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An agent-based framework for smart grid balancing
exploiting thermal flexibility of residential buildings

Pietro Rando Mazzarino, Claudia De Vizia, Enrico Macii, Edoardo Patti and Lorenzo Bottaccioli
Politecnico di Torino, Turin, Italy. Email: name.surname@polito.it

Abstract—The Smart Grid is a complex system that encom-
passes many different fields of expertise. As a consequence,
co-simulation tools are emerging as a possible solution to test
future scenarios and strategies thanks to their ability to reuse
domain-specific simulators in a broader context. Therefore, we
propose an agent-based co-simulation framework able to act as
a test-bed for multiple Smart Grid strategies. In particular, we
tested demand response programmes that exploit the thermal be-
haviour of residential buildings at the district level. The proposed
framework is modular, thus it eases further integration of new
modules. Moreover, it is highly flexible thanks to the numerous
configuration parameters that allow creating a realistic scenario.
The system has been tested over 1000 buildings in a district and
an analysis of the effects on the balancing at primary substation,
due to micro-deviation from scheduled temperature set-points
in the building’s premises, is proposed. Results demonstrate that
power imbalances can be mitigated already with minor set-points
deviations.

Index Terms—Demand Response, Co-simulation, Aggregator,
Power Imbalances, RC network

I. INTRODUCTION

The power grid is going towards a radical change that
will integrate many small scale producers at the distribution
level, shifting from a centralised system to a decentralised one.
Unfortunately, the production of distributed renewable energy
sources (RES), as well as small-scale residential consumption,
are difficult to predict with high accuracy. Therefore, this
inaccurate prevision might translate into scheduled demand
and generation different from the measured ones, causing
power imbalances [1]. Consequently, Demand Response (DR)
strategies - i.e. programmes which produce changes in the
consumption due to different prices of electricity over time
or incentives [2] - might be put into action to address power
imbalance issues with the derived flexibility.

In the residential sector, thermal loads account for the
largest share of the building consumption and due to their
typical nature have a great potential for the flexibility gener-
ation [3]. However, several factors such as the comfort of the
user and the physical characteristics of the building affect the
available flexibility. Therefore, we believe that as a first step
an agent-based co-simulation tool represents the proper and
cost-effective solution to quantify with good approximation
the amount of flexibility, its effects on the grid and, subse-
quently, to test new algorithms. Indeed, the capability to try
out artificial intelligence algorithms in a virtual environment
allows to verify more advanced strategies before testing them
in the real-world.

In the literature review by Sola et al. [4], it emerges that few
studies included the power grid in their co-simulation tools.
Furthermore, to the best of our knowledge, an agent-based
framework that tests DR strategies exploiting the thermal
behaviour of residential buildings at the district level and
the relative effects on the distribution network has not been
developed yet.

In literature, two major categories of building simulation
environments exist [5]: i) those very realistic that focus on a
stand-alone building, e.g. EnergyPlus, and ii) those where the
building is simplified and represented as an electrical circuit,
i.e. RC network. However, the high computational time of the
former category sets limits on the scalability of the simulation
scenario, especially when the goal is modelling a large district
or an entire city.

Therefore, in order to understand the potential for DR
in a city, the most viable option is to simplify the model
of the buildings as an RC network. However, a myriad of
RC schemes exist. In our view, the ISO 13790 compliant
6R-1C thermal model of City Energy Analyst (CEA) [6]
has the proper trade-off between computation performance
and model accuracy. Moreover, CEA has the advantage of
using geo-referenced data and building archetypes, which
make the scenario configurable and realistic. Unfortunately,
it makes one-shot calculations for the entire year. Thus, we
extended CEA offering functionalities to be integrated with
time-stepped simulations allowing also further integration with
other models. In other words, we have made it possible to
use CEA in a co-simulation environment together with the
rest of our framework, resulting in a platform for testing DR
strategies.

Specifically, in this paper we tested a rule based strategy
that exploits the thermal behaviour of buildings in a district.
Three main types of agents have been modelled: i) the DSO,
which controls the electrical grid; ii) the Aggregator, which is
responsible for the DR implementation, gathering thermal flex-
ibility volumes from the residential users; and iii) the Building
Agent, which models the building dynamics embedding CEA.

Thanks to the framework, RES might be added in future,
as well as new sources of flexibility. Therefore, a first con-
tribution of this paper is represented by our ”plug and play”
framework which acts as a test-bed for different DR strategies
that exploit thermal inertia of buildings in the distribution
sector. Furthermore, the effects of exploiting building thermal
management to create flexible demand have been analysed
thanks to two ad-hoc modules : i) the DSO operative module ii)



the building operative module. The former models the power
grid and solves the resource allocation problem, while the
latter models the buildings thermal behaviour and implements
control strategies quantifying the flexibility reserve.

The rest of this paper is structured as follows. Section II
provides insight into already existing tools and works. Then,
Section III presents a general overview of the framework and
introduces the agents. Section IV describes the simulation
settings, while Section V discusses results for the case study
analysed. Finally, Section VI summarises the conclusions.

II. RELATED WORKS

In the literature, several solutions are proposed to quantify
the flexibility of residential buildings. Most authors focus on
the development of the model to assess demand calculation,
i.e. the thermal behaviour of the buildings, and analyse control
strategies used to generate flexibility, which can be rule-based
or predictive base, i.e. Model Predictive Control (MPC). In-
stead, others reuse existing building models in a co-simulation
framework for different purpose.

Authors in [7] propose two control strategies relying upon
a TRNSYS calibrated building model. They consider both
upward and downward flexibility while proposing MPC strate-
gies for optimising set-point scheduling. In [8], the authors
study the flexibility reserve of a building by coupling thermal
demand modelling with thermal storage solutions. Instead, [3]
performed an in-depth study on the effects of set-point changes
to quantify flexibility; different building models and differ-
ent strategies to assess DR events have been tested. Other
interesting models are presented in [9] and [10]. The majority
of studies that couple the grid perspective and the buildings
loads focuses on distributed generation, RES, storage and
shiftable appliances such as [11]. Instead, [12] and [13] mainly
concentrate on flexibility generation from thermal control for
district balancing, but the grid is included only from an
economical perspective since all the physical constraints are
neglected.

Besides specific building models and control strategies, the
co-simulation approach has emerged thanks to its ability to
couple different domain-specific models developed with dif-
ferent tools. As an example, [14] outlines an urban energy co-
simulation framework on the basis of a co-simulation standard
Functional Mock-up Interface and CityGML-based semantic
3D city model. In the two scenarios presented, EnergyPlus and
Nottingham Multi Agent Stochastic Simulation are coupled
to simulate one and six buildings, respectively. Instead, the
authors in [15] proposed a co-simulation framework that uses
PandaPower [16] to simulate the electric grid and TRNSYS
for the building domain. The building model represents a
Spanish single-family house building typology. It analyses four
scenarios with 50 consumers, a 3 minutes time-step and an
increasing penetration rates of heat pumps to determine the
impact on the grid. The MultiEnergy System COSimulator
for City District Energy Systems [17] is a simulation platform
that allows performing simulations of district scale energy
systems. The electrical network has been simulated thanks

to Neplan, while the control algorithm decides the operation
schedule of heating systems at fixed time intervals. One single
family building model has been developed. Based on this
model, four energy system models have been realised with
different heating systems. The execution of the simulations
has been parallelized to reduce the computation time. Different
scenarios with 1 minute time step have been tested, the largest
one comprises 795 building energy systems.

In conclusion, by creating the proposed agent-based co-
simulation framework, we want to couple the quantification of
flexibility from building thermal regulation with an Optimal
Power Flow (OPF)-based solution for the resource allocation
inside a completely modelled electrical grid. This allows a
wider analysis w.r.t. [7], [8], [3], [9], [10], [11], [12], [13] that
do not address the problem on the broader perspective of a fine
modelled grid. The whole framework is designed to be scalable
in the number of buildings and aggregators. Moreover, it is
completely configurable to adapt to different case studies, e.g
different Heating, Ventilation, and Air Conditioning (HVAC)
technologies, scheduling, time-steps, envelope standards and
typology of use. Furthermore, it uses GIS-based information
of the buildings, which makes more realistic the simulation.
Thus, w.r.t. other co-simulation frameworks, i.e. [15], [17],
we did not generalise a single model, but we characterise
each building thanks to different parameters settable in our
framework. Furthermore, the framework follows the principle
of modularity, thus allowing the testing of different control
strategies and the integration of new models in a Plug & Play
fashion. Therefore, the proposed rule-based strategy might
be replaced by an MPC one to compare the results or a
reinforcement learning algorithm might be used to learn the
preference over the thermal set-points of the users.

III. METHODOLOGY

This section introduces the framework structure and the
interactions composing the simulation process. The main pur-
pose is to have a Plug & Play agent-based co-simulation
environment to act as a test-bed for different strategies in
the power grid distribution network. Fig. 1 shows the overall
architecture of the system, which is divided into three main
layers: i) the Data source-layer, which manages the data-
structures and the information needed; ii) the Co-simulation
layer, which is the core of our framework; iii) the Application
layer, which allows end-users to interact with the co-simulation
process. This last layer allows to personalise the databases,
select the scenario through a GIS-based interface and visualise
data and results of the simulations. In the following sections
a more in depth description of Data-source and Co-simulation
layers is given.

A. Data-source layer

In the Data-source layer, data-management and processing
are implemented to obtain a complete description of the urban
scenario under analysis. The starting point is the gather-
ing of some raw inputs visible in the Data-source layer in
Fig. 1: i) GIS Buildings Information (e.g. geometries, ages



Fig. 1: Schema of the proposed framework.

of construction, height and typology of use); ii) Weather
information for the chosen simulation period (e.g. outdoor
temperature, radiation etc.); iii) Topography information about
the elevation of the terrain; iv) power Grid topology. From
these data, we have a preliminary characterisation of the built
environment we want to simulate. A further step is done by
exploiting the CEA’s archetypes [6], which enhance the data
description. By correlating the inputs of the buildings with
the archetypes new information can be retrieved. Envelope
properties, HVAC systems with their related subsystem tech-
nologies are associated to each building by means of their
age of construction. Scheduling of the occupancy patterns in
the buildings are generated based on the typology of use along
with the scheduling of temperature set-points and other control
parameters. In addition to the information created by exploit-
ing the correlation with the archetypes (which are completely
configurable), a solar radiation calculation is performed to
have information about the external gains on the buildings.

B. Co-simulation layer

The Co-simulation layer represents the core block of the
framework. It is composed of two main sub-layers, i.e. the
Agent layer and the Operational layer, and an external clock
for synchronisation. The distinction between Operational and
Agent layers has been done to gain in modularity. Indeed,
modules in the former can be easily replaced, instead the latter
offers a predefined backbone for the agents interactions and
communications. In particular, as shown in Fig. 1 the operative
capabilities of each agent are implemented in the Operational
layer in form of plug&play modules. Instead, the communica-
tion functionalities, that ensure the message exchanges among
all the actors, are implemented in the Agent layer, exploiting
the AIOMAS [18] python library. The agents ‘live’ in different
containers that run as separate processes ensuring a distributed
architecture. Communication among agents is implemented
over the TCP/IP protocol stack thanks to the containers built-
in Remote Procedure Calls functionalities. Three typologies of
actors have been identified and implemented:

(i) DSO Agent is in charge of the correct functioning of the
power grid and it coordinates the workflow (better addressed
in Sec. III-C) by asking for flexibility to the Aggregators.
Its main responsibility is to recover the power unbalances at
primary substation while maintaining stable its grid portion.
To accomplish this task, it exploits the block modules in its
operational layer. The Grid Model block in Fig. 1 is able to
model the power grid. By exploiting the PANDAPOWER [16]
python library, it updates possible loads, generators, storage
capacities, costs and physical constraints depending on the
chosen scenario configurations. The Grid Model block pre-
pares the data concerning the gird before solving a Power
Flow (PF) or an OPF problem, it does this by using the power
information measured or communicated by the aggregators or
buildings. Then, the PF/OPF block in Fig. 1 is able to compute
an OPF-based strategy to solve the balancing problem and
reallocating the resources, or a PF for estimating the losses in
the system. The OPF strategy is required only for the time-
steps of the simulation in which the unbalance is greater than
a predefined threshold, this check is performed by the Grid
Model block.
(ii) Aggregator Agents allow the implementation of DR
strategies. They are the service providers that act as inter-
mediary between the Building Agents and the DSO Agent.
When requested by the DSO, they estimate, from the buildings
they aggregate, the amount of flexibility reserve that will
be used to balance the grid. Their number, as well as the
number of the buildings they are in charge of, is completely
configurable to test different aggregation levels. Thanks to
the 24h Forecast module, they estimate the day-ahead power
consumption profiles from the buildings and communicate it to
the DSO. For the simulations presented the foreseen values are
obtained by adding a uniform random noise to the buildings
demand values. Moreover, using the Flexibility Calculation
module, they compute the available flexibility in order to
communicate this information to the DSO. The computational
load of this task is distributed to the buildings environments,
to avoid bottlenecks and parallelise processes.
(iii) Buildings Agents represent actual buildings in the system
and simulate their thermal behaviour. They exploit the Thermal
Demand Sim block (Fig. 1) to calculate the thermal demand
and to act on the building HVAC system. The Thermal
Demand Sim is one of the main contributions of this work and
relies on an extension of the CEA dynamic demand forecasting
tool [6]. The original version of this module was conceived
to work as a forecasting tool to assess annual energy demand
for each building with hourly resolution, exploiting a one-
shot calculation. Therefore, it has been modified in order to
carry out demand calculations at each time-step separately and
for the desired period of time. Thus, Thermal Demand Sim
is a time-stepped tool that is able to couple the benefits of
the previous CEA module (i.e. the deep characterisation of
the whole heat chain systems and the fast simplified ISO-
13790 compliant RC model for the indoor ambient) with
the following new functionalities. By working on a time-step
basis, it is possible to integrate new control modules within



each portion of the heat-chain, such as the emission system
(e.g. the Flexibility Calculation proposed by the aggregators of
this framework). In addition, the decomposition of calculations
allow to reverse them and perform the simulation of power
actuation in building premises. These enhancements allow
to have a tool for the real-time characterisation of buildings
thermal behaviour and control strategies.

C. Co-simulation workflow

Our framework aims at analysing the effects of a DR strat-
egy in which the demand flexibility is taken from the buildings
thermal behaviour. This flexibility enables the DSO to optimise
the reallocation of resources to fulfil the unbalances between
scheduled and measured power profiles.

Fig. 2: Interactions taking place during a simulation time step

The process workflow of the simulation can be broken down
into day-ahead and intra-day operations as shown in Fig. 2. In
day ahead, two main actions are carried out: i) The DSO Agent
collects the day-ahead forecast from the Aggregators Agent.
ii) The DSO performs power flow calculations computing
the value of the active power at the primary substation for
the next 24-hours. Instead, the interactions taking place at
each time step during the day are: i) The Building Agents
compute their real power demand and the DSO Agent retrieves
them. ii) The DSO Agent, exploiting this information, performs
power flow calculations and compares the obtained active
power value at primary substation with the scheduled one.
The DSO Agent has a certain power threshold that composes
an accepted range for the deviation between those two values.
If this deviation falls within the power threshold, the DSO
Agent is able to cover all the unbalance by itself, meaning
that it no longer exploits flexibility from users. Instead if the
power threshold is exceeded a message asking for flexibility is
sent to the Aggregator Agents. iii) Aggregator Agents performs
the calculation of the flexibility reserve, estimating how much
flexibility the Building Agents are willing to offer for that
time-step. This information is sent to the DSO Agent. iv) The
DSO Agent computes the optimal power flow with the new
information, changing the resource allocation to obtain the
desired adjustment; v) The iteration is over when the results of

the OPF calculation are spread back to the Aggregator Agents
which modulate the HVAC systems in the Building Agents
premises, following the indications.

IV. EXPERIMENTAL SET-UP

The case study is composed by 1000 buildings in a city
district, mostly multi-residential with some exceptions for
buildings with a mixed usage typology (e.g. 80% residential,
20% commercial). Each building is supplied by a power to
heat system composed by soil/water heat-pump and radiators
as emission terminals. These are the technologies taken into
consideration for this simulation. However, the framework is
flexible in testing different solutions and assigning to each
building different HVAC systems. Only the heating season
has been taken into consideration, in particular the month
of January of a typical meteorological year. We have used
a Medium Voltage (MV) power grid consisting of a primary
substation with three bus-bars operating at a nominal voltage
of 22 kV, which on their turn supply 51 substations equipped
with MV/LV transformers. The hierarchy configuration of the
agents consists on 1 DSO and 11 aggregators clustering several
buildings as shown in Table I.

TABLE I: Case study hierarchy configuration

AggregatorID Buildings Buses AggregatorID Buildings Buses

AGG 0 71 5 AGG 6 103 5
AGG 1 91 5 AGG 7 89 5
AGG 2 109 5 AGG 8 91 5
AGG 3 100 5 AGG 9 96 5
AGG 4 99 5 AGG 10 55 3
AGG 5 96 5

By deviating from the scheduled temperature set-points in a
range called temperature tolerance, a power flexibility reserve
is generated and it can be exploited from the Aggregators or
directly from the DSO as needed. In this perspective, we have
tested two different scenarios: i) Fixed deviation scenario: all
the buildings, given a configured tolerance range of temper-
ature deviation, will offer the maximum flexibility in order
to stay into the temperature tolerance; ii) Random deviation
scenario: all the buildings at each time-step will choose the
temperature deviation - i.e. the amount of flexibility - ran-
domly, following a normal distribution between no deviation
and the maximum amount. Simulations have been performed
for each scenario testing three different temperature tolerance
ranges, i.e. ±0.5 °C, ±1.0 °C, ±2.0 °C. These temperature
values have been chosen to be compliant with the ASHRAE
standards [19] on the fluctuations of indoor temperature to
avoid user discomfort. Two different time-step resolutions have
been addressed, i.e. 1 hour and 15 minutes, to understand the
limits of the RC formulation. The framework can be easily ran
across different servers thanks to its distributed architecture
and the TCP/IP communication.

V. EXPERIMENTAL RESULTS

In this section, we present the results of the simulations
performed exploiting the proposed framework. The graphs in



Fig. 3 better show the balancing dynamics and the differences
between time resolutions. Both Fig. 3a and Fig. 3b report
a time snapshot of 24 hours at primary substation, showing
the power profile of: i) the day-ahead scheduled trend (light-
blue line), ii) the predefined power threshold (light-grey area),
iii) the real-time values collected during every time-step (red
dashed line) and iv) the adjusted curve (green dashed line)
- i.e. the new power profile taking into account flexibility
contribution. The scheduled curve is the day-ahead foreseen
for the next 24 hours with a tolerance of 0.5°C. Then at
each time-step, a new point composing the real-time curve is
measured and the unbalance evaluated. The balancing strategy
is triggered only when the red curve is out of the power
threshold and it results in a new power profile, the modified
green trend, which tends to return back to the scheduled
values. By comparing Fig. 3a and Fig. 3b, we notice that both
balancing behaviours are similar, thus models and strategies
work fine with both the time resolutions. However, the scenario
with 15 minutes time-step shows a much less smoother power
profile. Therefore, as expected, a more frequent regulation on
the time basis results in a more scattered behaviour.

(a) 1 hour resolution

(b) 15 minutes resolution

Fig. 3: Snapshot of the Fixed scenario with tolerance of 0.5°C

Table II resumes the results for all the simulations. The
metrics proposed to compare results are : i) % of success,
i.e. the total number of times in which the adjusted curve
was brought back inside the predefined power threshold; ii)
% covered by flex, which represents how much the power
unbalance has been fulfilled by the flexibility during the time-
steps; iii) Root Mean Square Error (RMSE) in MW of the
modified trend converging on the scheduled trend (e.g. green

and blue lines in Fig. 3, respectively); iv) T deviation is the
mean deviation in °C from temperature set-points registered
during the whole simulation by all buildings. By observing
columns % of success, % covered by flex and RMSE, it emerges
that the Random deviation scenario generally performs worse.
This depends on the random choice of temperature deviation in
buildings. The only exceptions are the Fixed deviation scenario
simulations with temperature tolerance of 2°C. In these cases,
counter-intuitively, having a larger potential flexibility does not
lead to higher performances. Instead, allowing some buildings
to deviate from their indoor set-points by larger quantities,
at certain time-steps, causes the over-exploiting of the build-
ings flexibility reserve. When this happens, the over-exploited
buildings will run out of flexibility for the subsequent steps in
order to recover the high temperature deviations.

(a) Fixed scenario tolerance 1.0 °C

(b) Random scenario tolerance 1.0 °C

Fig. 4: Snapshot of the inside temperature of a single building
in 15 min time-step simulations

Looking at the column T deviation, we notice that the
temperature deviation generally increases with the tolerance
except for the Fixed deviation scenario with a temperature
tolerance of 2°C. Indeed, in these simulations the temperature
deviation is lower than the scenarios with a tolerance of
0.5°C and 1°C. In our opinion this depends on the OPF
problem. When solving the OPF with 1°C of temperature
deviation, resources are sufficient for the balancing. In the
scenario with major deviations (e.g. 2°C), the balancing is per-
formed distributing more evenly the flexibility request among
buildings, thus leveraging the indoor temperature deviations.
Figure 4 presents the effects of the two scenarios on the indoor
temperature in a specific building. As shown in Fig. 4a (i.e.
the Fixed scenario), the temperature decreases smoothly until



TABLE II: Results of all the simulations

Time-step Scenario Tolerance [°C] % of success % covered by flex RMSE [MW] T deviation [°C]

1 hour

0.5 68.95 88.67 0.273 0.42
fixed 1 96.64 99.78 0.050 0.46

2 88.02 99.82 0.273 0.14

0.5 25.54 94.51 0.457 0.25
random 1 64.78 88.04 0.275 0.42

2 91.67 99.68 0.102 0.47

15 min

0.5 69.90 90.16 0.201 0.39
fixed 1 89.38 99.95 0.079 0.36

2 85.23 98.40 0.260 0.10

0.5 26.69 97.56 0.374 0.23
random 1 69.72 90.17 0.206 0.40

2 87.82 99.94 0.127 0.35

the tolerance is reached. Instead, the temperature profile in
the Random scenario (Fig. 4b) highly fluctuates due to the
random choice of the flexibility reserve, but always into the
temperature tolerance. It is worth noting that these fluctuations
does not affect the indoor comfort of the user being within a
very short range of temperatures.

VI. CONCLUSIONS

Our current studies aim at obtaining a tool for testing dif-
ferent demand-side strategies. As a starting point, we focused
on thermal loads, proposing a framework that can estimate
the flexibility at the household level exploiting our Thermal
Demand Sim and it is able to manage unbalances at the
primary substation thanks to the intermediary aggregators. The
framework has been tested for 1000 buildings demonstrating
the capability of the platform to work within a city district and
at different time-step resolutions. Thanks to the modularity of
the system different strategies have been tested, showing the
effectiveness of the framework to act as a test-bed for further
simulations and analysis. With the analysed scenarios, we have
demonstrated that even in absence of additional flexibility and
generation sources (e.g. storage and RES), good balancing
results are obtainable with minor set-points deviations.

In conclusion, the first objectives have been fulfilled, and the
framework appears as a promising tool for further integration.
The introduction of market perspectives, the analysis of more
complex control strategies at the building premises and the
expansion of building archetypes for better addressing the
diversity of the real world will be the key objectives for future
works. All of this will come along with the strong awareness
that tools similar to this will lead the way for more efficient
and sustainable policies making in a Smart grid context.
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