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Abstract In nonlinear system identification, one of the main challenges is how to select a 

nonlinear model. The accuracy of nonlinear subspace identification depends on the accuracy of the 

nonlinear feedback force that the user chooses. Considering the uncertainties in the selection 

process of an appropriate nonlinear model, a novel Bayesian probability method calculation 

framework based on response data is established to improve the accuracy of nonlinear subspace 

identification. Three implementation steps are introduced: (i) establish candidate model database; 

(ii) the reconstructed signal can be calculated by nonlinear subspace identification; (iii) The 

posterior probability of each candidate model is estimated to get the optimal nonlinear model and 

determine the nonlinear coefficients of the nonlinearities. Two numerical simulations are 

investigated: a two-degrees of freedom spring-mass system with nonlinear damping and a 

cantilever beam with nonlinear stiffness. The influence of the noise on the robustness of the 

algorithm is considered. The experimental investigation is eventually undertaken considering a 

device showing elastic and damping nonlinearities. The latter is represented by a friction model 

depending on both velocity and displacement. Results indicate that the proposed approach can 

effectively identify the nonlinear system behavior with high accuracy. 

 

1 Ph.D. Candidate, School of Mechanical Engineering, rzhu@seu.edu.cn 

2 Professor, School of Mechanical Engineering, Corresponding author, qgfei@seu.edu.cn. 

3 Associate professor, School of Mechanical and Electronic Engineering, jiangdong@njfu.edu.cn. 

4 Professor, Dipartimento di Ingegneria Meccanica ed Aerospaziale, stefano.marchesiello@polito.it 

5 Postdoc researcher, Dipartimento di Ingegneria Meccanica ed Aerospaziale, dario.anastasio@polito.it 



 

3 

 

Nomenclature 

(Nomenclature entries should have the units identified) 

f(t)   =    external force 

fn =    nonlinear force 

h =    frequency response function 

K =    stiffness matrix 

ki =    ith spring stiffness 

M    = mass matrix 

N    = the number of  the dimensional of freedom 

P(μi) = prior plausibility of ith candidate model 

q    = number of nonlinearity constituents 

S = number of candidate models 

μi    = ith candidate model 

ω = angular frequency 

w = displacement 

α = nonlinear damping coefficient 

= data set from the measured information 

I. Introduction 

Nonlinear characteristics are common in aerospace structures. Accurate models [1][2] are essential to the 

research and application of aerospace engineering. System identification [3][4] is an efficient tool to determine the 

characteristics of both linear [5] and nonlinear systems. The latter case is becoming more important nowadays, as 

many engineering structures behave nonlinearly to some extent [6]. For some nonlinear identification methods, the 

nonlinear system cannot be regarded as a black box system, unlike the linear system identification [7]. The nonlinear 

characteristics need to be known in advance because the nonlinear system identification is affected by the accuracy 

of alternative model selection. 
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In the past decades, system identification methods of nonlinear structures have been reviewed [8][9]. The 

progress realized over that period is mainly highlighted, for instance, on accurate modeling and robust identification 

of joints interfacing subcomponents. Among the available methods, Marchesiello and Garibaldi [10] proposed the 

nonlinear subspace identification (NSI) approach and opened up new horizons to identify nonlinear mechanical 

systems due to the robustness and efficacy of the subspace approach. In Ref.[11], the clearance-type nonlinearity is 

successfully identified by NSI, where this method has better computational efficiency compared with the traditional 

polynomial method. In Ref. [12], a Duffing oscillator is identified by NSI under different excitation conditions. 

From the perspective of the frequency domain, Noël and Kerschen [13] developed a frequency-domain identification 

algorithm for nonlinear systems by using subspace theory. Taking a SmallSat spacecraft in practical engineering as 

the object, Noël et al. [14] carried out experimental research, and successfully identified the nonlinear characteristics 

of the joint by using the NSI in the time domain and frequency domain. More recently, the impact of spurious poles 

[15] has been investigated in NSI, and Marchesiello et al. introduced several modal decoupling tools. This allowed 

to identify the modal contributions of physical poles, significantly improving the estimation of the system 

parameters. The nonlinear subspace method has been also extended to the reduced-order domain [16], identifying 

the geometric nonlinear characteristic of a thin beam. Zhang et al. [17] developed an identification strategy for 

nonlinear parameter identification based on reconstructed signals and curve fitting adopting stepped sine 

experiments under constant excitation. The method has been also applied to a strongly nonlinear rotor-bearing 

system [18] to verify its performances in a practical engineering case. Singh and Moore [19] presented the 

characteristic nonlinear system identification approach, where the clearance nonlinearities of a system can be 

identified by the signal response under impulse excitation. Zhu et al. 0 proposed the hybrid approach based on a 

combination of NSI with the restoring force surface approach. This method not only can identify nonlinear stiffness 

but also determine nonlinear damping. 

The above identification methods need to know the type of nonlinearity in advance. Therefore, model selection 

is of vital importance in the nonlinear identification strategy. Testing the accuracy of the candidate model 

description of the recognition structure is regarded as the standard of model selection. At present, there is no unique 

method for selecting the proper nonlinear model, and the choice is generally made case-by-case, depending on the 

characteristics of the specific identification problem. Due to the lack of understanding of the structure system to be 

identified, an improper selection of the identification parameters often occurs. Multiple different models can be 
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obtained, leading to the imperfect description of the structure to be identified. To find a reasonable model, it is 

therefore mandatory to develop a model selection approach to judge the model and its parameters. In system 

identification, the search the optimal model is generally performed among a series of candidate models. Considering 

the uncertainty in the process of model selection, the model selection method based on Bayesian theory can 

investigate the influence of multiple models on structural response prediction at the same time. It can also 

automatically limit the complex models and quantitatively calculate the probability of selecting each model. Among 

the possible candidate models, the most likely model can be selected based on the evidence obtained by the 

Bayesian method. The evidence equation can comprehensively take into account two factors: the complexity of the 

model and the data fitting ability. In Ref. [21], Green applied the annealing algorithm to the Bayesian system 

identification, which can avoid local trapping, so that the optimal model can be determined effectively and the 

computational cost can be reduced. Through the analysis of experimental data, the most reasonable hysteretic model 

of CLT connection is determined by the Bayesian approach [22]. 

In this paper, the idea of Bayesian model selection is adopted in the nonlinear subspace method. The candidate 

models are identified by the nonlinear subspace identification approach. By calculating each model selection 

probability evidence expression, the calculation framework of the model selection method based on Bayesian theory 

is established. The rest of this paper's outline is as follows: Section II. A introduces the Bayesian model selection. 

Section II. B presents the nonlinear subspace identification method. How to apply Bayesian model selection in NSI 

is described in Section II. C. Section III. A investigates the numerical simulation of a two-degree-of-freedom 

nonlinear system with nonlinear damping. The cantilever beam with unknown nonlinear stiffness is discussed in 

Sect. III.B. Section. IV presents an experimental study. The conclusions are drawn in Sect. V. 

II. Theory 

A. Bayesian model selection 

The uncertainty of the model can be evaluated quantitatively by Bayesian inference. There are two main 

functions: model selection and parameter identification. This paper mainly uses the function of model selection to 

select the best model from all kinds of candidate models. 

As known, the most credible model is related to the highest probability of occurrence under the condition of 

existing data due to Bayesian inference.  represents the data set from the measured information. μi represents the 
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ith (i=1,2,…, S) candidate model. S represents the number of possible models. Based on the probability analysis 

method, the probability of occurrence of each model can be calculated quantitatively, and then the most likely model 

μ* can be determined. The probability P(μi| ) of the model can be calculated by 
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where P( |μi) represents model evidence based on the data ; P(μi) is the initial probability set based on 
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Based on the selected particular model, the corresponding new response signal can be reconstructed. Due to the 

influence of model error, there must be an error between reconstructed signal Yt
i and original signal ft

i. 

i i i
t t tY f= +                                                                        (3) 

where t is time; ɛt
i is the reconstitution error. 

The likelihood function P( |μi) reflects the fitting degree of the model to the test data, which can be further 

calculated by 
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B. Nonlinear subspace method 

A nonlinear system can be expressed [13] as  

, =v nMw t C w t Kw t f w t w t f t+ + +&& & &                                       (5) 

where the mass matrix is represented by M, the linear stiffness matrix is denoted by K, the viscous damping matrix 

is expressed by Cv and the external force is represented by f(t). fn is the nonlinear force depending on displacement 

or velocity, which is regarded as a set of internal feedback forces. In this case, the nonlinear system is composed of 
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the internal feedback force and the underlying linear system as the linear part of the nonlinear system. Based on the 

nonlinear characteristics and components, the nonlinear force can be rewritten by: 

1

,, =
q

n i i i
i

f w t w t wl n w
=
& &                                                     (6) 

where Eq.(6) has q nonlinearity constituents, the vector li represents the information about the location of the ith 

nonlinearity. The scalar function ni(t) represents the mathematical function expression of the ith nonlinearity, which 

can be a nonlinear stiffness or nonlinear damping, λi is the scalar identified nonlinear parameter for the ith nonlinear 

component. 

By bringing Eq.(6) into Eq.(5), one can obtain 

1

,=
q

v i i i
i

Mw t C w t Kw t f t wl wn
=

+ + −&& & &                                         (7) 

Based on the state-space equation concept, the identity w&= w&is combined with Eq.(7). The state-space 

formulation can be obtained by: 

                                  (8) 
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where the state vector 
T

w w& can be expressed as x, and the output response is represented by vector y. I 

represents the identity matrix. Therefore, a continuous state-space model is used to describe the nonlinear system 

above. 

c cx A x B u

y Cx Du

= +
= +

&

&
                                                             (10) 

where the dynamical system matrix is represented by Ac, the input matrix is indicated by Bc, the output matrix is 

expressed as C, and the direct feedthrough matrix is stated by D. u is the extended input vector [10]. 
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The discrete state vector can be defined as xr = x(rΔt). And the sampling period is expressed as Δt. Therefore，

Eq.(10) can be translated into a discrete state-space model to analyze the discrete signal in the actual measurement.  

1 r r
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r

x Ax Bu
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+ = +
= +

                                                                 (16) 

where the dynamical system matrix A can be obtained by 

cA tA e =                                                                  (17) 

The input matrix B is 

1cA t
c cB e I A B −= −                                                                   (18) 

The identification process of NSI is briefly described. The subspace identification problem includes estimating 

the model order n and the system matrices. The input Hankel matrix W0\2i-1 can be expressed as 

0\2 1

0 1 1

1 2

1 2

1 1

1 2

2 1 2 2 2

def def
p

i
r

w w w l

w w w l

Ww i w i w i l
W

w i w i w i l W

w i w i w i l

w i w i w i l

−

 − 
 
 
 
 

− + −   = =   + + −   
+ + + 

 
 
 − + − 

 

L

L

M M O M

L

L

L

M M O M

L

                                              (19) 

where the “past” and “future” signal is described by the subscript p and f, respectively. The index i represents the 

number of block rows. The output block matrix O0\2i-1 has the same expression as W0\2i-1. Based on Eq.(16), the 

relationship between input and output can be expressed as 
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where Гi is the extended observability matrix and Gi is the lower triangular Toeplitz matrix. 

2 1=
Ti

i C CA CA CA −  L                                                       (21) 

Then, the matrix Of  can be divided into linear combinations of the two non-orthogonal matrices Wf and Zp and of 

the orthogonal complement of Wf and Zp: 

,
=

f p f p

f

f U f Z p W Z
p
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O L W L Z L

Z
⊥ ⊥

⊥
 
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                                              (22) 

where the orthogonal complement can be represented by the symbol ⊥ . The computation of these terms above and 

their geometric interpretations are introduced in Ref.[23]. The matrix LZpZp is the oblique projection of the row 

space of Of along the row space of Wf on the row space of Zp, which can be expressed as the symbol 

/
f

i f p
W

O Z= . Then, the singular value decomposition (SVD) of the following weighted oblique projection is 

performed: 

1 1
1 2

2 2

0
=

0f
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i TW

S V
WSV W W

S V
⊥

  
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   
                                      (23)                                                      

where
fW⊥ is the projection on the orthogonal complement of the row space of the Wf. The model order n can be 

confirmed by checking the singular value. Then, the extended observability matrix can be obtained by Гi=WiSi
1/2 

based on Eq.(23). The matrices A and C can be estimated by Eq.(21). Then, the matrix B and D can be solved in 

Eq.(20) based on the least square method [23]. 

Due to the existence of nonlinearity, the “extended” frequency response function (FRF) matrix is expressed as 

1

E c cj
−= + −H D C I A B                                               (24) 

where ω is the circular frequency. The underlying linear system FRF H can be defined as 

                                                (25) 

By defining 
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the corresponding inverse matrix can be expressed as 
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By substituting Eq.(27) into (24), one can obtain 
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where R12 can be calculated adopting the block matrix inversion rule. 
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1 1
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Then, R12 can be expressed as  

1

1 1
12

1 1
dC j K

j j

−

− − 
== + + 

 
R M I M                                          (31) 

Finally, Eq.(24) can be expressed as  

1 1E r rV V= LH H H H                                          (32) 

where the relationship of the “extended” FRF HE and the underlying linear system FRF H can be established. 

Due to the existence of the imaginary part j in Eq.(24), the nonlinear coefficients determined by HE(ω) are 

complex and frequency-dependent quantities, whose real parts converge to their exact values. The imaginary parts 

are theoretically null, but the presence of noise and nonlinear modeling errors can lead to non-zero imaginary parts 

in practice. 

C. The framework of Bayesian model selection in NSI 

In the nonlinear subspace identification problem, the prior nonlinear characterization accuracy has a vital role in 

determining whether the recognition result is good or bad. In practical engineering, the nonlinear characteristics of a 

structure might be difficult to determine directly. To solve this problem, NSI takes advantage of the Bayesian model 

selection skillfully in the presented approach. The flowchart of the proposed approach is shown in Fig. 1, where 
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three detailed steps are introduced. Step 1: Based on engineering experience and prediction, all possible nonlinear 

models are selected as the candidate model database S; Step 2: For any candidate model, the same data is used to 

obtain the associated nonlinear parameters and the identified system matrices by NSI. The corresponding 

reconstructed signal can be calculated. The response signals are brought into Eq.(4) and Eq.(5), and the model 

evidence P( |μi) can be obtained; Step 3: The posterior probability of each candidate model is calculated to get the 

optimal nonlinear model and determine the nonlinear coefficients of the nonlinearities. 

Create the candidate model μi

i=1,2, ę , N

obtain the dataset D from 
simulation or experiment

Set the prior probability of the 
alternative model

Initialize i=1

Create candidate nonlinear form models

Determine the nonlinear feedback 
force based on model μi

Construct nonlinear state space 
matrix and substitute Input-output 

information into NSI

Determine model parameters 
(system parameters) and 
underlying linear modal 

Reconstruct output 
signal and calculate

the Bayesianevidence

i<N

Yes, then i=i+1

Rank  P(μi|    ) among all the 
candidate nonlinear models 

Identify system parameters using NSI

Select the best model

Store the identification results 
of each model

Choose the highest value of P(μi|    )
 asthe most probable model





No

Obtain  accurate nonlinear
 system parameters  

Fig. 1 Flowchart of the nonlinear subspace method with the Bayesian model selection 

III. Numerical simulation 

Two numerical simulations are conducted to demonstrate the proposed method's performances: a Two-DOF 

spring-mass system with quadratic friction and a cantilever beam with nonlinear stiffness. 

A. Two degrees of freedom system with nonlinear damping 

Fig. 2 shows the two-degree-of-freedom system with nonlinear damping. Quadratic friction is located at DOF 1. 

The parameters of the system are listed in Table 1.  
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 Quadratic friction  

m1 m2

k 1 k 2

c 1 c 2

x 1 x 2 f 2

 

Fig. 2 A two-degrees of freedom spring-mass system with Quadratic friction 

Table 1 System parameters of 2-DOFs 
Mass (kg) Linear stiffness (N/m) Damping (Ns/m) Nonlinear damping (Ns2/m2) 
m1=1 
m2=1.5 

k1=800 
k2=1000 

c1=2 
c2=2 

α=20  

It is assumed that the nonlinear damping form is unknown. Table 2 provides three standard friction models: 

Model 1 is the Quadratic friction; Model 2 represents Coulomb friction; Model 3 illustrates a combination of Model 

1 and Model 2. Each candidate model has the same prior probability P(μi)=1/3 based on Eq.(3). 

Table 2 Information on candidate models 
No Model description Function form P(μi) 

Model 1: μ1 quadratic friction 
1x x&& 1/3 

Model 2: μ2 Coulomb friction 
2Sgn x&  1/3 

Model 3: μ3 quadratic friction and Coulomb friction 
1x x&&+ 2Sgn x&  1/3 

 

A zero-mean Gaussian random force is selected to be applied at DOF 2, whose root-mean-square value is 10 N. 

Fourth-order Runge-Kutta approach is used to calculate the vibration response, with a sampling frequency of 100 Hz 

and acquisition length of 10s. As known, adverse noise can pollute the measured signals. To investigate the 

robustness of the method above, zero-mean Gaussian noise is imposed on the simulation signal in the 2% of the 

signal standard deviation.  

Take the candidate Model 1 for example: the singular value plot can be calculated by NSI as shown in Fig. 3. 

Through the characteristic of abrupt change of the curve, the model order of the system is determined as n=4. 
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2 4 6 8 10 12 14 16 18 20
10-5

10-4

10-3

10-2

10-1

Model order n
 

Fig. 3 Singular value plot with 2% measurement error considering quadratic friction 

As shown in Fig. 4, the underlying FRF h12 based on candidate models is obtained by NSI. The identified modal 

parameters are presented in Table 3. Results show that: (1) The identified underlying FRFs are reasonably 

consistent with the exact values when Model 1 is selected; (2) In Model 2 or Model 3, the curve of the identified 

FRFs deviates from each other around the fundamental frequencies. This phenomenon reflects that the selected 

model does not match the true damping characteristic; (3) Though the noise exists, the maximum error of damping 

in Model 1 is only 5.49%, while the maximum error is two orders of magnitude higher in other cases. Therefore, the 

damping model of the system should be quadratic friction (Model 1).   

1 3 5 7 9
-160

-120

-80

-40

 Exact FRF

FR
F 

(d
B

)

Frequency (Hz)

Model 3

Model 2

Model 1
Exact FRF

 Identified FRF based on Model 1
 Identified FRF based on Model 2
 Identified FRF based on Model 3

 

Fig. 4 Underlying linear FRF of different candidate models 
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Table 3 Identified model parameters of candidate models 
Underlying linear system Exact  

value 
Model 1 Model 2 Model 3 
Identified  Error/% Identified Error/% Identified Error/% 

1st frequency/Hz 2.46 2.46 -0.02 2.47 0.46 2.47 0.46 
2nd frequency/Hz 7.51 7.50 -0.13 7.48 -0.47 7.44 -0.97 
1st damping ratio/% 0.91 0.86 -5.49 6.67 633.05 1.97 116.39 
2nd damping ratio/% 2.53 2.58 1.89 9.43 272.69 3.61 42.68 

 

The identified nonlinear parameters of each model are listed in Table 4. For each candidate model, the 

reconstructed response signal can be obtained from the identified state-space matrices. The corresponding posterior 

probability is calculated by Eq.(1) and Eq.(4). The posterior probability of Model 1 is mostly 100%, and one of the 

other candidate models is zero. The corresponding nonlinear parameter identification error of Model 1 is only 2.5%, 

even in the presence of noise. The results of other models can not represent the structure nonlinear characteristics, 

and they have no significance compared with the theoretical value.  

Table 4 Identified nonlinear parameters and posterior probability of candidate models 
 Exact  

value 
Model 1 Model 2 Model 3 
Identified  Error/% Identified Error/% Identified Error/% 

quadratic friction：α1 20.00 20.5 2.5 -- -- 16.07 19.6 

Coulomb friction：α2 -- -- -- -0.72 -- -0.172  
P(μi| )/% -- 100 0 0 

 

(a) (b) (c)

 

Fig. 5 Real and imaginary parts of the identified coefficients with noise for different candidate models 



 

15 

 

Meanwhile, the nonlinear coefficients identified by NSI are shown in Fig. 5 for different candidate Models. 

The real part of the coefficient of Model 1 is several orders of magnitude higher than the imaginary part, which is 

not always the case for the other models. Results prove that Model 1 is the optimal model. The proposed method is 

effective without knowing a priori the exact nonlinear characteristics. This method can select the nonlinear model 

and has the capability of accurate identification.  

B. Cantilever beam with nonlinear stiffness 

In this section, a cantilever beam with nonlinear stiffness is discussed. In Fig. 6, the length of the beam is l = 50 

cm, and it is divided into eight units with a total of 16 degrees of freedom. The density of the system is ρ = 1.2 

g/cm3, and the modulus of elasticity is E = 7×107 GPa. The cross-section of a beam is circular and the size is 5 cm2. 

There exists a nonlinear stiffness at DOF 13 as following: 

2 3
2 13 3 13nk k x k x= +                                                                (33) 

where k2 = 8×104 N/m2 is the square nonlinear coefficient, and the cubic nonlinear coefficient is represented by k3 = 

4×106 N/m3. 

1

2

Force

3

4

5

6

7

8

9

10

11
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Fig. 6 A cantilever beam with nonlinear stiffness. 

It is assumed that the nonlinear stiffness form is unknown. Table 5 provides three nonlinear models: Each 

candidate model has the same prior probability P(μi) =1/3 based on Eq.(3). 

Table 5 Information on candidate models 
No Model description Function form P(μi) 
Model 1: μ1 square stiffness k2x2.sign(x) 1/3 
Model 2: μ2 cubic stiffness k3x3 1/3 
Model 3: μ3 square stiffness and cubic stiffness k2x2 +k3x3 1/3 
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A zero-mean Gaussian random force is selected to be applied at DOF 15. The root-mean-square value is 10 N. 

The dynamical system response is calculated by applying the Runge-Kutta fourth-order method, with a sampling 

frequency of 1000 Hz and acquisition length of 100s. 1% noise is added in the signal. 

Take the candidate Model 3 for example, and the singular value plot can be calculated by NSI as shown in Fig. 

7. Through the characteristic of abrupt change of the curve, the model order of the system is determined as n=32. 

10 20 30 40 50
10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

100

Model order n
 

Fig. 7 Singular value plot of Model 3 

As shown in Fig. 8, the underlying FRFs h13,15 based on candidate models are obtained by NSI. The identified 

model parameters are shown in Table 6. Results show that: (1) The determined underlying FRF curve of Model 1 

has a significant deviation from the theoretical value, and the first-order natural frequency is missing; (2) When the 

candidate Model 2 is considered, the amplitude of the curve deviates completely; (3) The identified underlying FRF 

are reasonably consistent with the exact value when the Model 3 is selected. The max error of natural frequency is 

only 0.23%. Therefore, the nonlinear stiffness model of the system should be quadratic stiffness and cubic stiffness 

(Model 3). 
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Fig. 8 Underlying linear FRF of different candidate models 

Table 6 Identified modal parameters of candidate models 
Model order Exact  

value 
Model 1 Model 2 Model 3 
Identified  Error/% Identified Error/% Identified Error/% 

1 0.509 -- -- -- --  0.508 -0.23 
2 2.098 2.096 -0.10 2.205 5.10  2.098 -0.02 
3 4.310  4.297  -0.28  4.318  0.21  4.309  0.02  
4 6.266  6.117 -2.38  6.258  -0.12  6.265  0.01  
5 7.934  7.815  -1.49  7.923  -0.13  7.933  0.00  
6 9.221  9.008  -2.30  9.209  -0.13 9.221  -0.01  
7 10.105  --  --  --  -- 10.107  0.00  
8 10.554  --  --  --   10.555  -0.01  
9 18.648  15.205  -18.46  17.534  -5.97 18.648  0.05  
10 27.132  25.961  -4.32  27.139  0.03 27.130  0.00  

 

Identified nonlinear parameters of each model are shown in Table 7. For each candidate model, the 

reconstructed response signal can be obtained from the identified state-space matrices. The corresponding posterior 

probability is calculated by Eq.(1) and Eq.(4). The posterior probability of Model 3 is mostly 100%, and one of the 

other candidate models is zero. As proof, the time histories generated by NSI with the three models are presented 

and compared with the real response in Fig. 9. The error of the reconstructed sign based on Model 3 is almost zero, 

and other model errors are apparent. The corresponding nonlinear parameter identification error of Model 3 is only 
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0.75%. The results of other models can not represent the nonlinear characteristics of the structure. Results the 

proposed method can effectively determine the nonlinear stiffness model and nonlinear parameters. 
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Fig. 9  Error of the time histories generated by NSI with three models  

Table 7 Identified nonlinear parameters and posterior probability of candidate models 
 Exact  

value 
Model 1 Model 2 Model 3 
Identified  Error/% Identified Error/% Identified Error/% 

square stiffness：k2 8.00×104 1.26×105 56.93 -- -- 8.05×104 0.63 
cubic stiffness：k3 4.00×106 -- -- 1.81×106 -54.68 4.03×106 0.75 

P(μi| )/% -- 0 0 100 
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IV. Experimental study 

The experimental test of the negative system is conducted in Ref. [24]. The experimental photos are depicted in 

Fig. 10, showing the device’s stable equilibrium positions. The device has negative stiffness characteristics and 

exhibits strong nonlinear behavior. The motion can be bounded around one of the two stable equilibrium positions, 

or it can be of cross-well type. Therefore, it can be regarded as a single degree of freedom system, considering the 

displacement of the moving central mass. The system is excited with a shaking table providing a random excitation. 

The sampling duration is t=140 s, and the sampling frequency is set to 512 Hz. The equilibrium positions are 

measured with a laser vibrometer, and they are equal to -w =-0.0301m and +w =0.0242m. 

 

Fig. 10 Test picture of negative stiffness system [24] 

As known reported in detail in [24], a new displacement variable z(t)=w(t)-w* can be defined when a negative 

reference position w* is considered. In this case, the system is defined as a stable underlying linear system. 

Therefore, the equation of motion can be written by 

2 3
1 2 3 dmz cz k z k z k z f f t+ + + + + =&& &                                                (34) 

where fd is the nonlinear damping force. For this experimental system, the nonlinear damping form is challenging to 

determine a priori. Based on the experimental results in Ref.[25], the friction force in this negative stiffness 

oscillator depends on the position and velocity. Friction is related to normal force fN, such as fN*sign( w&). 

Under these circumstances, the normal force is not constant but a function of the position w. Intuitively, the normal 

force is maximum at *
0w when the rods are at their maximum compression, and minimum at *w . Assuming that a 

quadratic function can describe this behavior. When z(t)=w(t)-w* is considered, the corresponding friction function 

can be written as follows: 
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2
1df sign z z z= + +&                                                            (35) 

where the three coefficients (β, γ, δ) related to two stable equilibrium positions w
  are uniquely determined, and the 

only α1 is the parameter to be identified.  

* *

1
=

w w− +

                                                                        (36) 

* * *

* *

2
=

w w w

w w
− +

− +

− −
                                                               (37) 

* * * *

* *
=1+

w w w w

w w

− +

− +

− −
                                                    (38) 

Common friction forms, such as Coulomb friction and quadratic friction, are also considered in a real structure. 

Therefore, four candidate models are shown in Table 8. Each candidate model has the same prior probability 

P(μi)=1/4 based on Eq.(3).   

Table 8 Information on candidate models 
No Function form P(μi) 

Model 1: μ1 
2

1sign z z z+ +&  0.25 

Model 2: μ2 
2 2

1 2sign z z z sign z z+ + +& & &  0.25 

Model 3: μ3 
2

1 3sign z z z sign z+ + +& &  0.25 

Model 4: μ4 2 2
1 2 3sign z z z sign z z sign z+ + + +& & & &  0.25 

 

Take the candidate Model 1 for example. The singular value plot can be calculated by NSI, as shown in Fig. 11. 

Through the characteristic of abrupt change of the curve, the model order of the underlying linear system is 

determined n=2. 
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Fig. 11 Singular value plot of the candidate Model 1 

For four candidate models, Table 9 shows the modal parameter results of the underlying linear systems related 

to the negative reference value. Meanwhile, the proposed method's underlying estimated FRF h can be obtained, as 

shown in Fig. 12. Due to different friction models, damping identification values are quite different. It is difficult to 

determine the optimal result only based on NSI. 

Table 9 Identified model parameters of candidate models in a negative position 
 Model 1 Model 2 Model 3 Model 4 
Natural frequency/Hz 11.64 11.40 11.84 11.51 
Damping ratio/% 5.27 10.77 5.54 19.88 
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Fig. 12 Underlying linear FRF of different candidate models in the negative equilibrium position 
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Fig. 13  Error of the time histories generated by NSI with four models 

In this paper, the proposed method provides an effective way to determine the optimal structural model. 

Identified nonlinear parameters of each model are shown in Table 10. For each candidate model, the reconstructed 

response signal can be obtained. As proof, the time histories generated by NSI with the four models are presented 
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and compared with the true response in  Fig. 13. The error of the reconstructed sign based on Model 2 is the 

smallest. The corresponding posterior probability is calculated by Eq.(1) and Eq.(4). Results show that the posterior 

probability of Model 2 is the largest, reaching 72.63%. Secondly, the posterior probability of model 4 is 27.35%. 

Therefore, the test system's optimal model is Model 2, and the friction is mainly composed of an ad-hoc friction 

model depending on velocity and displacement plus the standard quadratic friction.  

Table 10 Identified nonlinear parameters and posterior probability of candidate models 
Model order Model 1 Model 2 Model 3 Model 4 
 Identified  Identified Identified Identified 
k1 (N/m) 1.39×102 1.34×102 1.44×102 1.36×102 
k2 (N/m2) -6.04×104 -6.34×104 -6.22×104 -6.37×104 
k3 (N/m3) 6.86×105  7.23×105  7.12×105 7.27×105  
α1 (N) 2.08 1.16 2.07 1.96 
α2 (Ns2/m2) --  -4.61 -- -1.31 
α3 (N) --  --  -0.05 -7.50 
P(μi| )/% 0.01 72.63 0.01 27.35 

 

The elastic restoring force of the system can be extracted from the experimental result based on the restoring 

force surface method and compared with the identified ones for the different nonlinear models, defined as: 

3 2
3 2 1R k z k z k z= + +                                                              (39) 

The results of the comparison are depicted in Fig. 14. Results show that the agreement Model 2 is the highest 

among the candidate models, which verifies the proposed method's effectiveness.  
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Fig. 14 Estimation of the restoring force 
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V. Conclusion  

In this paper, Bayesian model selection is further applied to the nonlinear subspace identification approach. The 

remarkable feature of the presented methodology is that it accurately determines the most suitable nonlinear model 

generally unknown, and accurately identifies the nonlinear parameters. Simulation examples with unknown 

nonlinear damping or stiffness characteristics are conducted to verify the effectiveness in noisy conditions. An 

experimental study is eventually performed on a negative stiffness system, exhibiting rich nonlinear dynamics due to 

a combination of elastic and damping nonlinearities. The identified restoring force of the optimal candidate model 

estimated by the proposed approach is compared with the experimental restoring force values, showing a very high 

agreement. This testing application further proves the efficiency of the proposed method, which can be applied to 

various engineering structures exhibiting a nonlinear behavior. 
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