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An Hybrid Model-Free Reinforcement Learning
Approach for HVAC Control

Francesco M. Solinas, Andrea Bellagarda, Enrico Macii, Edoardo Patti and Lorenzo Bottaccioli
Politecnico di Torino, Turin, Italy. Email: name.surname@polito.it

Abstract—Traditional Heating Ventilation and Air Condition-
ing (HVAC) systems are extremely energy draining appliances,
and their use is ever increasing with urbanisation. For this
reason, strong research effort has been put in the development
of novel control strategies for the optimal management of
HVAC systems, aiming at reducing energy consumption without
affecting thermal comfort. In this paper, we propose an hybrid
model-free Reinforcement Learning approach for HVAC control
able to optimise both energy consumption or users comfort. Our
methodology is compared with two baseline solutions in literature
based on an EnergyPlus controller and a Model Predictive
Control. Results show that our methodology can outperform
both baselines in terms of energy consumption reduction or
thermal comfort optimisation, given that either of the two
objectives is appropriately chosen during the training and the
hyperparameters selection phase.

Index Terms—Artificial Intelligence, HVAC optimisation, Re-
inforcement Learning, Smart Buildings

I. INTRODUCTION

Traditional Heating Ventilation and Air Conditioning
(HVAC) systems are one of the most energy demanding
appliances in our buildings [1]. Such systems, are traditionally
managed thanks to a rule-based approach that is based on
two steps: 1) the definition of a setpoint and 2) the usage
of Proportional Integrated Derivative (PID) control to track
the setpoint temperature [2]. In the last years a strong re-
search effort has been put in the application of novel control
strategies [3] able to reduce energy consumption without
decreasing thermal comfort and effectively replacing classic
PID controller methods. Among these, some of the most
effective technologies are based on Model Predictive Control
(MPC) [4] and Reinforcement Learning (RL) [5].

An MPC implementation can be summarised with three
main phases: i) a “Modeling” phase, which consists in the
development and identification of models capable of fully
characterising the thermal and energy dynamics of buildings
and systems; ii) a “Prediction” phase, in which a trajectory
of future states of the system is built thanks to the resort to
the previously constructed model; iii) a “Control” phase, in
which the optimisation problem is solved. The major challenge
of MPC is that it is labor-intensive and requires expertise
to use [5]. Serale et al. [6] illustrates the potential benefits
of MPC applications to building temperature control and
specifically HVAC energy management. In [7] GNU-RL is
presented, a hybrid approach in which a differentiable MPC [8]
is coupled with a Proximal Policy Algorithm (PPO) [9] for
HVAC control.

Among RL techniques, it is possible to identify two major
categories: model-based RL and model-free RL. In model-
based RL the characteristics of the environment are learned to
find the optimal policy. The model could be: i) a white-box
model, in the case of building temperature control, this would
be normally simulated in the EnergyPlus (E+) software; ii) a
complete black-box model, such as a neural network, which
learn the system dynamics solely from data; iii) or a grey-
box model, such as those characterised by exploiting Kalman
filters [10]. Model-based RL is somewhat similar to the MPC
technique, as it requires a model, a representation of the
environment in order to find the optimal control policy. Zhang
et al. [11] present an application of Monte-Carlo-Tree-Search
(MCTS), a model-based RL technique, to HVAC optimisation
and a neural network representation of the system model.
Differently than MPC and model-based RL, model-free RL
avoids the time-consuming process to represent a model of
the system under analysis. Indeed, it learns the optimal control
policy by direct interaction with the environment.

In its simpler form, a pure model-free RL controller should
be trained through trial-and-error interaction directly with the
building. Which means, that the controller has to apply the
policy in the environment to evaluate the effects of the chosen
strategy. Clearly, this approach is not viable as it would
lead to sub-optimal scheduling of HVAC system during the
training phase of the agent, thus generating discomfort in
the occupants until a good policy is learned. In a real-world
scenario, it is unrealistic that a building operator would allow
an RL controller to learn by trial-and-error a policy on the
real building HVAC system. For this reason, model-free RL
approaches to HVAC control, and building temperature control
in general, rely on white-box simulation as the test-bed for
learning a policy in a virtual environment, as representative as
possible of the real-world building and its dynamics. However,
white-box simulations have to be designed from scratch for
each new building where the new optimisation strategy needs
to be applied to. They are long to design and computationally
expensive to perform. Model-free RL approaches thus suffers
from the resort to such simulations [5].

This notwithstanding, many effective approach of tackling
building temperature control has been performed using RL
and systems simulations. In [12], a Gradient Bandit algorithm
is presented for Peak-Shaving in district heating networks,
adopting a simulation for the thermodynamics of the district
heating network and for modeling the individual thermal
response of the individual buildings. In [13], the heat water



supply of a building is optimised through a Deep Q Network
(DQN) [14], and E+ is used as the training environment for
the RL agent. In [15], a policy gradient algorithm is adopted
to optimise over the energy efficiency and thermal comfort
of a building. HVAC systems optimisation through RL has
been also presented in [16], where RL agents showed better
performance over a programmable controller, and [17], where
Deep RL and the simulation software E+ are adopted to
optimise over energy consumption while respecting a thermal
comfort threshold.

This paper aims at overcoming the described shortcomings
of model-free RL application to building temperature control
by introducing a novel approach to energy optimisation in
HVAC systems. Our solution is based on a hybrid-approach,
where a model-free RL algorithm is paired with a black-box
system identification model, which substitutes the white-box
simulation of the building dynamics. In this fashion, our RL
agent is free to interact with the environment, performing
repeated actions as if it was acting on a real building HVAC
system. Our proposed methodology is therefore more flexible
than the traditional approach, as it is able to tackle HVAC
optimisation only from historical building data, needed for
constructing a reliable system identification, and can do with-
out costly and time-consuming white-box simulations. The
adoption of a model-free Reinforcement Learning algorithm,
and black-box model for the system identification, makes our
approach hybrid and able to be easily replicable on any build-
ing, given the simple availability of some historical data, and
without the need of modelling the entire building dynamics in
a simulator such as E+. The authors also contributed to the
extension of an OpenAI Gym environment E+ implementation
[18], presented in [19], used for real-time testing of the
developed methodology.

The rest of the paper is structured as follows: Section II
describes the proposed methodology, detailing the features of
the system identification phase and the adopted reinforcement
learning algorithm. Section III discusses our experimental
results providing a comparison with two baseline solutions
in literature based on an E+ controller and a Model Predic-
tive Control [7]. Lastly, Section IV reports our concluding
remarks.

II. METHODOLOGY

Our solution for the energy optimisation in HVAC systems
is based on a two-fold approach: at first, a system identification
model is developed through Supervised Learning on historical
data about a building energy supply and contextual weather
conditions; then, a model-free Reinforcement Learning algo-
rithm is employed to optimise over the energy distribution in
said building.

The use of a Machine Learning based system as the iden-
tification model for the underlying building dynamics helps
mitigating the shortcomings of a pure model-free approach.
Instead of performing actions in a real-world scenario, repre-
sented by the building itself, or in a computationally costly
white-box simulation, our RL agent is able to freely interact

with this black-box environment, and is therefore able to
train appropriately as if it was interacting with the real-world
environment, saving computational and modeling costs. As

Fig. 1: The proposed workflow

shown in Fig. 1, at first a System Identification training phase
will be performed on historical data. Then, the resulting trained
network will be used for making effective inferences about
the building thermal dynamics, estimating the variations of
temperature in the building given outdoor and indoor condi-
tions and the action taken by the RL agent. When the training
phase is completed, the System Identification model will be
used by the Reinforcement Learning algorithm as a real-time
environment, modeled in a similar fashion to an OpenAI Gym
environment [20], as a replacement for the real-world building.
Thanks to this, the agent is able to receive real-time feedback
for the actions taken, calculating the corresponding reward and
learning the optimal control policy.

A. System Identification

The first phase of our proposed solution is based on a
System Identification model, similar to what is presented
in [7]. A black-box approach is adopted, in which a Supervised
Learning regression algorithm is trained on buildings and
weather data, in order to properly estimate the building thermal
response to different energy provisions and various weather
conditions.

The input for the training phase of the model is represented
by the building historical data gathered on a normal heating
cycle. More specifically, the Supervised Learning algorithm
takes as input the initial indoor air temperature of the building,
the action performed by the HVAC controller and a set
of weather conditions that have influence on the heating
dynamics, and maps those input variables into the resulting
indoor air temperature. This prediction is then compared to the
actual resulting temperature, a mean-squared-error loss Eq. 1 is
calculate and a gradient descent step is performed accordingly.

Lθ =
∑
t

(xt − x̂t)2 (1)

Instead of using a Neural Network as a non-linear approx-
imator for the underlying thermal dynamics of the process,
the proposed System Identification is based on a simple linear



function fθ and a set of parameters θ = [A,B,D] as showed
in Eq. 2:

fθ(xt, ut, dt) = x̂t+1 = Axt +But +Ddt (2)

The input variable for the system identification model,
namely the set [x, u, d], includes the indoor temperature x
(°C), the control action u (°C) and the set of disturbances d.
The latter consists of: the outdoor temperature xoutdoor (°C),
the outdoor relative humidity RHoutdoor (%), the wind speed
Windspeed (m/s), the wind direction Winddir (degrees), the
diffracted solar radiation Raddiff (W/m2), the direct solar
radiation Raddirect (W/m2) and the current occupancy flag
Occflag (Boolean).

Alg. 1 describes the algorithm adopted for the System Iden-
tification. The algorithm is a simple instance of a Supervised
Learning algorithm, where the prediction of the function fθ is
compared with the actual next temperature xt+1 as observed
by the building historical data. Then a mean-square-error is
calculated and the loss is back-propagated through gradient
descent in order to train the set of parameters θ = [A,B,D].

Algorithm 1 System Identification
1: inputs: learning rate α, maximum epochs Epochsmax and steps

Stepsmax
2: Initialise randomly the parameters θ = [A,B,D]
3: while Epoch < Epochmax do
4: while Steps < Stepsmax do
5: x̂t+1 = fθ(xt, ut, dt)
6: end while
7: θ ← θ − α∇Lθ
8: end while

B. Optimal Control

The second stage of our proposed methodology consists in
the deployment of a Reinforcement Learning (RL) agent, re-
sponsible for the actual energy optimisation of the HVAC sys-
tem. RL problems are represented as Markov Decision Prob-
lems (MDP), which are constituted by the tuple (s, u, r, s′). An
agent takes a control action u in an initial state s, applying
it to the environment transition function fθ and receiving a
reward r and a new state s′. The RL agents has to learn the
best policy that enables it to take the optimal control actions
u in every state s of the environment. In what follows, the
elements of the HVAC optimisation problem represented as a
RL problem above is described.

The objective of the RL agent is that of maximising the
expected reward as provided by a reward function R(s, u)→ r
which takes as input a state s and a control action u and
provides the reward r. The objective of our optimisation
task consists on reducing as much as possible the energy
consumption in HVAC systems, while maintaining the indoor
air temperature to a comfort threshold, i.e. as close as possible
to the given temperature setpoint. In order to accomplish
this, the reward r has been chosen to be equal to the cost
of: the control action ut plus the squared distance of the
resulting temperature xt from the given setpoint xsetpoint.

The weights β and ρ determine how important is one side
of the equation relatively to the other. More specifically, if β
is higher than ρ, the agent will be more inclined to keep the
indoor temperature closer xt to the given setpoint xsetpoint.
On the other hand, higher values of ρ, will push the agent to
reduce more significantly the energy consumption. Note that
the setpoint xsetpoint assume different values during occupied
or vacancy periods; accordingly, two different values for β can
be provided.

R(s, u) = r = −(β · (xt − xsetpoint)2 + ρ · ut) (3)

The state s, the input to the RL agent, is represented
by all the relevant pieces of information about the building
internal and outdoor conditions. The input state has to be as
informative as possible about the underlying system dynamics
and about the conditions that influences the reward function,
which has to be maximised.

More specifically, state s includes: xsetpoint,t − xt (°C),
which is the difference between the setpoint and the internal
temperature, taken with a 4 periods lag - so four times from t−
4 to t; the difference between the setpoint and the outdoor air
temperature xsetpoint,t − xoutdoor,t (°C); the outdoor relative
humidity RHoutdoor (%); the wind speed Windspeed (m/s);
the wind direction Winddir (degrees); the diffracted solar
radiation Raddiff (W/m2);the direct solar radiation Raddirect
(W/m2); the number of hours before the start or the end of the
next or the ongoing occupancy period, Occstart and Occend
(h) respectively. All inputs are pre-processed according to the
MinMax normalisation rule.

The state transition function fθ has already been presented
in Eq. 2, as it is the function resulting from the System
Identification and the Supervised Learning training phase on
the building historical data. fθ correlates the initial building
temperature xt, and the outdoor weather conditions dt, with
the control action ut, giving an effective estimate over the
resulting internal temperature xt+1 and thus the next state s′.

The action-space, namely the set of possible actions that the
agent can apply to the environment, is discrete and consists in
the four possible different temperature degrees [0,2,4,5.5] at
which the air is heated before being supplied to the room. A
limited action-space has been chosen, since allowing the agent
to perform a more fine-grained range of actions, or even a
continuous one, would not increase the agent’s effectiveness,
but would drastically increase the problem complexity [21].

The proposed algorithm is a Double Deep Q Network
(DDQN) [22]. This algorithm, fully described in Alg. 2,
presents better converging properties than the standard Deep
Q Network (DQN), without significantly increasing the com-
plexity of the model.

As the standard DQN [14], the algorithm is based on a
Neural Network, Qω , that acts as a function approximator for
the Q values, which are a metrics of estimate for the quality of
a certain action in a certain state. The more expected reward
r an action u is estimated to yield in a certain state s at time
t, the higher its associated Q value, Q(st, ut;ω), will be. A



Algorithm 2 DDQN
1: Random initialise parameters ω of network Qω , and parameters ω′ ← ω

of target network Qω′

2: Initialise replay memory D, learning rate α and target network update
parameter τ

3: while Episode < EPmax do
4: while Steps < Stepsmax do
5: With probability ε perform random action ut, otherwise observe

state st and perform action ut+1 = max Q(st, ut;ω)
6: Perform action ut+1 in the environment, get the reward rt+1,

calculate the new temperature xt+1 = fθ(st, ut) and observe next state
s′ = [xt+1, dt+1]

7: Store (s, u, r, s′) in the replay memory D
8: Update ε← (εinit − εfin)/ExplorationSteps
9: end while

10: while Update Steps < Update Stepsmax do
11: Sample a batch (st, ut, rt, s′t) of size Bs from memory D
12: Compute target Q value: Q∗(st, ut) = rt + γ ·

Qω(st+1, argmaxuQω′ (st+1, ut))
13: Perform gradient descent step on (Q∗(st, ut)−Qω(st, ut))2
14: Update Qω′ parameters: ω′ ← τ · ω + (1− τ) ∗ ω′
15: end while
16: end while

common issue with the standard DQN is represented by biased
estimates, as the neural network is updated based on its very
same estimates of the quality of a certain action. In order
to disentangle the network from these biased estimates, the
Double DQN introduces a second target neural network Qω′ .
The primary network Qω updates the other every a certain
number of steps (or continuously at a smaller rate). The target
network is used for action selection while the primary network
for action evaluation, in the computation for the target values
Q∗ as shown in Eq. 4. Q∗(st, ut) is the reference term used
for the Q values update, and in the DQN methodology, it
represents the true Q values estimation, namely the true value
of taking action ut in state st.

Q∗(st, ut) = rt + γ ·Qω(st+1, argmaxuQω′ (st+1, ut)) (4)

Factor γ plays a fundamental role in this optimisation pro-
cess. γ determines the horizon estimation of the DQN agent.
For lower values of γ, the agent will favour the exploitation
of short-term reward, as the relative weight of the immediate
reward rt in Eq. 4 will be higher. For the same reason, higher
values of γ will push the agent to rather seek long-term reward,
represented by the Qω(st+1, argmaxuQω′(st+1, ut)) estimate
in the target Q∗ computation.

III. RESULTS

In this section, results for the system identification and
for the HVAC optimal control algorithm are presented. The
latter is compared against an E+ standard controller and a
literature based solution, namely the GNU-RL algorithm [7].
For this reason, the same E+ controller and 5-zone building,
retrievable here [23], have been used as a case study for
a fair comparison. Despite being a 5-zone building, in all
experiments the five indoor air temperatures are averaged
and the building is treated as if only one indoor average
temperature is relevant. Three months building and weather
historical data used for the System Identification phase and
the training of the DDQN agent are generated in E+ based

on the pittsburgh TMY 2.epw weather file. The testing of
the DDQN agent and the two baselines, is performed on the
same building, on the pittsburgh TMY 3.epw weather file. In
order to test the three methods, a real-time implementation of
E+ as a OpenAI Gym environment was required. The adopted
implementation was developed in [19] and retrievable at [18].
This Gym-Eplus implementation has been extended by the
authors of this paper, in order to upgrade the E+ versions
compatibility.

A. System Identification

In this section, results for the System Identification are
presented. As mentioned above, the training dataset is con-
stituted by 3 months of data gathered from the E+ im-
plementation of a 5-Zone building HVAC system and the
pittsburgh TMY 2.epw weather file.

Fig. 2 shows the results in terms of mean-square-error
in the first 100 epochs of training. It can be observed that
the proposed system identification is able to predict the next
indoor air temperature of the target building with a deviation
as low as 0.06 °C on average.

Fig. 2: System Identification training results

B. Optimal Control

In this section, the proposed methodology is experimentally
compared with an E+ baseline controller and with the literature
solution in [7]. The target environment is represented by a
simple building with a HVAC system, modeled in E+. The
historical data are gathered from a 3-months long simulation
in E+. The building is treated as having only one thermal zone
for the sake of simplicity.

As discussed in Section II, in our proposed solution there
is no need to perform a simulation step in E+ every time the
agent takes a new action. Instead, our solution relies on the
trained system identification model, which enables a reliable
estimate of the building thermal dynamics without recurring
to costly and time-consuming white-box simulations.

In order to show the higher flexibility and large range of
accomplished results, multiple simulations for various value
of γ are presented for our solution, namely 0.8, 0.9 and 0.99
are the tested values. The hyperparameter γ is fundamental
in mediating between the maximisation of the immediate
reward and the long-term expected reward. Higher values of



Fig. 3: Actions comparison for the three approaches and the resulting indoor temperature

γ push the agent to seek a long-term reward, while lower
values compel the agent to look for more immediate com-
pensation for its actions. In our HVAC system optimisation
scenario, γ is responsible for the trade-off between a short-
term reward, namely a lower energy consumption, and a long-
term compensation translated into a smaller distance to the
temperature setpoint and a higher thermal comfort for the
building occupants. The indoor setpoint xsetpoint is set for
all experiments to be 12.8 °C when the building is vacant
and 22.5 °C for the building occupancy periods. β is set to
0.05 for vacancy and 2 for occupancy periods, while ρ is kept
constant at 1. The DDQN algorithm hyperparameters are set
as follows: the maximum number of steps for each episode
Stepsmax is 8732; the number of steps ExplorationSteps in
which the agent explores the action space is 3 · 105; in this
period, the probability ε of taking a random action starts at 1
and ends at 0.1; the network update parameter τ is 0.01.

The adopted neural network, implemented in PyTorch, that
acts as a function approximator for the Q values in the
proposed DDQN algorithm is a fully connected network made
of 3 layers with 64 neurons each. The learning rate of the
neural network is set to 0.001 and the batch size for the
training update is 32.

As mentioned before, our proposed solution is compared
with two baseline solutions in literature based on an E+ con-
troller and a Model Predictive Control [7]. GNU-RL solution is
based on a Model Predictive Control (MPC) algorithm, which
is responsible for the optimisation of the same cost function
that has been presented in Eq. 3. The three approaches are
compared with each other in a simulation performed on E+
on the pittsburgh TMY 3.epw weather file, for a period of 3
months, on the basis of the overall energy expenditure and the
average Predicted Percentage of Dissatisfaction (PPD). PPD
is a widely used metrics for measuring the thermal comfort

of building occupants. It ranges from an optimal value of 5%
up to the worst case scenario, in which the whole population
is dissatisfied by the thermal conditions. The PPD is deemed
acceptable as long as it stays under 20%.

Fig. 4: Overall comparison in terms of residue reward

A summary comparison of the three approaches can be
observed in Tab. I, where the E+ controller, the GNU-RL
algorithm and different values of γ for our proposed solution
are compared according to the above-mentioned metrics.

It can be noted that the proposed solution outperforms the
two baselines in both the average PPD and the overall energy
consumption. In order to do so, however, the DDQN agent
needs to be trained with a different value for γ so that it can
privilege one aspect over the other. More specifically, for lower
values of γ, the agent learns to favour the immediate reward,
greatly reducing the energy consumption, while slightly in-
creasing the PPD. Higher values of γ, instead, tends to favour
the long-term expected reward, which is represented by the
temperature distance to the indoor setpoint, at a higher energy
consumption cost. This happens because the penalty for energy
consumption of Eq. 3 applies during both the occupancy and
vacancy period of the building, representing a constant cost
that the agent has to face. On the other hand, the term related to
the thermal comfort only determines a significant influence on
the reward during occupancy period, so for only 8 hours a day.
In order to guarantee an appropriate thermal comfort, however,



TABLE I: Results Comparison

E+ GNU-RL DDQNγ=0.8 DDQNγ=0.9 DDQNγ=0.99

PPD 17.75% 16.46% 16.61% 17.31% 15.45%
HVAC Power 4413kWh 4215kWh 4097kWh 4093kWh 5220kWh
Coil Power 7482kWh 7421kWh 7248kWh 7228kWh 8381kWh

the agent has to start the heating of the building long before the
occupancy period starts, as it can be observed in Fig. 3b. All
things considered, this causes a greedy agent, at lower values
of γ, to care more about the immediate reward, and thus about
the energy consumption, while it makes a more cautious agent,
at higher values of γ, look for greater future reward, and thus
for the thermal comfort of the building occupants.

Fig. 3a shows a comparison of the control actions taken
by our proposed solution (γ = 0.8) and the two baselines on
three typical winter days. Consequent effects on the indoor
temperature variations, and the setpoint, are shown in Fig. 3b.

Fig. 4 shows the overall performance of the proposed
solution (γ = 0.9) and that of GNU-RL compared with the E+
baseline in terms of residue reward, which is the difference
between the reward, as defined in Eq. 3, obtained by the
E+ controller and the reward obtained by the two compared
methods, GNU-RL and our solution. It can be noted how
our solution generally outperforms both baselines in the entire
investigation period of 3 months.

IV. CONCLUSION

This paper presented a novel approach to HVAC system
optimal control, implementing a System Identification phase
and a model-free RL algorithm. The system identification
phase, based on a supervised learning algorithm, is able to
precisely estimate the building thermal dynamics, allowing the
RL agent to freely interact with such environment without
the need of direct, real-world interaction with a real building
or with costly and time-consuming white-box simulations.
Results have shown that the proposed methodology, based
on a Double Deep Q Network, is able to outperform the
two discussed baseline, an E+ controller and the Gnu-RL
algorithm [7]. By simply varying the hyperparameter γ during
the training phase of the RL agent, it is possible to optimise
over the overall energy consumption or the internal comfort
according to the PPD metrics. Future research can expand the
presented work in two directions: on the one hand, a more
complex problem can be tackled, in which the learning agent
has to take multiple simultaneous actions to optimize over a
series of different thermal zones at once; on the other hand,
given the accurate model of the environment presented here,
a fully RL model-based approach could be investigated and
compared with the proposed hybrid methodology.
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