concerns the seventh-order Chebyshev
low-pass filter, illustrated in Fig. 6. The filter is designed to
have a cut-off frequency of 2 GHz and a passband ripple of
0.5 dB. The component values indicated in Fig. 6 are the
closest to the optimal design values available on the market.
An independent Gaussian uncertainty with a relative standard
deviation of 5% is ascribed to each element.

Fig. 7 shows the variability of the step response of the filter.
In the top panel, the average response computed from the
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Fig. 7. Variability of the step response of the Chebyshev filter of Fig. 6. Top
panel: subset of MC samples (gray lines) and mean computed with the MC
method (solid blue line), the classical SG method [12] (dashed red line), the
ST method [18] (dash-dotted magenta line), and the proposed perturbative SG
simulation (dotted green line). Bottom panel: standard deviation of the step
response computed with the same techniques.

MC samples, as well as with the classical SG method [12],
with the interpolative ST method [18], and with the proposed
perturbative SG simulation are superposed to a subset of
MC samples. The bottom panel shows the standard deviation
computed with the same stochastic techniques. Order p = 3
is used for all PCE-based methods. While the Galerkin-based
techniques provide accurate results, the ST method exhibits
a large error on the standard deviation. This is probably due
to the strong resonant behavior of the circuit, causing a large
sensitivity of the responses with respect to the sampling points.
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Fig. 8. Variability of the transmission S21 of the Chebyshev filter.

Next, the analysis is repeated in the frequency domain.
Figure 8 shows the uncertainty quantification of the magnitude
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of the filter transmission S21. The inaccuracy of the ST method
for this example is also confirmed in the frequency domain,
since a large error is found around the cut-off frequency.

B. Transmission-Line Network

The second example considers a network with seven delay
elements consisting of transmission-line sections of various
lengths, as shown in Fig. 9. All relevant physical parameters
are indicated in the figure. The voltage source produces a
trapezoidal pulse with an amplitude of 1 V, rise/fall times
of 200 ps, and a width of 2.8 ns at half amplitude. The
variability is provided by all the d = 29 lumped components (a
similar perturbative approach can be applied also to stochastic
nonuniform transmission lines [34], but its implementation is
not compatible – as is – with standard SPICE-type circuit
simulators). To further assess the performance of the pertur-
bative SG simulation for different amounts of variability, the
element values are ascribed a Gaussian distribution with a
relative standard deviation of increasing values, i.e., 3%, 5%,
7%, and 10%.

75Ω 10nH

1pF

25Ω

6nH

1pF

10nH

0.5pF 5Ω 1pF

25Ω 5nH

1pF 0.5pF 50Ω

1pF

10nH

0.5pF
50Ω

25Ω

5nH

2pF

25Ω

5nH

0.5pF

5nH

1pF 30Ω

1pF

vFE(t)

εr = 4.1
tan δ = 0.02

100 µm

150 µm
20 µm
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(conductivity: 58 MS/m)

length=3 cm

length=5 cm

length=3 cm

length=3 cm

length=3 cm

length=4 cm

length=2 cm

Fig. 9. Schematic of the network with transmission lines.

Figure 10 shows the voltage vFE transmitted to the far end
of the network. In the top panel are a subset of samples from
the MC simulation, highlighting the variability of the voltage
resulting from the largest uncertainty in the lumped compo-
nents (i.e., 10% standard deviation), as well as the corre-
sponding average voltage computed from the MC samples and
with the classical and perturbative SG simulations. The bottom
panel provides the standard deviation of the voltage computed
with the same three methods for the different standard devia-
tions of the component values. Excellent agreement is found
between the classical and the perturbative SG implementations
for all cases, and their results also compare well with the MC
references. As will be discussed in the next section, the amount
of iterations required by the perturbative SG solution increases
with the standard deviation of the component values. The ST
method provides comparable results and is not shown in this
analysis.
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Fig. 10. Variability of voltage vFE in the network of Fig. 9. The top panel
shows a subset of MC samples (gray lines) for the case with 10% variability.
The mean obtained from the classical and perturbative SG simulations (dashed
red and dotted green curves, respectively) is compared with the MC result
(solid blue line). The bottom panel shows the standard deviations for different
amounts of variability obtained with the same techniques.

Figure 11 shows the PDFs of voltage vFE at the time of
maximum overshoot, i.e., 1.47 ns, for the different amounts of
uncertainty considered. The distribution of the MC samples
(blue dots) is compared to the PDF estimated from the
Galerkin-based simulations (solid red and dotted green lines),
highlighting excellent agreement. Reasonably, the width of
the PDF narrows as the uncertainty in the circuit parameters
reduces.
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Fig. 11. Probability distribution of voltage vFE at 1.47 ns for different
amounts of uncertainty. Blue dots: distribution of the MC samples; solid red
and dotted green lines: predictions from the classical and perturbative SG
simulations, respectively.

C. Active Low-Pass Filter

This test case concerns the active low-pass filter with the
schematic of Fig. 12, reproduced from [33]. Without loss of
generality, the opamps are considered ideal for simplicity. The
variability is provided by the d = 30 RC elements, which are
ascribed independent Gaussian distributions with a standard
deviation of 5% from the nominal values indicated in Fig. 12.
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Fig. 12. Schematic of the active low-pass filter (reproduced from [33]).
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Fig. 13. Variability of the attenuation of the active filter of Fig. 12. Top panel:
subset of samples from MC simulation (gray lines) and average attenuation
estimated from the MC samples (solid blue line), with the ST method
(dash-dotted magenta line), and with the proposed SG method (dotted green
line). Bottom panel: standard deviation estimated with the same stochastic
techniques.

Fig. 13 shows the variability of the filter input-to-output
attenuation in the stopband. As in the previous test cases, the
top panel shows a subset of random responses from the MC
simulation (gray lines), as well as the average response. The
result from the MC analysis (solid blue line) is compared to
the one obtained with the ST method (dash-dotted magenta
line) and the proposed SG simulation (dotted green line), both
with order p = 2. A huge variation of the attenuation and,
especially, of the location of the dips is observed, despite the
moderate uncertainty of the circuit components. Nonetheless,
the PCE-based techniques provide an accurate estimation, also
of the standard deviation (bottom panel). The perturbative SG
result matches the reference MC curve better than the ST
method at high frequencies, as shown by the inset. For this test
case, the application of the state-of-the-art SG implementation
of [12] was hindered by the difficulty in handling the ideal

operational amplifiers. This reveals an additional advantage of
the proposed perturbative technique, as no specific models are
required for non-stochastic components.

D. Full-Bridge Single-Phase Inverter

1 Ω

15 V

47 µF

47 µF

S1

S2

S3

S4

2 mH

300 pF

30 µF

2 mH
300 pF

20 Ω vo(t)

Fig. 14. Schematic of the full-bridge single-phase inverter.

The last example concerns the full-bridge single-phase in-
verter [35] shown in Fig. 14. This circuit is a DC-AC converter
producing a 60-Hz sinusoidal voltage from a constant input
voltage. This is achieved by means of four switches with pulse-
width modulated controlling signals [36]. The variability is
provided by all d = 9 lumped components in the circuit, with
a Gaussian distribution and a 15% standard deviation. Whereas
for all previous examples, the techniques of Section V were
used, it should be noted that this inverter is a non-LTI circuit,
for which the slower implementation of Section IV has to
be applied. The system is simulated in Simulink. For the
perturbative SG simulation, the updated equivalent sources are
provided in the form of time-value pairs.
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Fig. 15. Variability of the output voltage vo in the network of Fig. 14. Mean
and standard deviation predicted with the proposed perturbative SG simulation
are compared against the results from MC analysis (solid blue lines).

Fig. 15 shows the variability of the sinusoidal output volt-
age vo. It is noted that the large variability has little impact on
the output, and mainly affects the voltage ripple. The top panel
shows a subset of samples from the MC simulation (gray lines)
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and the mean voltage obtained from the MC samples (solid
blue line) and with the proposed perturbative SG simulation
(dotted green line). The standard deviation obtained with these
two techniques is provided in the bottom panel. The results
obtained with the perturbative SG method match well with the
MC estimates. The classical SG simulation of [12] is hardly
applicable to this example and would require the development
of models compatible with Simulink.

The main purpose of this example is to show the feasi-
bility of the proposed perturbative SG reformulation for the
simulation of non-LTI circuits in non-SPICE environments.
However, the necessity of directly simulating the effect of the
perturbative sources during each iteration in this case penalizes
the performance with respect to sampling-based techniques
such as the ST method.

VII. COMPUTATIONAL EFFICIENCY AND DISCUSSION

The previous section discussed several application examples
in both frequency and time domain, and focused on the
accuracy of the various methods. Their efficiency is assessed
in this section. All simulations are performed on a Dell
Precision 5820 workstation with an Intel(R) Core(TM) i9-
7900X, CPU running at 3.30 GHz and 32 GB of RAM. For a
fair comparison on the computational times for the perturbative
SG simulation of LTI examples, involving post-processing
convolutions over time or transfer function multiplications
over frequency, the same number of time or frequency points
is used, i.e., 1001 and 401, respectively.

The pertinent computational times are summarized in Ta-
ble II. The purpose of the table is to compare the performance
of the proposed perturbative SG simulation, and in particular
of its sparse implementation, with respect to state-of-the-art
PCE-based techniques. It was already widely proven that such
methods outperform MC analyses, therefore a comparison in
this regard is out of the scope of this paper. Here, MC is
only used as a reference for the accuracy. However, as a brief
example, it is worth mentioning that, for the network of Fig. 9,
the generation of 10000 MC samples for the reference results
took 7646 s, i.e., nearly 10× slower than the slowest PCE-
based technique.

First of all, it is interesting to note that, in spite of the larger
number of iterations required, the Jacobi update strategy turns
out to be more efficient than the non-sparse Gauss-Seidel one
in most cases. This is explained by the fact that Jacobi updates
allow performing post-processing operations simultaneously
for all PCE coefficients, which is usually more effective
than handling each coefficient separately within a loop. For
frequency-domain simulations, the best performance of Jacobi
updates is achieved by performing calculations separately for
each frequency point, thus allowing the use of a different num-
ber of iterations1, while no significant difference is found for
Gauss-Seidel updates in this regard. However, for the network
of Fig. 9 the simulation with Jacobi updates incurs memory
issues due to the very large size of the matrices to be handled
for the simultaneous evaluation of the convolutions. Hence,

1The figure in the fourth column of the table indicates the highest iteration
number in this case.

the Gauss-Seidel update, performing calculations separately
for each PCE coefficient, turns out to be a viable solution
for large-size problems. Moreover, the Gauss-Seidel strategy
performs also better for the circuit of Fig. 14, which involves
the direct simulation of the perturbative iterations, and benefits
from the lower number of iterations required by this approach,
rather than from post-processing efficiency.

When taking the sparsity of the PCE coefficients into
account, the performance of Gauss-Seidel updates is further
improved by avoiding the refinement of negligible coefficients.
The sparsity index, indicated in the table, is defined as the
ratio between the negligible PCE coefficients, based on the
condition (28), and the total number of coefficients K. In
most cases, the sparsity index identified after the first iteration
matches the one obtained a posteriori from the standard
SG simulation, based on the same criterion (28). Intuitively,
the sparsity index increases when increasing the number of
random parameters and/or reducing their variability (cfr. the
transmission-line network example). It is interesting to note
that the sparse implementation sometimes leads to a lower
number of iterations, suggesting that the refinement of small
coefficients may require additional iterations. As a result, the
performance of the sparse algorithm scales better with the
variability of input parameters.

Compared to the state-of-the-art SG implementation, the
proposed perturbative SG simulation is more efficient when
the number of random parameters is high, e.g., for the network
of Fig. 9. It is important to remark that the circuit modification
required to perform the perturbative SG simulation is minimal
compared to the complex models required by the SG simu-
lation in [12], and that the latter is not easily applicable to
complex circuits. Indeed, the test cases of Fig. 12 and Fig. 14
could not be simulated with the state-of-the-art technique.
Thanks to the efficient post-processing, the perturbative SG
approach is also more efficient than the ST method for LTI
circuits and usually provides superior accuracy.

It is also noted (see the transmission-line network example)
that the simulation time for the perturbative SG method
increases with the standard deviation of the component vari-
ability. This is expected, because a larger uncertainty leads
to a higher number of iterations required for the method to
converge. Therefore, the efficiency of the perturbative SG
solution further increases as the variability reduces.

VIII. CONCLUSIONS AND FUTURE WORK

This paper presented a perturbative SG method for the
simulation of stochastic linear circuits. The approach is based
on interpreting component uncertainty as a perturbation from
the nominal value. The application of the SG method to
relaxed governing equations leads to decoupled equations for
the pertinent PCE coefficients. Such equations are equivalent
to a component with its nominal value paralleled by a current
source. This equivalent circuit is readily implementable in
any circuit solver. The solution is calculated iteratively by
updating the equivalent current sources using Jacobi or Gauss-
Seidel strategies, with the latter usually halving the number of
required iterations. However, for LTI circuits, the circuit can
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TABLE II
COMPUTATIONAL TIMES OF THE VARIOUS PCE-BASED TECHNIQUES FOR THE CONSIDERED APPLICATION TEST CASES.

Test case d Method Iteration # Time Speed-up

7

classical SG 3.0 s
Chebyshev filter ST 10.5 s –
(time domain) perturbative SG (Jacobi updates) 13 5.1 s –

perturbative SG (Gauss-Seidel updates) 7 8.3 s –
sparse perturbative SG (Gauss-Seidel updates, sparsity index = 80.8%) 6 3.3 s –

7

classical SG 0.4 s
Chebyshev filter ST 9.5 s –
(frequency domain) perturbative SG (Jacobi updates) 22 1.2 s –

perturbative SG (Gauss-Seidel updates) 12 2.7 s –
sparse perturbative SG (Gauss-Seidel updates, sparsity index = 9.2%) 12 2.3 s –

Transmission-line network 29

classical SG 437 s
ST 257 s 1.7×
perturbative SG (Jacobi updates) – n/a
perturbative SG (Gauss-Seidel updates)

variability = 3% 3 152 s 2.9×
variability = 5% 4 198 s 2.2×
variability = 7% 9 430 s 1.0×
variability = 10% 17 803 s –

sparse perturbative SG (Gauss-Seidel updates)
variability = 3%, sparsity index = 95.5% 3 66 s 6.6×
variability = 5%, sparsity index = 95.1% 3 65 s 6.7×
variability = 7%, sparsity index = 93.8% 5 72 s 6.1×
variability = 10%, sparsity index = 88.0% 9 107 s 4.1×

Active low-pass filter 30

classical SG n/a
ST 38.6 s n/a
perturbative SG (Jacobi updates) 9 4.8 s n/a
perturbative SG (Gauss-Seidel updates) 4 97.5 s n/a
sparse perturbative SG (Gauss-Seidel updates, sparsity index = 53.6%) 4 60.0 s n/a

Inverter 9

classical SG n/a
ST 66 s n/a
perturbative SG (Jacobi updates) 6 1484 s n/a
perturbative SG (Gauss-Seidel updates) 4 994 s n/a
sparse perturbative SG (Gauss-Seidel updates, sparsity index = 72.7%) 4 476 s n/a

be effectively characterized by means of impulse responses
or transfer functions, and the iterations carried out in post-
processing. In this scenario, the slower convergence of Jacobi
iterations is offset by their superior computational efficiency,
except when matrix dimensions make the calculations in-
tractable or a sparse implementation is adopted, thus avoiding
an unnecessary refinement of negligible coefficients.

The proposed perturbative method scales better with the
number of stochastic dimensions than the state-of-the-art
implementations of the SG method. Moreover, the method
exhibits an accuracy that is comparable to the classical SG
implementation, and thus often superior to the one of the inter-
polative ST method. Since it requires very little modification to
the circuit, and only to its stochastic components, the method
allows the direct use of SPICE-type circuit simulators and
readily applies to arbitrary linear circuits, including networks
that cannot be handled with the models in [12].

Plans for future work include improving the convergence of
the iterations and the calculation of time-domain convolutions,
as well as extension to nonlinear circuits. To this end, a combi-
nation with waveform relaxation approaches [37], which allow

decoupling and separately solving the linear and nonlinear
parts of a circuit, seems to be a promising strategy.
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