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ABSTRACT Due to the continuous increasing importance of renewable energy sources as an alternative
to fossil fuels, to contrast air pollution and global warming, the prediction of Global Horizontal Irradiation
(GHI), one of the main parameters determining solar energy production of photovoltaic systems, represents
an attractive topic nowadays. Solar irradiance is determined by deterministic factors (i.e. the position of
the sun) and stochastic factors (i.e. the presence of clouds). Since the stochastic element is difficult to
model, this problem can benefit from machine learning techniques, like artificial neural networks. This
work proposes a methodology to forecast GHI in short- (i.e. from 15min to 60min) and mid-term (i.e. from
60 to 120min) time horizons. For this purpose, we designed, optimised and compared four neural network
architectures for time-series forecasting, respectively based on: i) Non-Linear Autoregressive, ii) Feed-
Forward, iii) Long Short-Term Memory and iv) Echo State Network. The original data-set, consisting of
GHI values sampled every 15min, has been pre-processed by applying different filtering techniques. Our
results analysis compares the performance of the proposed neural networks identifying the best in terms of
error rate and forecast horizon. This analysis highlights that the clear-sky index results the preferred filtering
technique by giving greatly improvements in data-set pre-processing, and Echo State Network gives best
accuracy results.

INDEX TERMS Solar radiation forecast, artificial neural networks, LSTM, ECHO, photovoltaic system,
energy forecast, renewable energy.

I. INTRODUCTION
Nowadays, renewable energy is a very hustling research
area. Finding viable, clean energy sources to replace fos-
sil fuels, or at least to significantly decrease their usage in
short to medium term, has become an extremely critical goal
to achieve. On the one hand, air pollution, of which fossil
fuels are a major contributor, is causing a real health cri-
sis [1]. According to the World Health Organisation (WHO),
air pollution is responsible for 7 million deaths every year,
and 91% of the world population lives in places where air
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quality exceeds the limits mandated by the WHO itself [2].
On the other hand, greenhouse gas emissions from fossil
fuels are also one of the major drivers of anthropogenic
climate changes. According to a 2018 special report by the
Intergovernmental Panel on Climate Change (IPCC), imme-
diate action must be taken to limit the increase in global
temperature to 1.5 ◦C and avoid the worst consequences of
global warming [3]. For these reasons, renewable energy
sources (RES) will have a key role in the future of our society.
Among them, an important part is played by solar energy,
which can be used to produce electricity exploiting photo-
voltaic (PV) systems. Nowadays, PV systems are rapidly
spreading in our cities with strong economic, social and
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environmental impacts [4]. At the same time, the scientific
community is researching new models and new optimisation
methods to better manage these resources.

In a PV system, the power output of a PV panel is directly
proportional to the solar irradiance, which in turn depends
on various factors (e.g. latitude, season, and sky conditions).
There are different components of solar irradiance, but the
most important one for PV power generation is Global Hori-
zontal Irradiance (GHI), which is the total irradiance on a hor-
izontal surface [5]. GHI is related to Direct Normal Irradiance
(DNI), which is the irradiance on a surface perpendicular to
the sun, and Diffuse Horizontal Irradiance (DHI), which is
the radiation from light scattered by the atmosphere.

To optimise smart grid operations and match power pro-
duction, distribution and consumption efficiently and reli-
ably, it is needed to know in advance the amount of energy
produced by power plants [6], as well as energy consump-
tion. However, one of the issues posed by some of the most
popular renewable energy sources, likewind and solar energy,
is their non-dispatchable and intermittent nature. A dispatch-
able energy source can be turned on and off when needed in a
short amount of time, according to needs. This is not true for
PV power systems. The sun only shines for a limited amount
of hours during the day, depending on latitude and season,
and the irradiance is also affected by clouds.

When integrating non-dispatchable Renewable Energy
Sources (RES) into existing power grids, this intrinsic vari-
ability must be taken into account, particularly when the share
of energy from these types of sources increases [7]. An excit-
ing possibility is to integrate RES using smart grid technolo-
gies. A traditional power grid is centralised and implements
a one-way communication, where the power is sent from
the power plant to customers. In a smart grid, on the other
hand, the process becomes distributed, and the consumer can
also be an active user, giving feedbacks on electrical use that
allow the grid to tune itself to provide better performance
and guarantee better reliability. Examples of the application
of smart grid management are Demand-Response (DR) [8],
Demand Side Management (DSM) [9] and mobility based on
electric vehicles [10]. DR refers to the changes in electricity
consumption patterns by the user in response to fluctuations
in power production by renewable energy sources and grid
requirements, as well as for economic reasons like changes
in the price of electricity. Instead, DSM refers to a set of
actions aimed at efficiently managing the consumption of a
grid, in order to reduce the costs incurred for the supply of
electricity and for general system charges.

As stated above, themost popular RES are non-dispatchable
and intermittent by nature. These features introduce problems
in grid stability and efficiency which lead to limitations on the
amount of these resources which can be effectively added to
the grid. Thus, generation output by RES is driven by environ-
mental and meteorological conditions and cannot respond to
changes in demand. Solar energy, in particular, is determined
both by deterministic (e.g. latitude, day of the year, hour of
the day) and stochastic factors (e.g. effects of the atmosphere

and weather conditions like cloud coverage). Consequently,
the scientific community is pushing for innovation and opti-
mization purposes in this scenario. Indeed, many studies are
currently focused on new and optimized methods to fore-
cast the Global Horizontal Irradiance (GHI), which strongly
influences Photovoltaic (PV) production [11]–[14]. In this
context, the main challenge is, therefore, to find a methodol-
ogy to predict the power generated by a photovoltaic system
accurately. Since PV energy generation is highly correlated
to solar irradiance, it makes sense concentrate on predicting
the latter, in particular GHI, and then use these predictions to
calculate the expected energy production. Indeed, accurate
forecasting of GHI is crucial to unlock the development
of novel control strategies for smart grid management, e.g.
DR and DSM, that aim at mitigating undesirable fluctuations
introduced by RES (e.g. PV systems). For example in this
scenario, a photovoltaic simulator such as the one proposed
in [15], [16] could be employed using GHI predictions as a
system input to estimate energy production of PV systems
for the next short- and mid-term time-horizons. Thanks to
DR and DSM policies, the energy demand can dynamically
respond to changes in the energy generation, overturning the
current paradigm where the generation responds to changes
in demand.

Since solar irradiance is a physical phenomenon, a pos-
sibility could be to develop a physical model. The main
problem with this approach is its complexity, mainly when
modelling the stochastic atmospheric phenomena that deter-
mine the measured GHI on the surface. A more straightfor-
ward approach is based on time-series forecasting. The idea
is to use previous values of the time-series we are interested
in predicting, and/or one or more related series, one or more
future values. Several studies were proposed in the literature
to find physical and mathematical models to estimate and
forecast solar radiation. Classical linear time-series models
have been widely used [17]. Simple statistical models, for
example, can be used but they might give sub-optimal results
because solar irradiance is a complex nonlinear time-series.
However, these studies have highlighted that these method-
ologies are not sufficient in the analysis and prediction of
solar radiation due to the non-stationary and non-linearity
characteristics [18]. To overcome these limits, a more robust
approach is based on machine learning. One of the most
used and studied applications of machine learning is that of
artificial neural networks [19], [20].

In this paper, we propose a methodology for short-
(i.e. from 15min to 60min) and mid-term (i.e. from 60 to
120min) GHI forecast, with 15min time-steps, exploiting
state-of-the-art neural networks models in time-series sce-
nario. The main goal is to obtaining accurate predictions
to use as input for PV simulators, as demonstrated in our
previous works [21], [22]. More accurate inputs allow even
more robust PV simulations [16] and this leads to better
analysis and management of the energy produced in opera-
tional contexts such as DR and DSM. In detail, we specif-
ically designed and deeply optimised four architectures
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respectively based on a Non-Linear Autoregressive (NAR),
a Feed-Forward (FFNN), a Long Short-Term Mem-
ory (LSTM) and an Echo State Network (ESN) as they
represent the most promising and suitable solutions in time-
series predictions. In addition, we apply different data-set pre-
processing and filtering techniques to identify which of them
has better performances by comparing the prediction results
of the different architectures. We repeated training, optimisa-
tion and test phases of all our neural network architectures for
each pre-processing technique applied to the original data-set
consisting of a time-series of GHI values sampled every
15min. The first pre-processing technique aims at removing
some sampling error in the original GHI data-set (hereinafter
referred to as raw GHI data-set). Then, the second pre-
processing technique applies a Tikhonov regularisation to
smooth the time-series making the training phase easier.
Finally, the third pre-processing technique is based on the
clear-sky index, which is the ratio of the measured irradiance
and the clear-sky irradiance. In this case, GHI samples are
converted into clear-sky index values to remove the seasonal
trend of the time-series. Both Tikhonov regularisation and
clear-sky index are applied on the raw GHI data-set.

The rest of the paper is organised as follows. Section II per-
forms a review of the scientific literature on the topic of solar
irradiance forecasting. Section III illustrates the methodol-
ogy proposed in this work. Section IV presents the exper-
imental results by comparing the performance of the three
approaches described. Finally, Section V discusses the
concluding remark.

II. RELATED WORKS
The literature encloses several forecasting models for solar
irradiance and PV power. Generally these models are divided
into four main categories [20], [23] i) statistical models;
ii) cloud imagery-based models; iii) numerical weather pre-
dictions (NWP) models and iv) hybrid models. As introduced
in Section I, statistical models use previous values of the
solar irradiance or PV power time-series to forecast the next
values. For this reason, they represent the category of our
interest to which we are inspired and compared. They, in turn,
can be divided into linear and nonlinear models. However,
according to [24], limitation of linear models is that they
cannot take into account the non-linearity of many real-life
time-series, including solar irradiance. As a result, according
to the purpose of our work, this section investigates these
models by highlighting merits and weaknesses.

Generally, linear methods represent the simplest forecast-
ing model, often used as reference to evaluate other more
complex [12]. They are based on the simple assumption that
the forecasted value of the time-series is the same as the
current value. One of the simplest linear models is the autore-
gressive (AR) [25]. A slightly more complex model is the
autoregressive moving average (ARMA), which combines
autoregressive and moving-average components [25]. The
ARMA model can be extended including exogenous inputs
(ARMAX). AR and ARMA models can be used to forecast

stationary time-series. In a stationary process, the mean and
the variance remain constant over time [17]. But processes
like solar irradiance are non-stationary, so they must be
transformed into stationary time-series, or different models
should be developed. The ARIMA model (autoregressive
integrated moving average) can be used for non-stationary
time-series forecasting. Reikard [26] shows that ARIMA can
give good short-term solar irradiance forecasting results. His
experiments evaluate forecasting horizons of 5, 15, 30 and
60min, and the ARIMA model not only outperforms simple
AR models in all cases, but it also performs better than
feed-forward artificial neural networks except for the shortest
time horizon. This might be caused by the difficulty to train
ANNs causing them to reach only a local optimum.

However, a limitation of linear models is that they cannot
take into account the non-linearity of many real-life time-
series, including solar irradiance. For this reason, nonlinear
techniques for time-series forecasting have become very pop-
ular, and they have been extensively used for solar irradiance
prediction [27]. Martin et al. [28] forecast half daily values
of solar irradiance, i.e. ‘‘accumulated hourly global solar
irradiance from solar raise to solar noon and from noon
until dawn for each day’’. Since this time-series is non-
stationary, two transformations are proposed, the clearness
index, which is the ratio between the solar irradiance mea-
sured at ground level and the extraterrestrial irradiance, and
the lost component, which is the difference of the same quan-
tities. Different feed-forward neural networks configurations,
in terms of the number of hidden layers, neurons, inputs,
are tested, and the best one is selected for each weather
station where the prediction model is evaluated. The results
show that ANNs improve the forecasting accuracy of the
reference persistence model and outperform a simpler linear
AR model. Pedro and Coimbra [29] evaluate different PV
power forecasting techniques. Among them, a feed forward
neural network with one hidden layer of 20 neurons. The
network has 13 inputs, which are fed with 13 previous values
of the time-series. The forecasting is evaluated for 1 h and
2 h ahead. The neural network-based technique outperforms
the other models evaluated in the study. Lauret et al. [30]
instead compare several machine learning techniques. Sim-
ple persistence and AR models are used as reference. The
GHI time-series are pre-processed by transforming them
into clear-sky index series. For the shortest time horizons,
the machine learning techniques perform better than the ref-
erence models for unstable conditions, while for clear-sky
conditions, the AR model is also accurate. For longer time
horizons, though, the machine learning models, including the
feed-forward neural network, clearly outperform persistence
and linear AR techniques. Rana et al. [31] use an ensemble
of neural networks for short-term (from 5 to 60min ahead)
PV power forecasting for both the univariate and multivariate
case. They test multiple ensembles Ei, where each ANN in
the ensemble has i neurons in the hidden layer. Each ensem-
ble is made of 20 networks. The final forecasting result is
selected by taking the median of the 20 predictions. This
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method obtains better results than the reference persistence
model and another machine learning technique called sup-
port vector machine (SVM). McCandless et al. [32] develop
a cloud regime-dependent forecasting technique based on
feed-forward neural networks. Instead of using a single
‘‘global’’ neural network, different ANNs are trained and
used for each cloud regime. To determine the cloud regime,
a k-means algorithm is applied to the clearness index time-
series. For the shortest time horizons (15min) ANNs does
not improve upon the reference persistence model, except
for the most unstable sky conditions. For longer horizons
(from 60 to 180min), however, the ANNs outperform per-
sistence. It is also shown that the regime-dependent forecast-
ing always gives better results than a single global ANN.
Monjoly et al. [33] use different multi-scale decomposition
techniques to pre-process the GHI time-series, after trans-
forming it into the clear-sky index. The different time scale
components are then forecasted separately using separate
ANNs or using a hybrid AR-ANN model. The results show
that multi-scale decomposition significantly improves fore-
casting results, both using ANNs and the hybrid model.
Bouzgou and Gueymard [13] design a Wrapper Mutual
Information Methodology (WMIM) optimization approach
by exploiting Extreme Learning Machine (ELM) regression
technique to i) investigate the effect of the mutual information
measure between the historical variables and the targeted
future GHI value, and ii) select the best possible combination
of historical variables from the existing time series. Experi-
mental results highlight that the ELM model, combined with
WMIM, provides the same performances of the more conven-
tional Multi Layer Perceptron (MLP) but lower computing
time.

On the other hand, another widely used neural network is
the recurrent neural network, where feedback connections are
added. The outputs of these networks also depend on their
current state (memory), not only on the current inputs. This
behaviour makes them very suitable for time-series analysis
and forecasting. Among these, there are Long Short-Term
Memory networks. These are recurrent neural networks using
particular units (LSTM units) as nodes. These units can
remember values for an arbitrarily long amount of time,
and this behaviour makes them very suitable for time-series
forecasting. Alzahrani et al. [34] use a deep (i.e. with more
than one hidden layer) recurrent neural network with LSTM
units for short-term forecasting of solar irradiance. The input
time-series is sampled at a very high frequency (100Hz).
The advantage of this high-resolution time-series is that it
can capture fast fluctuations. The results show that the deep
LSTM has better accuracy than the reference feed-forward
neural network. In [35] the authors exploit LSTM networks
for 1 h ahead PV power forecasting. Different LSTM mod-
els are evaluated, and the best one, LSTM for regression
with time steps, is selected and compared with other fore-
casting techniques, including multiple linear regression and
feed-forward neural networks. The LSTM is shown to give
more accurate results than the other models. Srivastava and

Lessmann [36] compare LSTM with other established fore-
casting techniques in day-ahead GHI forecasting. They use
satellite-derived GHI values and other atmospheric variables
as inputs. In contrast to the majority of the studies in the
literature, many different locations in several countries with
different climates are taken into account, which makes it
possible to assess the validity of the proposed model in dif-
ferent conditions. The LSTM-based approach is compared to
a simple persistence model, a feed-forward neural network
model and another machine learning model called ‘‘Gradient
Boosting Regression’’ (GBR). The results show the superior
performance of the LSTM compared to the other methods.
Finally, Zang et al. [14] addresses short-term solar irradiance
forecasting by exploiting spatio-temporal correlation model
based on deep learning. In detail, they first apply a convolu-
tional neural network (CNN) to extract spatial features. Then,
they apply a LSTM network to extract temporal features
from historical data. In this way, they successfully obtain
spatiotemporal correlations to predict global horizontal irra-
diance one hour in the future.

Another interesting recurrent architecture is the Echo
State Network. An ESN has a sparsely connected hidden
layer, called ‘‘reservoir’’, with fixed connections andweights.
The only weights that are learnt are those of the output
connections. This property makes these networks easier to
train compared to other recurrent architectures. Kmet and
Kmetova [37] used an ESN for 24 h ahead solar irradiance
forecasting, using the actual mean hourly values of irradi-
ance and other meteorological variables like humidity and air
temperature. The inputs of the network consist of 24 hourly
values of the selected variables for the present day, and the
outputs are the irradiance forecasting for the next day. The
paper shows that this approach gives good results. In a pre-
vious study, on the other hand, Ruffing and Venayagamoor-
thy [38] found that in a real-world application results of an
ESN-based solar irradiance forecasting model were not very
promising. In a related field, Deihimi and Showkati [39]
used an ESN for 1 h and 24 h ahead electric load forecasting.
In this case, the results showed that the ESN has a good
generalisation capability and can give very accurate results.

Table 1 summarizes and highlights the key features of
the analysed literature solutions based on machine learning
to predict GHI. All these works represent real milestones,
however, as can easily be seen i) often a large number of
hard-to-find data are used to predict the GHI trends (e.g.
Surface Weather Observation, satellite-derived GHI, atmo-
spheric variables, meteorological measurements); ii) very
few works exploit the potential of filtering techniques to
pre-process the original data-set with the aim of using it as
input for the neural models (i.e. a data-set characterized by
a trend that is easier to learn allows the implementation of
leaner neural architectures), iii) few works are compatible
with DR and DSM scenarios (i.e. 15 min time-steps) and
iv) hybrid or assembled methodologies, rather than a single
global architecture, are almost always used which implies a
greater use of computational resources.
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TABLE 1. Comparison with the major and latest literature review.

With respect to presented literature solutions to forecast
solar radiation, our work proposes an optimised method-
ology for the short- (i.e. up to 60min) and mid-term (i.e.
from 60 to 120min) GHI forecast exploiting and comparing
four neural networks specifically designed and optimised.
We applied three different data-set pre-processing and filter-
ing techniques to identify which of them has better perfor-
mances by comparing the prediction results of the different
architectures. As a first analysis, we gave in input to our
neural networks the raw GHI data-set where we applied
some basic filters to clean the data-set itself by removing
possible errors, such as lack of data or storage error due to
sensor sampling. Then, as a second analysis, we applied the
Tikhonov regularisation technique to the very same raw data-
set, which smooths the time-series trend-making easier the
training of our neural networks. Finally, as a third analysis,

we converted the raw data-set, consisting of GHI samples,
into clear-sky index values, thus removing seasonal trends
of the time-series. For a fair comparison, all the data-sets at
our disposal are used as input on all the best neural archi-
tectures identified experimentally. The use of pre-processing
techniques, together with the capillary optimisation of neural
structures, allows us to increase the prediction time horizon
with an acceptable error rate. Moreover, compared to state-
of-art solutions, the optimisation of neural architectures from
specifically transformed data-sets allows us to obtain leaner
structures at the computational level without affecting the
prediction accuracy.

To overcome the state-of-the-art limitations and to high-
lights our scientific contribution, we propose a novel and
reliable methodology to forecast GHI in short- and mid-term
exploiting neural networks models suitable for time-series
analyses. Through this research work we aim at i) obtaining
accurate GHI predictions to be compliant with smart grid
management, as previously discussed; ii) obtaining an opti-
mized methodology for the short- (i.e. from 15 up to 60 min.)
and mid-term (i.e. from 60 to 120 min.) GHI forecast and,
iii) assessing the impact of different pre-processing tech-
niques in relation to different state-of-art neural models in a
GHI forecasting scenario.

For this purpose, we optimized the methodology right from
the pre-processing of the data-set until the choice of the best
performing neural model operating with time-series, suit-
able in this operative context. Consequently, we optimized
the methodology right from the pre-processing of the data-
set until the choice of the best performing neural model
operating with time-series, suitable in this operative con-
text. In brief, the most important operations we performed
are:
• exploiting three different data-set pre-processing and
filtering techniques (i.e. Raw data-set, Tikhonov, and
Clear-sky index). To the best of our knowledge, we used
the Tikhonov regularisation for the first time in the field
of energy forecasting;

• designing, deeply optimizing and comparing the perfor-
mance of four neural network architectures based on
i) Non-linear Autoregressive Neural Network, ii) Feed
Forward Neural Network, iii) Long Short-TermMemory
and iv) Echo State Neural Network. In the literature, they
represent the best solution for time-series analysis. Our
objective, as mentioned above, is to design and optimise
highly-specialised models for the GHI forecast in the
short- and mid-term (i.e. from next 15 to 120 min). This
allows more accurate GHI forecasts ready to be used as
input to PV simulators (e.g. [15], [16]) to unlock new
energy scenarios and policies, such as DR, DSM and
electric vehicles energy management;

• mixing together the investigated pre-processing tech-
niques and the neural models. The results analysis shows
that the clear-sky index approach is the most success-
ful, giving the most accurate results, particularly for
mid-term predictions and the Echo State Network results
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the neural architecture that best performs in terms of
prediction accuracy.

III. METHODOLOGY
Generally, when approaching applications based on neural
networks, it is common practice to follow a strict and pre-
cise procedure. In [40], the author provides a comprehensive
procedure to identify a dynamical system. This procedure
consists of four steps as detailed in Figure 1.

FIGURE 1. System identification procedure.

The first step, Experiment, corresponds to the problem
analysis. Generally, this step approaches the problem by
identifying the main characteristics and expected goals to
start collecting a reliable data-set. Then, the available data
must be divided into two different data-sets: Training- and
Test-set, respectively. These data-sets are used in the train-
ing and test phases of the neural network. In this work,
we propose a methodology for short- and mid-term GHI
forecasts. Therefore, we exploit 5 years of GHI measurement
sampled every 15 minutes for training and 1 year for test (see
Section III-A). We also applied three different pre-processing
techniques to the input data-set to obtain better performances
in terms of prediction accuracy and computation level. The
first necessary pre-processing technique aims to avoid miss-
ing and inconsistent measurements, i.e. removing errors due
to sensor sampling, obtaining the so-called raw Data-set.
Then, we applied two alternative filters to resulting raw data-
set: i) Tikhonov regularization and ii) clear-sky index con-
version. The Tikhonov regularization technique smooths the
time-series trend avoiding possible spikes. While convert-
ing GHI time-series into clear-sky index values removes all
possible seasonal trends. In both cases, we trained all our
neural networks again, and then we optimized their archi-
tectures. Each of the three resulting data-sets has been split
into Training- and Test-set (i.e. data never used during the
training).

The second step, Model Structure Selection, allows gen-
erally to identify the correct neural network model to use.
This step is crucial because the use of the wrong neu-
ral model can affect the expected results [41]. We design
and compare four state-of-art neural networks in time-series

scenario: i) Nonlinear Autoregressive Neural Network
(NAR), ii) Feed-Forward Neural Network (FFNN), iii) Long
Short-Term Memory Network (LSTM) and iv) Echo State
Network (ESN) (see Section III-B). Moreover, we consider
also both one-step and multiple steps predictions for each
selected model. Making a one-step prediction means taking
GHI samples at times t, t−1, t−2, . . . , t−n to predict GHI
at time t + 1, i.e. in 15min, since that is the distance of two
consecutive samples in the data-set. Instead, for multi-step
prediction, we evaluate two different techniques, iterative and
multi-output, respectively. In the iterative approach, the arti-
ficial neural network has a single output, so it can only predict
one-step ahead. For subsequent steps, the predicted value for
time t+1 is used as one of the inputs for the prediction at time
t+2, and so on. In the multi-output approach the network has
n output nodes, giving the prediction for t+1, t+2, . . . , t+n
in parallel.

Once the network model is identified, the network is first
implemented and then trained. This step is calledModel Esti-
mation. In time series scenario, training a neural network is
needed to provide i) the vector containing desired output data,
ii) the number of regressors to define the prediction, iii) the
vector containing the weights of both input-to-hidden and
hidden-to-output layers and iv) the data structure containing
the parameters associated with the selected training algo-
rithm. Finally, the training phase produces a training error,
which represents the network performance index [42]. To fair
compare their performances in forecasting GHI, we trained
all our neural networks with the very same Training-set, and
we tested them with the very same Test-set.

The Model Validation step validates the trained network.
Generally, validating a network allows evaluating its capabil-
ities. In time-series predictions, the most common validation
method consists of analyzing the residuals (i.e. prediction
errors) by cross-validating the test set. This method allows
performing a set of tests, including also the auto-correlation
function of the residuals and the cross-correlation function
between controls and residuals. This analysis provides the
test error, that is an index considered as a generalization
of the error estimation. This index should not be too high
compared to training error. If this happens, the network could
overfit the training set. Generally, if the network overfits
the training set, the selected model structure contains too
many weights. The structure is then subjected to the Network
optimization and final validation. The process requires to
return in theEstimateModel step to change and redefine some
structural parameters by optimizing the whole architecture.
For this purpose, the unnecessary weight must be pruned.
Consequently, once the new weights are given, the network
architecture must be re-validated. This is an iterative process
as highlighted in Figure 1 (see dotted arrows). Generally,
leading back to model estimation means that the problem
has several local minima and finding the global minimum is
not easy. Leading back to model structure selection means
that the neural structure does not fit for purpose. Indeed,
this is usually oversized. Thus, it is common to apply some
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pruning techniques. Generally, an initial model structure that
is large enough to describe the system is determinate, and it is
then reduced gradually until the optima structure is achieved.
Finally, leading back to the experiment phase implies that
certain regimes of the operating range are not reflected in
the data-set; thus, additional tests are needed to acquire more
information about the missing regimes. The whole process
of model estimation, validation and optimisation is reported
in Section III-B and Section IV where the best neural struc-
ture identified for each model and the prediction results are
described respectively.

Figure 2 summarizes the overall process. The rest of this
section will describe in-depth the proposed methodology.

FIGURE 2. Methodology outline.

A. DATA-SET AND DATA TRANSFORMATION
We exploit a data-set of 6 years GHI measurements, sampled
every 15 minutes from a meteorological station in Turin [21].
This data-set has been subjected to necessary some pre-
processing. First, GHI can never be negative, so any negative
values were set to 0. Then, comparing the raw GHI values in
the data-set with the generated clear-sky values (Ics), some of
themwere higher than the corresponding Ics. This is probably
due to some sampling error by the sensor or, in some cases,
to some short-term cloud enhancement effects [43]. Since
most of these peaks usually occur when the solar zenith angle
is big [44], which is also when the reliability of the sensor is
lower, it was decided to filter these anomalous peaks, so for
each GHI > Ics, GHI was set equal to Ics.

After these basic pre-processing, we divide the data-set
into Training- and a Test-set as follows: 5 years for Training
(2010-2014) and 1 year for Test (2015), with 175 296 and
35 038 samples, respectively. Then, we exploit about the 10%
of the Training-set for validation purpose, in the training and
model validation phase.

Furthermore, we introduced two data-set transformations
to improve prediction performance: i) Tikhonov regulariza-
tion and ii) clear-sky index.

1) TIKHONOV REGULARIZATION
Generally, raw GHI data is characterized by many sudden
peaks and variations. For this reason, we decide to try smooth-
ing the data to make the training of the neural networks easier.
The disadvantage of this approach is that some information
about the variability of the phenomenon will necessarily be

lost. However, the potential benefit is that the networks could
more easily follow the trends in the data, particularly on
medium or long term predictions. This is a trade-off, meaning
that the choice of this approach might depend on the required
prediction horizon and the application for which the predic-
tions are needed. Then to smooth the original data, we exploit
the Tikhonov regularization [45]. This technique is used for
time-series analysis and predictions in other domains, like
glucose level prediction [46].

The filtered signal is given by:

ŷ = Udω (1)

In Equation 1, ω is the N -dimensional first derivative of
the input signal, while Ud is the integral operator matrix
(Equation 2).

Ud =



1 0 0 . . . 0 0 0
1 1 0 . . . 0 0 0
1 1 1 . . . 0 0 0
...

...
...

...
...

...
...

1 1 1 . . . 1 0 0
1 1 1 . . . 1 1 0
1 1 1 . . . 1 1 1


(2)

To calculate ω, the function f (ω) (Equation 3) needs to be
minimized.

f (ω) = ‖y− Udω‖2 + λ2d‖Ldω‖
2 (3)

In Equation 3 Ld is the second derivative operator matrix,
while λd is the regularization parameter, set to 3000, in accor-
dance to [46]. An example of the results of the filtering can be
seen in Figure 3. This figure shows twelve consecutive days
in the year on which the three main weather conditions occur:
i) sunny day, ii) cloudy day, and iii) rainy day.

FIGURE 3. Original data vs. smoothed data.

Filtered data will be used for training the networks. Since
the filter eliminates some peaks and spikes in the GHI data,
giving a smoother signal, it should be easier for the networks
to approximate it, potentially increasing the generalization
capability of the model. Once the networks are trained,
the original unfiltered GHI data will be used for testing,
as shown in Figure 2.
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2) CLEAR-SKY INDEX
The solar irradiance time-series exhibits a seasonality com-
ponent and is therefore non-stationary. Some authors assert
that neural network can work well even with non-stationary
time-series, given enough training data [27]. Others prefer to
transform the solar irradiance into a stationary series [29],
[33]. For a stationary series, statistical properties like mean
and variance are constant in time. This should make it eas-
ier to predict than a non-stationary series. For this purpose,
the clear-sky index (Kc) is used in literature. Kc is the ratio
between the expected irradiance under clear sky conditions
and the measured one. For this work, after evaluating the per-
formance of the network with the original GHI data, we chose
to repeat the experiments using the clear-sky index, defined
in Equation 4, where Im is the measured irradiance, and Ics is
the calculated clear-sky irradiance.

Kc =
Im
Ics

(4)

The Kc series was then used to train the networks. Since
Ics ≥ Im, then 0 ≤ Kc ≤ 1, so it is not necessary to scale
the input data. To make predictions, Kc values were used as
inputs, then the predicted values (i.e. the outputs of the net-
work were multiplied by the corresponding clear-sky values
in order to obtain the GHI predictions) that could then be
compared with the expected values.

B. PREDICTION MODEL BUILDING
Between the solutions we propose and compare, one of the
most commonly used is the Feed-Forward Neural Network
(FFNN). Contextually, we propose a Nonlinear Autoregres-
sive Neural Network (NAR) architecture also based on the
Multilayer Perceptron like the FFNN. In addition, we pro-
pose a Long Short-TermMemory Network (LSTM) architec-
ture, often used for time-series forecasting and successfully
applied to GHI prediction in recent studies [34], [35]. Finally,
we propose an architecture based on the Echo State Network
(ESN), which has shown promising results in time-series
forecasting [37]. In the following subsections, we will present
the neural architectures considered in this study. For each of
them, we will describe the properties and strengths, giving
particular emphasis to the hyperparameters taken into con-
sideration and properly investigated. In Section IV, instead,
we will present and detail all the network configuration
w.r.t. the exploited data-set. This is because the optimization
of the architecture strictly depends on the data-set under
consideration.

1) NONLINEAR AUTOREGRESSIVE NEURAL NETWORK
The Nonlinear Autoregressive Neural Network is an ANN
that extends a traditional linear autoregressive model. It is
particularly suitable for non-linear time-series that report
unexpected spikes and fleeting, transient periods [47]. The
general structure is shown in Figure 4. Thus the model can be
described as:

yt+1 = F(yt , yt−1, yt−2, . . . , yt−n) (5)

where F is an unknown non-linear function and at time t the
network is fed with the n regressors of the signal y.
Progressively, we determined the hyperparameters of the

network, in particular the number of both regressors and units
in the hidden layer. Since there is no rule to determine the
best number of regressors mathematically, the choice was
made by trial-and-error, going from 2 up to 20 regressors.
Regarding the units in the hidden layer, we overestimate the
initial number selecting 30 hidden units. This because, in this
methodology, we can adopt pruning functionality that allows
to eliminate superfluous weights and determine the best net-
work configuration [21]. Once the parameters were selected,
the network training was performed using the Levenberg-
Marquardt algorithm [48]. Consequently, we have pruned
the obtained network with the Optimal Brain Surgeon algo-
rithm [49], and we trained the network again before making
the inference for the predictions.

FIGURE 4. Nonlinear autoregressive neural network.

2) FEED-FORWARD NEURAL NETWORK
The third neural network is based on Feed-forward Neural
Network (FFNN). Also based on the Multilayer Perceptron,
it is characterized by a dense fully connected layer, where
information only moves from one side to the other.

In FFNN models, generally, the output of each node is cal-
culated using an activation function applied to the weighted
sum of the inputs. The activation function is usually a nonlin-
ear one (e.g. a common choice being the hyperbolic tangent
(tanh)). Considering a MLP with n inputs, one hidden layer
with m units and one output, the output of the network can be
modelled as follows:

ŷ = F(
m∑
i=1

Wif (
n∑
j=1

wijuj + wi0)+W0) (6)

In equation 6, F and f are the activation functions for
the output and hidden layer respectively, Wi and wij are the
weights between hidden and output layers and between input
and output layers, W0 and wi0 are the biases, and uj are the
inputs.

In a preliminary phase, we considered different architec-
tures with different hidden layers. We found that the best
compromise between prediction and computation accuracy
is an architecture with two hidden layers. Once the model
has been chosen, we determined the hyperparameters, i.e.
number of regressors and activation function. For the hid-
den layers, we have opted for the hyperbolic tangent (tanh)
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activation function, since it is a common choice and gives
good results [50]. For the output layer, instead, we have
chosen a linear activation function. As for the number of
inputs and units in the hidden layer, there is no established
mathematical technique to choose the best parameters, also
in this case, we opted for a trial-and-error approach. First,
we arbitrarily decided to select the number of units as two
times plus one the number of inputs for networks with a single
hidden layer. Then, we investigated the number of regressors
from 2 to 20, evaluating the performance for each case.
The optimization algorithm used for training is the Adaptive
Moment Estimation (Adam optimizer) [51]. This algorithm
is closely related to two other optimization techniques, Root
Mean Square Propagation (RMSProp) and Adaptive Gradi-
ent Algorithm (AdaGrad), combining their features together.
To avoid the phenomenon of overfitting, we have used the
early-stopping technique [52]. In practice, during the training
phase, training is stopped when there is no improvement
in the validation set for a few steps. The additional benefit
of early-stopping is the significant reduction of the training
times.

3) LONG SHORT-TERM MEMORY NEURAL NETWORK
The Long Short-TermMemory Neural Network (LSTM) rep-
resents an evolution of a canonical recurrent neural network
developed to solve the ‘‘vanishing gradient’’ problem [53].
This is a problem that arises during the training of such neu-
ral networks with backpropagation methods. These architec-
tures are particularly suitable in the prediction of time-series
because, thanks to their structure, they are able to preserve
the error that can be backpropagated through time and layers.
By maintaining a more constant error, they allow recurrent
nets to continue to learn over many time steps. Since the
LSTM was proposed, different variations of the architecture
were developed [54]. The typical LSTM unit is composed of
a cell, an input gate, an output gate, and a forget gate. The
LSTM unit structure is shown in Figure 5.

FIGURE 5. Long short-term memory unit.

The cell state, represented by the top horizontal line
in Figure 5, contains information that is passed on to the next
cell and can be modified by the gates. First, the forget gate
decides what information is kept or thrown away from the
cell state. The sigmoid activation function outputs a value

FIGURE 6. Echo state network.

between 0 and 1, where 0 means to forget the previous state
completely and 1 to keep it as is. Then, new information can
be stored in the cell state. This is done by the input gate, which
is composed of a sigmoid and a tanh layer. Finally, the output
of the LSTM unit is determined by the output gate based on
the cell state.

Mathematically, LSTM cell computes its short-term state
ht , its long-term state ct and its output yt at each time step t
basing the following set of equations expressed in vectorial:

it = σ (W xixt +W hiht−1 + bi)

ft = σ (W xf xt +W hf ht−1 + bf )

ot = σ (W xoxt +W hoht−1 + bo)

gt = tanh(W xgxt +W hght−1 + bg)

ct = ft ⊗ ct−1 + it ⊗ gt
yt = ht = ot ⊗ tanh(ct ) (7)

whereW xi,W xf ,W xo andW xg are the weight matrices of the
connections to the input vector xt , W hi, W hf , W ho and W hg

are the weight matrices of the connections to the previous
short-term state vector ht−1 and bi, bf , bo and bg are the bias
terms.

For our implementation, we used an LSTM layer for the
hidden part of the networks, while the output layers are simple
dense layer, as for the FFNN. As already discussed for the
FFNN in Section III-B2, the same trial-and-error approach
was adopted to determine the number of regressors, hidden
units and hidden layers. The Adam optimizer was again used
for training, and the same early-stopping technique was also
used to avoid overfitting.

4) ECHO STATE NETWORK
The Echo State Network (ESN) is a recurrent neural network
composed by an input layer, a recurrent hidden layer called
‘‘reservoir’’ and an output layer (see Figure 6). ESNs are
an implementation of so-called ‘‘reservoir computing’’ [55].
The main idea is to have a fixed, random, sparsely connected
recurrent layer, and a readout layer, connecting the reservoir
to the output. In the simplest architecture, these output con-
nections are the only trainable ones. It is also possible to
add direct trainable connections from input to output, bypass-
ing the reservoir, and feedback connections from output to
reservoir [56].
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The reservoir must satisfy the ‘‘echo state property’’ (ESP),
which guarantees that the effects of the initial conditions
vanish as time passes. It has been empirically observed that
the ESP usually holdswhen the spectral radius of the reservoir
weight matrix is lower than one [56]. However, this condition
is neither sufficient nor necessary. Stricter conditions have
been determined by Yildiz et al. [57]. Jaeger [56] gives the
following definitions for the ESN reservoir state (Equation 8)
and output (Equation 9).

xt+1 = f (Wxt +Winut+1 +Wfbyt ) (8)

yt = g(Woutzt ) (9)

where xt is the reservoir state at time t , ut is the input vector,
yt is the output of the network, zt = [xt ;ut ] is the system
state, and W, Win, Wfb, and Wout are the reservoir weight
matrix, the input weight matrix, the optional feedback matrix,
and the output matrix, respectively.

One interesting feature of ESNs is that they are straight-
forward to train, unlike other recurrent neural networks.
In ESNs, the recurrent layer is fixed, and this greatly sim-
plifies the training process. Some hyperparameters need to
be determined. The number of inputs (regressors) was deter-
mined by a trial-and-error approach. For the size of the
reservoir, Lukoševičius [58] suggests that a ‘‘big’’ reservoir is
usually better, given the sparsity of the connections between
its units. Clearly, it is not possible to implement an arbitrarily
big reservoir, since memory consumption needs to be taken
into account. Keeping this in mind, the first choice was
to use 500 units. Starting from that upper limit, reservoirs
with 50, 100, and 200 units were also tested, to verify the
assumption that ‘‘bigger is better’’. The reservoir density was
chosen again by trial-and-error, and 0.1 was selected for its
value. Another important parameter is the spectral radius.
As already discussed, a value lower than 1 should guarantee
the echo state property. It is usually a good choice to choose
a value close to 1, as suggested in [58], so 0.9 was selected.

C. MULTI-STEP PREDICTIONS
Generally, the inference of neural networks to obtain the
prediction of time-series can be done with three different
modes [59]:
• iterative prediction;
• multi-output neural network;
• dedicated network for each forecast horizon.

The iterative method is often used, particularly for short-term
horizons (i.e. few next time-steps). It is based on a network
model trained for single-step predictions (i.e. with only one
output), where for each step after the first one the prediction
for the previous step is used as input. This has the disadvan-
tage that the prediction errors tend to accumulate. Another
option is to use a single network with n outputs, where n is the
number of steps to predict. Unlike the previous method, it is
necessary to determine the number of steps in the future that
need to be predicted when the model is built. However, it is
expected that, for longer forecast horizons, this method will

give better performance than the iterativemethod. Finally, it is
possible to use a different network for each forecast horizon.
However, the study in [59] shows that this methodology has
better results for short-term horizon (e.g. next 2 or 3 time-
steps), but is outperformed by the multi-output method for
longer horizons.

In this work, we evaluate the first twomethods proving that
the multi-output approach outperforms the iterative one (see
Section IV-B), and it was therefore chosen for all the follow-
ing experiments. This does not apply to the NAR network,
however, since the realized model already contains a function
to perform multi-step predictions, which was therefore used.

IV. RESULTS
In this Section, we present our experimental results. First,
we briefly describe the statistical indicators used to anal-
yse and compare the predictions. Then, we prove that by
using a multi-output artificial neural network for predictions
with many steps ahead, we can obtain better results than
the iterative method, justifying the choice of the former
approach. Finally, we describe the prediction performances
obtained with raw GHI data, Tikhonov regularisation and
clear-sky index.

The proposed ANNs are implemented in Python by using
the Keras library with Tensorflow backend. To train and
validate them, we run our simulations in a server equipped
with a CPU 2× Intel Xeon E5-2680 v3 2.50 GHz and 128 Gb
of RAM.

A. STATISTICAL INDICATORS
State of the art has a large number of statistical indicators
to evaluate the performances of neural networks in terms of
predictions [60]. In the study of time-series, the three main
indexes adopted are:
• MAD - theMean Absolute Difference between predicted
and observed values;

• RMSD - the Root Mean Square Deviation defined as
the standard deviation of the difference between the
predicted and the observed values;

• R2 - the Coefficient of Determination, defined as square
of the correlation (R) between predicted and observed
values.

Their mathematical expressions are shown in Equa-
tions 10, 11 and 12 respectively, where Im is the measured
value of irradiance, Ip is the predicted value, and the subscript
avg indicates the average value.

MAD =
100
Im,avg

N∑
i=1
|Ip,i − Im,i|

N
(10)

RMSD =
100
Im,avg

√√√√√ N∑
i=1

(Ip,i − Im,i)2

N
(11)

R2 = 1−
(Im − Ip) · (Im − Ip)

(Im − Im,avg) · (Im − Im,avg)
(12)
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TABLE 2. MAD (%), R2, and RMSD (%) of NAR predictions.

MAD and RMSD are expressed in percentage and not in
absolute units (i.e. Wm−2 for irradiance). For MAD and
RMSD, a lower value indicates a smaller error and there-
fore, better performance. R2, on the other hand, shows the
correlation between real and predicted values, where a value
of 1 means complete correlation, while lower values indicate
a lower correlation factor.

Therefore, to evaluate the performances of each single
neural network model, first we need to compare the final GHI
forecast with the corresponding real trend and express the
error rate with statistical performance indicators described
above. Then, to perform a correct fair comparison between
the different neural network models, we compare their per-
formance indicators. To do so, all the models must be trained
and tested i) with the very same original data-set to which
ii) we applied the very same pre-processing technique and
iii) after their optimization phases succeeded.

B. ITERATIVE VS. MULTI-OUTPUT NETWORKS
As introduced in section III-C, we have applied two different
methodologies for multi-step predictions, iterative and multi-
output. The former uses a single-step model and iteratively
generates multiple predictions; the latter gives the desired n
predictions exploiting a single step of calculation (i.e. n steps
in the future). Figure 7 shows the comparison for the FFNN
exploiting raw GHI data with time horizon from 15min
to 2 h.

FIGURE 7. Comparison of RMSD for iterative and multi-output
predictions using a feed-forward neural network (raw GHI).

The performance is similar for the first 30 minutes, but
the multi-output network starts improving for mid-term time

horizons. Increasing the time horizon will result in the accu-
mulation of the error, further widening the gap between the
two approaches. Figure 8 depicts the same experiment for the
LSTM network still exploiting raw GHI. Again, the experi-
mental results report similar behaviour with the LSTM net-
work for the first 30 min. Instead, we do not apply our
iterative approach to NAR and ESN because their models
already embed a feature to perform multi-step predictions.
These results justify our choice of using networks with mul-
tiple outputs to predict GHI many steps ahead, in accordance
with [59]. Consequently, all the results illustrated in the fol-
lowing sections are based on the multi-output approach.

FIGURE 8. Comparison of RMSD for iterative and multi-output
predictions using a long short-term memory (raw GHI).

C. GHI PREDICTION EXPLOITING RAW GHI DATA
In this section, we present the performance of our neural
networks optimised to use the raw GHI data-set for both
training and test (see Section III-A).

Starting from NAR, we used as reference the architec-
ture deeply described in [21]. Consequently, we designed
the same network (with 7 regressors and 30 neurons, before
pruning), exploiting the very same data-set (for both training
and test) to guarantee a fair comparison. Then, as described
in Section III-B1, different numbers of regressors were eval-
uated, trying to improve the performance and find the best
network. Table 2 reports the comparison of raw GHI pre-
dictions between the reference model with 7 regressors [21]
(hereinafter NAR-7) and our best model with 12 regressors
(hereinafter NAR-12) in terms of MAD, R2 and RMSD.
The results report that NAR-12 performs slightly better

than NAR-7 for all three statistical indicators, particularly
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FIGURE 9. Trend evolution for predictions with raw GHI data.

for longer time horizons. Up to 45min, the performance
of predictions is quite similar. The improvements can be
noted from 60min onward. At 120min, NAR-12 performs
better than NAR-7 with improvements of about 6%, 0.05 and
8% for MAD, R2 and RMSD, respectively. Consequently,
we chose this new model to be compared with the other
networks.

For FFNN, LSTM and ESN, we have tested different con-
figurations, as described in Section III, andwe compared their
RMSD values to decide which parameters give best results.
In the following, we report the configuration of each neural
network:

FIGURE 10. Trend evolution for predictions with ‘‘hybrid’’ approach based
on Tikhonov regularisation.

• FFNN: 19 regressors and 2 hidden layers; the first layer
with 200 neurons and the second with 100 neurons.

• LSTM: 16 regressors with 2 hidden layers; the first layer
with 10 neurons and the second with 5 neurons.

• ESN: 3 regressors with a reservoir of 500 neurons.

Looking at these parameters, it can be noted that both FFNN
and LSTM work better with a greater number of regressors,
while the ESN has the best performance with just 3 regres-
sors. As for the size of the networks, the ESNworks well with
a big reservoir, as recognised in literature [58]. The FFNN
also has better results using a big amount of units. Whilst,
the LSTM works better with a smaller architecture.
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TABLE 3. MAD (%), R2, and RMSD (%) for predictions with raw GHI data.

TABLE 4. MAD (%), R2, and RMSD (%) for predictions with the ‘‘hybrid’’ approach based on Tikhonov regularisation.

Our first expectation was that the multi-output architecture
used for multi-step prediction improves the results of the
NAR, particularly for longer time horizons. We also expected
that the LSTM would perform better than the FFNN. In fact,
its recurrent structure should be more suitable to model the
temporal behaviour of GHI time-series. Moreover, LSTMhas
shown very good performance in many tasks, including time-
series forecasts [54].

Figures 9(a) to 9(c) show plots of MAD, R2 and RMSD
over the time for all the proposed neural network architec-
tures. These plots show that the results are very similar for
short-term predictions (i.e. up to 60min). Then, the four
trends start diverging each other for all three indicators.
Performances of NAR-12 (see the green dotted line) rapidly
decrease compared to the other networks. Contrary to our
expectations, LSTM does not clearly outperform the FFNN
(see red and yellow dotted-lines, respectively). In fact, both
architectures have very similar trends with a few negligible
differences. These plots strongly highlight the very good
results of the ESN for mid-term forecasts, which clearly
outperforms the other neural networks. Table 3 details the
values of MAD, R2 and RMSD for the four networks up
to 120min ahead predictions. In our view, this is a good
time horizon in which the forecast error is still acceptable.

As reported in Table 3, at 120min ESN outperforms the
other neural networks with MAD = 29.03%, R2 = 0.88
and RMSD = 55.22%, clearly improving the performance
of about 12%, 0.07 and 14% (for MAD, R2, and RMSD,
respectively) w.r.t. NAR-12.

D. GHI PREDICTION EXPLOITING TIKHONOV
REGULARISATION
As a second analysis, we focused on predictions based on
the Tikhonov regularisation applied to the raw GHI data-
set, as described in Section III-A1. As discussed in [46],
Tikhonov regularisation is not applicable to real-time data.
Thus, we exploited the ‘‘hybrid’’ approach presented in [46]
in which the Tikhonov regularisation is applied only on the
training-set used for training our ANNs. Instead the test-set,
used to assess the performance of our ANNs, consists of raw
GHI data.

Since the data-set is different w.r.t. our previous NAR-7,
we applied the very same methodology described in [21]
to design the best NAR suitable for this training-set
pre-processed with Tikhonov regularisation. The result-
ing architecture (hereinafter NAR-10) is characterised by
10 regressors and 21 neurons, before pruning. To design and
train the best network architecture for FFNN, LSTM and
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TABLE 5. MAD (%), R2, and RMSD (%) for predictions with Tikhonov regularisation applied also to the test-set.

TABLE 6. MAD (%), R2, and RMSD (%) for Kc prediction.

ESN, we applied the same trial-and-error approach described
in Section IV-C. In the following, we report the configuration
of each neural network:
• FFNN: 10 regressors and 2 hidden layers; the first layer
with 50 neurons and the second with 25 neurons.

• LSTM: 16 regressors with 2 hidden layers; the first layer
with 10 neurons and the second with 5 neurons.

• ESN: 3 regressors with a reservoir of 100 neurons.
Table 4 reports the values of MAD, R2 and RMSD for

the four ANN up to 120min ahead predictions. Comparing
these results with those in Table 3 (i.e. prediction perfor-
mance exploiting raw GHI data), we can notice that the
performance of all the ANN gets worse when we exploit
this ‘‘hybrid’’ approach. In general, the error on predic-
tions is too high and it is not acceptable. This is also con-
firmed by the trends reported in Figures 10(a) to 10(c). Thus,
this ‘‘hybrid’’ approach is not suitable for this application
scenario.

If we apply the Tikhonov regularisation also on the test-
set, performances significantly improve in average of about
10%, 1 and 25% for MAD, R2 and RMSD, respectively
(see Table 5 and Figures 11(a), 11(b) and 11(c)). However,
the Tikhonov regularisation should be rethought to work in
real-time.

E. CLEAR-SKY INDEX PREDICTION
As a third analysis, we focus on predictions exploiting the
clear-sky index (Kc). The same network configurations for the
NAR, FFNN, LSTM and ESN used for the GHI prediction
exploiting Tikhonov regularisation (see Section IV-D) were
also applied to this new data-set.

The transformation of GHI into Kc removes the seasonal
trends due to the changing position of the sun during the year,
and the clear-sky model already takes into account the atmo-
sphere turbidity. So the networks only have to predict the
stochastic component due to clouds. The expectation is that
the results will be better than those described in the previous
sections because these filtered data should be easier to model
for the neural networks. The analysis of the obtained results
confirms this assumption. As shown in Figures 12(a) to 12(c),
the gap between ESN and the other three neural networks
is reduced in terms of MAD, R2, and RMSD. The ESN
has only a slight improvement but still is more perform-
ing than the others. It appears that the ESN was already
able to extract the seasonal trends from the raw GHI data
better than the other networks. When only the stochastic
component needs to be predicted, and the rest is handled
by the clear-sky model, the differences among the networks
greatly decreases. As reported in Table 6, at 120min ESN is
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FIGURE 11. Trend evolution for predictions with Tikhonov regularisation
applied also to the test-set.

still outperforming the other neural networks with MAD =
25.47%, R2 = 0.88 and RMSD = 55.02%. Comparing
the ESN with the NAR-10, which gives worst performances
among the four neural networks, there is an improvement
of about 0.6%, 0.03 and 5.4% (for MAD, R2, and RMSD,
respectively).

F. FINAL REMARKS ON PREDICTION RESULTS
Considering the results discussed in the previous sections and
reported in Figure 13, the main findings can be summarised
as follows:

FIGURE 12. Trend evolution for predictions with Kc .

• designing ANNs following the multi-output approach to
forecasting GHI provides better performances than the
iterative approach;

• the Echo State Network is the ANN architecture that
better performs among those tested;

• using the clear-sky index the prediction accuracy signif-
icantly improves and allows to use of smaller networks
with fewer regressors;

• best performances are achieved when Tikhonov reg-
ularisation is applied. However, to be suitable for
GHI forecasts, it should be rethought to work in
real-time;

• 120min is the maximum time horizon reached by our
ANNs in which the forecast error is still acceptable.
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FIGURE 13. Performance comparison of all the presented ANN: (a) MAD,
(b) R2 and (c) RMSD.

V. CONCLUSION
The objective of this manuscript is to propose a methodology
for the short- (i.e. from 15 up to 60 min.) and mid-term (i.e.
from 60 to 120 min.) GHI forecast based on four different
artificial neural networks due to the highly non-linear nature
of the physical phenomenon of radiation:

• Nonlinear Autoregressive Neural Network;
• Feed-Forward Neural Network;
• Long Short-Term Memory Network;
• Echo State Network.

In detail, we specifically designed, optimized and com-
pared these four ANNs architectures to understand which was
the best to use in this research context.

Consequently, to fully optimize the proposedmethodology,
we investigated these neural architectures by applying three
different approaches based mainly on the use of filtering
techniques in the pre-processing phase of the dataset. Specif-
ically, in the first scenario the raw GHI was directly used
to train the networks and to make predictions. Secondly,
the training set of the GHI series was filtered with Tikhonov
regularisation before performing the training procedure and
lastly, the GHI time-series was transformed into the clear-sky
index series, which was then used to train the networks and
make predictions. Lastly, we also compared which of the iter-
ative and multi-output prediction architectural models were
performing best.

The obtained experimental results suggest a few interesting
considerations. First of all, using a multi-output approach
significantly improves the accuracy of multi-step predic-
tions when more than 60min in the future is required.
In our case, this means that for forecast horizons of 45 or
60min and longer this approach is to be preferred over
a single-output model used iteratively. Considering that a

single-output model is simpler, it may be better to use the
iterative approach when a long-term prediction is not needed
for the application.

From a neural network point of view, the experimental
results demonstrate that the ESN gives very good results com-
pared to other models, especially when directly predicting
GHI. Moreover, compared to the other models, it needs a
smaller number of regressors to give very accurate results.
The adoption of this model in the context of the GHI fore-
cast has been insufficiently investigated. Given the lack of
research in the literature, we are firmly convinced that these
findings are genuinely new results worthy of further studies.

The proposed model that uses Tikhonov regularisation to
filter the training data and uses the unfiltered GHI for the test-
ing part, which is used successfully in other fields involving
time-series forecasting, like blood glucose predictions, does
not appear suitable for GHI forecasting. Therefore, filtered
data was used in input for the testing part, too. This is not ideal
since this method would require, when the system is used for
actual predictions ‘‘in the field’’, to filter the data every time a
new forecast is requested, which might limit the applicability
of the method. Moreover, the Tikhonov filter was applied
to the whole testing set, divided into long segments, but in
a real application, using real-time data, this is not possible,
because new data would have to be filtered when it becomes
available (e.g. in our scenarios every 15min). The algorithm
would have to be modified accordingly, and the way it might
affect the results needs to be studied more in detail. How-
ever, with this approach (i.e. exploiting filtered data in the
entire process, from training to inference) the results were
more interesting, showing that potentially, filtered data allows
maintaining a better accuracy for short- and mid-term fore-
cast.

Finally, from a filtering point of view, the results show that
the clear-sky index, Kc, greatly improves prediction accuracy
when predicting many steps ahead, particularly for NAR,
FFNN and LSTM networks. As already stated, the improve-
ment for ESN is small. However, usingKc allowed the ESN to
give better results with a smaller reservoir, which is important
in terms of memory usage.
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