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Resource Inference for Sustainable and Responsive
Task Offloading in Challenged Edge Networks
Alessio Sacco, Student Member, IEEE, Flavio Esposito, Member, IEEE, and Guido Marchetto, Senior

Member, IEEE,

Abstract—In many edge computing applications, Unmanned
Aerial Vehicles (UAVs) are required to be coordinated to perform
several tasks. Each task is usually modeled as a process that a
UAV runs, and could include hovering an area to find survivors
after a natural disaster or sense and preprocess an image
in cooperation with the edge cloud. Optimally and rapidly
(re)assigning tasks to such IoT agents as the network conditions
fluctuate and the battery of these agents quickly drains is a
challenging problem. Existing solutions designed to proactively
offload tasks are either energy unaware or they require solving
computationally intensive task, and hence are less portable on
constrained IoT devices. In this paper, we propose RITMO, a dis-
tributed and adaptive task offloading algorithm that aims to solve
these challenges. RITMO exploits a simple yet effective regressor
to dynamically predict the length of future UAV task queues. Such
prediction is then used to anticipate the node overloading and
avoid agents that are likely to exhaust their battery or their com-
putational resources. Our results demonstrate how RITMO helps
reduce the overall latency perceived by the application and the
energy consumed by the nodes, outperforming recent solutions.

Index Terms—edge computing, task offloading, UAV, regression
prediction

I. INTRODUCTION

Distributed applications running on Internet of Things (IoT)
devices that require to perform a mission independently
are opening many applications, sometimes improving lives,
sometimes even saving them [1]–[3]. Typical examples are
Unmanned Aerial Vehicles (UAV) networks, e.g., drones or
fixed wings planes, equipped with AR/VR interfaces [4]
cameras, sensors, or civilian tablets and smartphones [5], [6].
Such systems have been employed, for instance, for precision
agriculture [7], in disaster response and environmental mon-
itoring [8], [9], or to provide connectivity to ground stations
[10]. Autonomous and semi-autonomous drones have also
been helping humans and other machines accomplish many
tasks, spanning from industrial inspection to survey operations,
from rescue management systems to military or first responder
support. In these applications, UAV networks can be used to
collect a massive quantity of data that needs to be offloaded
at the network edge for heavy audio/video processing, where
resources to execute Machine Learning (ML) algorithms are
readily available.

The challenge of keeping an acceptable quality of service
with stringent delay constraints for these network grows with
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the drone-based and IoT-based applications, especially in chal-
lenged networked scenarios [1], [11], [12]. In these circum-
stances, edge network managers and application programmers
need to overcome a few challenges, e.g., unstable network
conditions and high peaks of loss rate. To react against the
dynamic nature of connectivity and with UAV hardware and
battery failures, the research community has proposed several
techniques aimed at changing how tasks are re-assigned to
agents at runtime. These solutions are centralized [13], [14],
and distributed [15], [16], and share the use case of multiple
agents that coordinate to accomplishing a mission, i.e., a set of
logically ordered tasks, solving the problem differently. Some
of them focus on the resilient mission planning problem [16], a
problem formulation similar to a task offloading among a fleet
of UAV agents; others focus on the awareness of agents’ health
to replan [15]; others yet enable agents to autonomously tackle
complex, large-scale missions, in the presence of actuator
failures [14]. While these solutions have a sound design and
good performance, none of them is able to look at the past
and learn from prior errors, in order to anticipate job demands
and network fluctuations by orchestrating the task assignment
through a resource usage prediction.

In this paper, we propose RITMO (Resource Inference for
Task MigratiOn), a solution that proactively redistributes job
loads among multiple processes running within distributed
agents (nodes). Differently from our preliminary version pre-
sented in [17], the migration process aims to jointly minimize
the energy use and the task completion time. In particular,
each agent predicts the future queue length and accordingly
migrates jobs (i.e., drone tasks) to agents, guaranteeing per-
formance. To determine the agent’s future load, our system
uses a predictor based on time-series forecasting, specifically
the Autoregressive Integrated Moving Average (ARIMA) al-
gorithm [18]. Unlike other machine learning-based methods,
the features exploited by ARIMA are restricted to just one
value in time-series forecasting. We have experimented that
exploiting just one value in time-series forecasting fits well
with our constrained environments, such as the drone swarms
cooperating to finalize a mission. In fact, compared to other
regressors, this technique does not require a large amount
of memory to store past values. Such information can then
be used to adapt the agent’s load to a policy profile that
achieves our goal of minimizing task completion time and
energy consumption. Our results show how RITMO provides
better performance with respect to the benchmark algorithms,
even for many nodes and with high failure rates.

The rest of the paper is structured as follows. In Sec-
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tion II, we present the most related solutions to RITMO,
and in Section III, we describe some applications that can
benefit from the usage of RITMO. Section IV introduces the
RITMO’s model and formalizes the problem definition. The
algorithm utilized to solve such a problem is then described
in Section V, while Section VI outlines the main components
of our solution. Then, Section VII shows the performance of
RITMO and the advantages over similar solutions. Finally,
Section VIII concludes our paper.

II. RELATED WORK

Providing a persistent and adaptive service resilient to
failure is a crucial problem for any IoT network in general
and robotic or drone networks in particular. As such, it is not
surprising that there are several proposed solutions to tackle
this problem. In this section, we cite a few representative
(centralized and distributed) solutions that clarify our contri-
butions.

Recently, decentralized approaches have been proposed to
improve the adaptability and the persistence of distributed
IoT systems [13]–[15], [19]–[21]. For example, the authors
in [20] address the problem of task allocation and scheduling.
The problem of task allocation in robotics is similar to our
considered task offloading, except that the host running the
task is not limited to UAVs, but can also be a server located
on an edge cloud.

Moreover, similarly to [20], our solution can distribute
workload efficiently among agents, but our predictive system
exploits a time series prediction approach to optimize the
system load. Nevertheless, our solution can manage both
centralized and distributed management architectures, given
that it is agnostic to the agent architecture. Inspired by [22],
we utilize a network queuing model to estimate tasks that are
waiting for the execution aboard the agent; however, we differ
for both the considered problem and the prediction model. We
study the problem of reassigning tasks among IoT devices and
edge cloud processes that cooperate for a mission. We model
the failure and the overloading of agents with a regressor
algorithm [18].
Mission planning for IoT systems. For effective mission
planning solutions, the literature reports two main methodolo-
gies: reactive and proactive [23]. In reactive planning, tasks
are reassigned upon the occurrence of particular events, such
as critical outages or measurement indexes triggering alerts.
Unfortunately, since these approaches do not anticipate fail-
ures, they can potentially lead to catastrophic mission results.
For example, it may cause too frequent changes in high-
dynamic scenarios, thus reducing performances and increasing
the computational burden.

Conversely, proactive planning, often operating at fixed
time instants, evaluates the impact of disturbances from the
environment on the mission’s expected outcome. By migrating
new assignments to uncontested agents, these methods can
mitigate possible performance degradation before its occur-
rence. Thus, for very uncertain and dynamic environments,
proactive approaches are the preferred choice [23]–[25] since
they allow to trade between performances and too frequent
reassignments.

Prediction for UAV systems. One example of solutions that
proactively distribute tasks among the agents is APRON [26],
which proposed using Jackson’s network model to estimate the
number of functions in the system for a replanning algorithm.
Similarly, [25] presents a solution that monitors the execution
of tasks in real-time and reassigns them to maintain a desired
performance metric for the whole network. Our approach
employs a predictive control approach to limit offloading
decisions and find (on-line) the best task assignment. We share
with these solutions the idea of proactively migrating tasks,
but we differ in the model, the algorithm, and the architecture
presented to solve the replanning problem.

A similar solution is presented in [15], proposing HAP. This
concurrent learning adaptive control architecture establishes
feedback between the high-level planning based on Markov
Decision Processes (MDP) and the vehicle-level adaptive
control algorithm. Using this feedback, HAP can anticipate the
failures and proactively reassess vehicle capabilities after any
failures for an efficient replanning schema that accounts for
changing capabilities. Our load prediction model is different.
While HAP estimates vehicle capabilities using the adaptive
controller’s vehicle health model, RITMO explicitly predicts
future loads on an agent to adapt the system’s overall load.

III. MOTIVATING APPLICATIONS AND USE CASES

Despite becoming popular with military and emergency
response, UAVs have been widely adopted also for civilian
applications. The applicability ranges from agriculture and sur-
veying to video making and real estate. This section describes
two examples of motivating applications where our solution
is incredibly effective, both of which share the underlying
challenged edge networks.

A. Disaster Response

An efficient architecture for edge offloading is crucial for
critical applications, such as real-time video conferencing
with the incident commander to recognize faces of disaster
victims [27], or the detection of children in an attempt to
reunite them with their families [28]. Similarly, virtual beacons
can be principally used to track their location.

Encouraged by the decrease of costs related to UAV tech-
nology, also the humanitarian community started piloting the
use of UAV systems in humanitarian crises several years
ago [29]. The setup for disaster response, e.g., after a hurricane
or a severe flood, can be helped by utilizing UAVs, such
as disaster mapping and information gathering, community
capacity building, logistics, and even transportation of goods.
From an operation perspective, the main goal is to image
and map the affected areas in the shortest time possible from
the mobilization request to take the immediate response and
provide assistance to civilians.

Two phases occur simultaneously: UAV flight operations
and data processing. The former includes an initial config-
uration on the UAV and the subsequent taking-off, flight,
and landing. During the flight, the main goal is to properly
acquire the required data and send them to a processing unit
nearby. During the data processing phase, the data is mined



3

T5

T5

Fig. 1: Overview of the system: agents, i.e., UAVs, are mod-
eled as queues containing tasks that need to be run. The system
migrates tasks from (currently or likely to be) overloaded or
failing agents to agents with increased availability.

by the application. These operations typically occur after pre-
processing tasks, e.g., data resampling or image selection
(to limit the processing only to the minimum set of images
required to cover the affected areas).

To this end, edge computing can propel several applications
by enabling data processing in real-time. Sending the imagery
depicting the situation to the close edge cloud has been studied
in the literature [1], [26], [30], providing good results. A
solution like RITMO can be of tremendous help to these
applications.

B. IoT for Precision Agriculture

Plant phenotyping refers to quantitative estimation of the
plant characteristics, including physiological, ontogenetical,
morphological, and biochemical properties, e.g., shape, canopy
structure, leaf size, and color [7], [31], [32]. High-throughput
phenotyping is a rapidly growing area of research that con-
siders hundreds of genotypes to facilitate genetic studies and
accelerate the breeding of advanced crop varieties to ensure
food, feed, fiber, and energy security. In recent years, rapid
advances in UAVs have boosted the use of near-earth aerial
imaging in various fields, providing low-cost data acquisition
at high spatial-, spectral-, and temporal resolutions. Conse-
quently, today UAVs have become essential platforms for cost-
effective and high-throughput phenotyping [33], [34].

Thermal remote sensing cameras mounted on versatile and
affordable UAVs have been increasingly used in precision
agriculture, especially for detecting water stress and irrigation
scheduling [7], [35], [36]. Significant progress has been made
in UAV-based plant phenotyping and plant stress detection.
One of the main challenges in this massive use of UAVs for
agriculture, however, is the appropriate management of the
swarm that can potentially optimize their tasks’ accomplish-
ments. RITMO has the potential to facilitate the utilization of
UAV-based technologies by overcoming these limitations.

IV. MODEL

This section discusses the task migration problem amongst
the UAVs and formulates a mathematical model to solve this
problem. The system we envision is shown in Fig. 1.

A. System Model
We consider a network of N agents with the aim of

complete a set of M tasks. Let I ∆
= {1, . . . , N} and

J ∆
= {1, . . . ,M} be the sets of node indexes and tasks,

respectively. A task j ∈ J indicates an atomic action executed
by an agent, such as monitor a location, visit a target, or
measure a quantity. To capture real-world scenarios, like the
ones mentioned in Section III, we deal with heterogeneous
agents (e.g., multicopter and fixed-wing vehicles with different
sensors) that can execute only certain tasks.

Let us denote the amount of tasks of the i-th node as
qi within [0, qmax

i ], qmax
i ∈ IR+. We also assume that

the agent can execute only one task at a time, each one
characterized by certain execution order. To avoid burdening
the notation, task deadlines have not been considered.

We assume that at certain instants with a period r, a
reassignment may take place. In other words, tasks can be
moved among the agents to increase the performance of
the network according to certain criteria. Furthermore, we
assume that all new tasks created between two consecutive
reassignments are put in the destination queue waiting for their
actual allocation. For the sake of brevity, with the term “task
offlaoding” or “task migration” we denote both the reallocation
of existing tasks and the assignment of new ones. Given a
generic device i ∈ I and a generic task j ∈ J , we introduce
the variable xi,j ∈ {0, 1} which is equal to 1 if the task j is
assigned to the node i, and it is equal to 0 otherwise.

Let the matrix Θ ∈ BN×M , where each element Θi,j models
the ability of the agent i to perform the task j. Clearly, each
node is limited by its resources that is equipped with, i.e.,
CPU, memory, and bandwidth available on the node. Besides,
this metric considers the heterogeneity of the agents as well as
possible degradation due to malfunctions or hardware outages.
If Θi,j = 0 the agent i is unable to execute the task j,
whereas if Θi,j = 1 it can be executed at the best of the
agent capabilities.
Task completion time. We consider that each task j has a
processing time of tproci,j seconds, also depending on the node
i. The total time of execution for the task j that traversed
agents whose set of indexes is P ∆

= {1, . . . , P} ⊂ I is hence
defined as:

Nj = tprocP,j +

P∑
k=1

twk,j +

P−1∑
k=2

tmk−1,k,j , (1)

where twk,j denotes the waiting time for task j on the node k
and tmk−1,k,j refers to the migration time when the task leaves
the node k − 1 reaching node k.

If the task j is migrated, the data associated to task, δj , is
sent to the destination node. Hence, we can characterize the
migration time as:

tmk−1,k,j = min
l

{
i+l−1∑
t=i

Rt ≥ δj

}
, (2)

where i denotes the current time slot, k−1 is the source node,
k is the destination node, and Rt is the data rate at time t. This
quantity is clearly affected by the channel model, described in
what follows (Section IV-B).
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Task energy consumption. Besides the time to complete the
task, we also contemplate the energy consumed during its
execution. For each task j we define the energy required for
its processing Eproc

i,j , also depending on the node i, as:

Eproc
i,j = P (i)× tproci,j , (3)

where P (i) is the computation power of the mobile device i.
Specifically, each agent operates in a constant CPU speed si
and a computation power P (i) that is assumed to be a convex
function of CPU speed si [37], where i = 1, . . . , N .

However, the energy consumption model should also reflect
the migration process. For this reason, we define the energy
consumed for the transmission as:

Etran
k−1,k,j = P (k − 1, j)× tmk−1,k,j , (4)

where mk was the migration time when the task leaves the
node k−1, and P (k−1, j) is the transmission power of node
k− 1 offloading task j. The total energy consumption for the
task j that traversed agents whose index is in the set P is
hence defined as:

Ej = Eproc
i,j +

P∑
k=2

Etran
k−1,k,j . (5)

This formula reflects our assumption that the energy spent
for the task to wait before its execution is negligible. We
also simplify the formulation by not considering the power of
receiving data on mobile device, since it is constant and often
smaller compared to the transmitting power, as demonstrated
by previous work [38].

B. Channel Model

Our algorithm uses the channel conditions to make replan-
ning decision. In this section we show the details of the model
that we used for the wireless channel between two nodes. In
particular, we model the wireless channel as a random process
of gt under a time-slot scheme, where gt denotes the channel
gain at time t. The channel gain is a complex number whose
magnitude is the attenuation of the signal and angle is the
phase shift of the signal at a given time instant. We consider
three alternative models, specifically: (i) block-fading channel,
where the channel states {gt} do not change over the execution
of the application [39]. Hence, the data rate of the channel
Rt is constant over time; (ii) IID stochastic channel, where
the random variables {gt} are independent and identically
distributed (IID). This evolution affects the data rate Rt which
is also IID over time; (iii) markovian stochastic channel, where
the evolution of {gt} is a Markovian random process with a
discrete state space. We also make the assumption that the
transmission power on the node is fixed. As such, the data
rate Rt is fully determined by the channel state of gt.

In the case of the Markovian stochastic channel, we adopt
the Gilbert–Elliott (GE) channel model [40], [41], where the
channel conditions are classified into two states: “good” and
“bad”, denoted as G and B respectively. The two states
correspond to a two-level quantization of the channel gain,
i.e., when the measured channel gain is above some value,
the channel is labeled as good, otherwise bad. Accordingly,

we define the channel gain in the good state to be gG, and in
the bad state to be gB . Therefore, the data rate, Rt can take
two values, RG and RB , for the good and bad channel state,
respectively,

Rt =

{
RG if gt = gG,
RB if gt = gB ,

(6)

and the transition matrix of the channel state is:

P =

(
pGG pGB

pBG pBB

)
(7)

These assumptions regarding the channel model affect the
available data rate Rt, that in turn impacts the task migration
time among two nodes. Also, the channel conditions are
monitored by the agent in order to detect and avoid paths
with low available bandwidth, as mentioned in Section V-C.

C. Problem Formulation

In the light of the aforementioned characterization, we are
ready to expose the problem that RITMO aims to solve.
More specifically, we formulate the problem as Integer Linear
Program (ILP) for a system composed of N agents, each
capable to handle a sequence of no more than qmax

i tasks,
and M tasks that have to be reassigned between them. The
objective is to minimize the completion time and the energy
consumption for all the tasks in the system by controlling the
decision variables xi,j ∈ B, where B = {0, 1}, in the program
described as:

min
x

N∑
i=1

M∑
j=1

ci,jxi,j (8)

s.t.
M∑
j=1

xi,j ≤ qmax
i ∀i ∈ I (9)

N∑
i=1

xi,j ≤ 1 ∀j ∈ J (10)

xi,j ≤ Θi,j ∀(i, j) ∈ I × J (11)

where the cost value ci,j ≥ 0 is a generic, nonnegative function
of the assignment, to be minimized.

We can observe that (9) and the subsequent constraints limit
the usage of resources to be at most the maximum available
resources. Namely, the maximum number of tasks assignable
to a node is qmax

i ; a task can be assigned to no more than one
agent; a task can be assigned only to agents that can execute
it. Given these conditions, the cost function (8) expresses the
desiderata of the migration process. The offloading procedure
is executed to find a more efficient mapping between agents
and tasks. A “good” offloading strategy should reduce as much
as possible both energy consumption and the task completion
time, which can potentially cause performance degradation.
Therefore, the coefficients constituting the cost values account
for these two aspects, but the way these values are accounted
for depends on the utilized strategy, that is, the function
that generates such costs ci,j . For example, a cost function
could consider the queue utilization qi as a principal indicator.
Alternatively, a more elaborate metric could quantify the
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effectiveness of the offloading decision taken by the agent i by
capturing both time to execute a task and energy consumed
by the agent to execute a task, Part of our contribution is
comparing the impact of different cost functions (or offloading
policies) that generate the cost coefficients ci,j (Section V-B).

It may be noted that when the problem in (8) is a centralized
optimization problem, it can be solved using well-known ILP
algorithms such as the Branch and Bound technique [42]. In
the rest of the paper we discuss our proposed decentralized
strategy, based on local communications among agents in
the network, to provide a solution to the offloading problem
for heterogeneous agents (8)-(11). The distributed offloading
problem can be summarized as follows.

Problem IV.1. For each time interval r, each agent, denoted
with an index i, has to decide if each task currently queued
needs to be executed or migrated to another agent. When the
agent decides to offload the task, it needs to select also the best
destination agent according to its pre-configured offloading
policy.

We solve this problem with the RITMO offloading algo-
rithm, detailed in the next section.

V. THE RITMO ALGORITHM

Intending to solve the previous problem, we design an
algorithm responsible for making online migration decisions.
Such a decision determines whether and when the migration
starts and, in this case, where the task should migrate.

A. Predicting the IoT device’s load

Our presented migration mechanism leverages traditional
regression algorithms to predict future values using history and
its evolution in the past.The history used, hence, is composed
of past values associated with the timestamp: the presence of
such a tuple < timestamp, value > leads to the name time
series. Among the possible methods in this class of regressor,
we select ARIMA [18] for its ability to account for trend and
noise in collections of data. Hence, we formulate the task of
load prediction, i.e., queue’s length prediction, as a regression
problem, where a real value number (future load) is predicted
on the basis of many single input features (past load values).

Formally, a standard notation for this method is
ARIMA(p, d, q), where the parameters account for seasonality,
trend, and noise in datasets. In particular, (i) p captures the
number of lag observations included in the model and is
often denoted as auto-regressive component; (ii) d captures the
integrated part of the model, i.e., the number of times that the
raw observations are differenced, also referred to as the degree
of differencing; (iii) q captures the moving average part of the
model and refers to the extent of the moving average window,
also denoted as the order of moving average. The ARIMA
overall model is given by the following equation:(

1−
p∑

i=1

αiL
i

)(
1− L

)d
yt =

(
1 +

q∑
i=1

θiL
i

)
εt, (12)

where L is the lag operator, i.e., the number of past samples
considered during the prediction; αi are the parameters of the

autoregressive part of the model; the θi are the parameters of
the moving average while εt are error terms. Such error terms
εt are commonly assumed to be independent and identically
distributed (IID) variables sampled from a normal distribution
with zero mean, which is what we did.

At each epoch t, the monitoring agent gathers information
regarding the queue length. Such a number is thus inserted
in chronological order and comprises the historical dataset
used to build the model and perform the prediction. The data
collection frequency is undoubtedly a key metric and largely
depends on the processing time and task arrival rate. It is also
affected by the prediction that occurs every r seconds. We set
this time interval different to t to decouple the two actions,
i.e., data collection and data prediction. In such a way, the
granularity of collected data can be denser, and the model can
leverage a larger history.

In light of these considerations, in the experiments, we set
t to be half of the processing time to collect fresh data but not
overload the node with the duty of collecting metrics. Whilst,
we set r to be the processing time. However, these two values
can be relaxed if prediction and task migration can occur less
frequently.

At each prediction time r, the ARIMA’s model, trained
on the data collected over time, produces the one-step-ahead
forecasting. In case such a predicted length exceeds a defined
threshold z or the node runs out of available resources, the
migration process begins.

B. Selecting the next IoT device

The task migration mechanism requires selecting a destina-
tion node, that can be chosen according to different policies.
Such a policy can be used to minimize the cost of our problem
(8), by varying the definition of cost value. Herein we enu-
merate some criteria for node selection, where each migration
policy represents a different profile. The profile refers to the
desirable load on each node, considering the available CPU,
memory, and bandwidth resources of the node. Thus, prior to
selecting the destination node, the system computes the time
the hosting node would keep the job queued before execution.
By considering the current and estimated node load, the system
attempt to avoid nodes with a highly loaded queue that can
hinder fast execution. In this regard, our solution is provided
by default with a small yet representative set of migration
policies:

(i) Load Balancing: one of the easiest schema, char-
acterized by an equal distribution of tasks among all the
available nodes. Specifically, the migration manager selects
as destination the node with less enqueued tasks, and in case
of more idle nodes, the destination is chosen uniformly within
this subset. Formally, the index of destination m is given by:

m = min
i
{q1(t), . . . , qN (t)}, (13)

where qi(t) is the queue length of node i at time t.
(ii) Harmonic: it refers to a well-known randomized al-

gorithm often employed to solve the k-server problem [43].
Such a problem consists in efficiently moving k servers over
the nodes of a graph G in response to a set of requests,
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where each request is a sequence of k-points. The harmonic
policy aims at minimizing the total distance covered by the
servers to reach the requested points. Despite the fact that
our considered problem differs from the k-server problem, our
strategy still uses a version of the Harmonic algorithm to select
the destination. Formally, the probability of selecting the node
m as destination is given by:

pm =
qm(t+ 1)−1∑
i qi(t+ 1)−1

, (14)

where qm(t+ 1) is the predicted queue’s length of node m at
time t+ 1.

(iii) Cost Minimization: during the execution, a profile
of the available nodes is shaped, which takes into account
the computation resources. Hence, the destination is chosen
according to the cost of migrating, which depends on the
average service time and energy consumption: a node with a
lower estimated cost has a higher probability of being selected.
We denote the cost of migrating task j from node i to node
m as cmig

i,j,m. The cost is computed as the sum of estimated
completion time and estimated energy consumption. In turn,
the cost differs in the case of a migration decision or a a local
execution. In the former case, the service time is the sum of:
(i) transmission time of task j migrating from i to m, tmi,j,m;
(ii) waiting time on the node m, twm,j ; (iii) processing time for
task j on the node m, tprocm,j . The energy consumption is also
affected by the migration, as the sum of: (i) energy consumed
for transmission of task m from i to j, Etran

i,j,m, and (ii) energy
required for processing of task m on the destination node m,
Eproc

m,j . The two components are then weighted using α and β,
and the cost of migration is formally:

cmig
i,j,m = α(Etran

i,j,m+Eproc
i,j )+β(tmi,j,m+twm,j +tprocm,j ), (15)

where α and β are two weights measuring the importance of
completion time compared to the energy consumption.

Notably, the waiting time on the destination node twm,j

is estimated using our regressor algorithm. Hence, with this
policy, the prediction is not only used to establish when to
migrate, but also to estimate the waiting time on the possible
destination nodes. The migration time, instead, is estimated
by looking at the channel metric collected by the node.
Specifically, using the throughput of the wireless channel, the
node can easily approximate the value of tmi,j,m.

In the latter case of local execution, the cost has still the
two components. The service time is the sum of: (i) waiting
time of task j on the origin node i, twi,j ; (ii) processing time
on the node i, tproci,j . The energy consumption only depends
on the energy required for processing of task j on the source
node i, Eproc

i,j . The two components are then weighted using
α and β, and the cost of local execution is formally:

cloci,j = αEproc
i,j + β(twi,j + tproci,j ). (16)

In this policy, the node compares the two costs and decides
the most profitable one, and applies the selected strategy.

(iv) Closest Node: the system manager assigns the migrating
task to the agent closest to the source node. The distance
between source and destination has indeed a significant impact
on the migration time and the energy spent for such transmis-
sion.

(v) Random: the migration destination node is randomly
selected between all the available nodes. Despite being ex-
tremely easy, this strategy may result in good performance due
to the small overhead introduced by the process of destination
selection.

Using our provided APIs, the user can specify the preferred
option according to the specific use case. Moreover, more
strategies can be included in our solution whose logic can be
easily adjusted, for example, setting a policy that considers
more strict application requirements. It is also possible to
assign priority to both nodes and tasks in order to avoid
overloaded queues for highly important jobs. However, we
demonstrate that this subset is sufficient for many network
conditions, and we provide useful insights for efficiently set
this policy in Section VII.

C. Channel monitoring

Channel and link estimation is a critical part of almost
every sensor network protocol. In this paper, we let agents
communicate directly with each other, with each node capable
of monitoring the channel between itself and the rest of the
fleet. Knowing the packet reception rate of candidate neighbors
lets a protocol take the most energy-efficient decision, e.g.,
next routing hop. To this end, one basic indicator is the receive
signal strength indicator (RSSI), which is the strength of a
received radio signal [44]. Such a measure is implemented and
widely-used in 802.11 standards. At larger distances, the signal
gets weaker, and the wireless data rates get slower, leading to
lower overall data throughput. Although it is recommended not
to use this metric for distance measurements in localization
algorithms [45], it is a promising indicator of how well a
particular radio can hear the remotely connected client [46].

RSSI is, thus, a promising indicator when its value is above
the sensitivity threshold, i.e., −87 dBm. Below this value,
the packet reception rate (PRR) drastically downgrades due
to variations in local phenomena such as noise. In this case,
it may be difficult to sustain a link reliably or achieve high
throughputs, especially in the presence of external interference.
Conversely, above the sensitivity threshold, the PRR exceeds
the 85%, denoting a strong signal. Despite the generality
of these considerations and threshold value [46], [47], our
architecture allows customizing this parameter as explained
in Section VI.

D. Overall Procedure

The final goal of the algorithm underpinning RITMO is to
minimize the completion time and the energy usage of any
task. To accomplish this, our solution proactively migrates
tasks between nodes. This migration is intended to release
resources of overloaded agents and exploit the spare resources
of other available nodes, to speed-up the computation. Two
main questions about migration decisions need to be addressed
by such a strategy: (i) when and (ii) where. (i) The first aspect
is about time and refers to when performing the migration.
We start a migration either when the predicted queue length
outstrips a threshold or when the available resources on the
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node are insufficient to complete the task. In these circum-
stances, the tasks in the queue are migrated to another node
of the system, whose capacity can fulfill the demand and can
complete them in a shorter time. (ii) The second aspect is
about the location and refers to selecting a proper destination
node to satisfy the system requirements. However, the decision
about the destination often privileges a key metric at the price
of degrading other quantities. Our system allows the user to
choose from the options described in Section V-B according to
the business logic. It can be, for example, that the key metric
is the speed in deciding, the average usage of resources, or
the average task completion time. This multitude of options
originates diverse policies for the controller logic that we
implemented in the system.

Algorithm 1 Prediction-based migration decision on any node

1: Let t be the epoch, and r the prediction period
2: Let z be the queue size threshold
3: for every epoch t do
4: Monitor the queue and node state
5: if notAvailableResources then
6: dst← get dst(node, t)
7: migrate remaining tasks in the queue to dst
8: if r has elapsed since last prediction then
9: qt+1 ← future predicted queue size on the node

10: if qt+1 > z and channelIsGood(node) then
11: dst← getDst(node, t)
12: migrate remaining tasks in the queue to dst
13: close;

In algorithm 1 we summarize the main steps of our proce-
dure. Every epoch t, the module running on each node obtains
the statistics, saves them, and then provides them quantities to
the predictor model. Such a model uses these quantities for
the prediction that, occurring every period r, estimates the
queue size at time t + 1. The regressor computes the future
size qt+1 and afterward compares this value to the threshold
z, set as a quantity denoting when many tasks are enqueued.
If qt+1 exceeds z, surplus tasks present in the queue at time
t are moved to another node. The function getDst(node, t)
returns the destination node according to the selected policy,
for example, one of the profiles described in Section V-B.
Moreover, the migration can be triggered by the absence of
available CPU or memory resources on board of the node i. In
this case, the notAvailableResources function returns true,
initiating a new migration.

The channelIsGood(node) function returns a boolean
value according to the RSSI state, indicating the strength of
the signal. As described in Section V-C, when an RSSI lower
than a threshold denotes a signal too weak, subject to external
interference. In these circumstances, it is recommended not
to migrate tasks, and the function returns false. The desired
RSSI is for values exceeding the threshold, commonly set to
−87 dBm. However, we also consider a safety margin, and
our function returns true for values above a safe threshold of
−70 dBm.

t=1 t=2 t=3

q=3

q=6

q=4

q=5

q=3

q=5

Fig. 2: System composed of 2 nodes has to execute 9 tasks. At
time t = 1 tasks are assigned; then, at subsequent time instant
t = 2, one task migrates and is reassigned as a consequence
of the queue length prediction; finally, orange drone executes
one tasks and its queue is thus reduced.

E. An Illustrative Example

To better understand the proposed procedure, we illustrate
a simple example showing the task migration in a drone fleet.
Considering a fleet of N = 2 unmanned aerial vehicles, 9 tasks
are still pending and waiting for being executed (M = 9).
We summarize the scenario in Fig. 2, where the tasks are
different zones to be monitored. The nodes can vary for
their characteristics, e.g., multicopter or fixed-wing, but in the
following, we assume they have the same set of skills and
tasks can be assigned indiscriminately to any node.

At the initial timestamp (t = 1), the orange drone has 3
tasks in this queue, while the blue one has 6 tasks left. As
a result of the future load prediction, it appears that it is
convenient that the blue drone migrates one task to the other
agent. Although there is only one possibility in this example,
the destination device should be selected on the basis of some
policies, as mentioned previously (Section VII-E). After this
migration (t = 2), however, we observe that the orange drone
has one more task pending, and the blue one has reduced its
queue length. Finally (t = 3), the orange drone accomplishes
one task and moves to the next spot. The system evolves so
forth, completing and migrating remaining tasks.

This simple example demonstrates the impact of task mi-
gration, which helps share the load among the agents of the
system. This prevents the uncontrolled growth of the queue of
any agent, moving tasks to under-congested nodes.

VI. RITMO ARCHITECTURE

The solution presented has two main objectives: managing
a fleet of IoT devices and efficaciously distributing the load
among them. To this end, we design an architecture aiming to
enable policy-based destination decisions. The system consists
of multiple modules that can be replaced on-demand and in
a short time to accommodate the requirements based on the
peculiarities of the use case. In the following, we summarize
the components of our system, e.g., the APIs, and the agent
services offered.

We depict in Fig. 3 our management architecture, which
enables the monitoring of network connectivity and the tasks
reassignment, via estimation of the load on nodes and cus-
tomizable controller logic. Our management layer, indeed, sits
between the Operating System (at the bottom), e.g., Robotic
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Customizable 
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Fig. 3: RITMO’s architecture: the management layer is located
between the operating system and the IoT application. Some
of the provided features are monitoring network connectivity,
load estimation, and tasks migration, along with the customiz-
able controller logic.

Operating System (ROS) [48], and the IoT application (at
the top). The IoT application running on top can adapt to
diverse business logics and environment settings by exploiting
the provided API to customize the logic of such controllers,
as well as to adapt the tasks migration logic to a centralized
or distributed fashion. Depending on the application require-
ments, the architecture can implement the policy that best
fits the context. An example of these applications is the
set-up of disaster response for live audio/video analytic, as
mentioned in Section III. During a disaster, since the network
is very unstable, a policy as closest node or random can result
extremely effective.

Service APIs enable the customization of two of the main
components in RITMO: (i) the controller logic to fit multiple
challenged scenarios, (ii) the logic of the task offloading
algorithm, either in a centralized or distributed fashion. By
interacting with this module, the same program can tailor
different contexts, adapting to different requirements and net-
work conditions. Another relevant component is represented
by the Historical Values, committed to maintaining the past
network states and the partially replicated database. These
values constitute the past used by ARIMA for the prediction
of future states. Still, other saved information is also historical
dynamic states i.e., depending on the network, configura-
tion, and connectivity condition. Responsible for filling this
database is Network Monitoring, that runs a watchdog process
to monitor the other agents state and interact with them. A
similar process is at the basis of Channel Monitoring, used
to collect information about the channel between the node
and the others. To the rescue of understanding the messages
received as heartbeat comes the Message Parser module. Our
object model is defined through Google Protocol Buffers [49],
in charge of delimiting, serializing, and deserializing the
messages.

The core of the adaptive migration mechanisms resided in
the Controller Logic component, that can module the task
migration rate of the network of IoT devices, e.g., drones.
As explained in our algorithm (see Section V-D), we employ
a Threshold-based Migration, that impose a migration every

time that the predicted number of tasks on the agent exceeds
the value of a threshold z. However, the architecture is modular
and pluggable and can be extended with other user-defined
controllers to replace the threshold-based logic.

The prediction of future network utilization is performed
by the ML estimator, consisting of two sub-modules. The first
key feature is theLoad Estimator, as it estimates the future load
exploiting the current and historical values. Such a prediction
attempts to estimate the relationships between the features, i.e.,
system state, and a dependent variable, system load. To further
reduce the training time, the prediction can take advantage of
Saved models, obtained via offline training, so that the agent is
not involved in the learning process. In this case, however, the
advantage of a reduced overhead comes at the cost of models
that can not adapt to conditions never experienced.

VII. EVALUATION RESULTS

In this section, we first analyze the accuracy of the ARIMA
regressor compared to other time-series methods. Then, we
describe how the channel model impacts the quality of RITMO
and how decisions about destination nodes affect system
performance. Finally, we compare RITMO against state-of-
the-art solutions to determine the benefits of our solution, also
considering the context of a surveillance application.

A. Experimental Setup

To evaluate the performance of the proposed task offloading
strategy, we developed a C++ event-driven simulator, where
a networked fleet of drones tries to accomplish a mission,
corresponding to a set of geo-locations to reach. In this
context, all drones cooperate to complete assigned tasks in the
shortest possible time while reducing energy consumption. In
case of disaster response, for example, each drone has indeed
to explore an area with a camera and microphone looking
for signals indicating survivors, as described in Section III.
We set the default parameters for the evaluation to mimic
the conditions that occur in this scenario. Therefore, we
use the default threshold-based mechanism, i.e., the migra-
tion of drone’s tasks is triggered when the queue length
exceeds a threshold. Besides, if not otherwise specified, in
our experimental campaign, we set the default configuration to
considering 50 drones in the fleet, 1 m for the average distance
between nodes and no failures (percentage 0%); the destination
node is selected according to either the load balancing or cost
minimization schema, as explained in what follows. Reported
results are obtained after 35 trials, and the graph’s bars refer
to a confidence interval of 90%. Concerning the scenario, the
arrival rate of new tasks was generated with a Poisson process
of 0.02 Hz. The capacities of agents were assumed equal for
all ai ∈ A. Moreover, the processing time depends on the task
to be executed and the hosting agent, but for simplicity in the
following, we consider a fixed quantity, and we often refer to
it as tproc. In all cases, we assume that qmax

i is always large
enough to assign all the tasks.

Table I summarizes the configuration parameters utilized
during the following evaluation, where the default values
are reported in bold. These default values are required to
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uniform the comparison among different parameters under
consideration, as in any experimental campaign. However, in
the following, we also consider the impact and the reason
behind the choice of some of them.

TABLE I: Parameters setting for the experimental campaign.

Parameter Values

Number of nodes 10, 50, 100, 150
Nodes’ average distance [m] 1, 2, 3, 5, 10
Node failure [%] 0, 10, 50, 90
Transmission power, P (k,m), [W] 0.1
Computation power, P (i), [W] 0.5
Processing time, [s] 5, 10, 20, 30, 50
Number of trials 35
Confidence interval [%] 90

B. Performance Indexes

In this section, we describe the performance indexes used
to evaluate our and compared task offloading approaches. The
key indicator we use is the average cost per task, Z, computed
as follows:

Z
∆
=

1

M

M∑
j=1

(α Nj + β Ej). (17)

In the following, we set α = 0.05 and β = 20 in
order to make the completion time comparable to the energy
consumption.

To quantify the experimental error of the prediction, we
utilize the absolute relative error given by the formula:

err =
|y − ŷ|
y

, (18)

where y defines the actual value and ŷ the predicted one.

C. Prediction Analysis & Accuracy

To opportunely choose the ARIMA’s parameters, we carry
out an initial study of the prediction performance. In particular,
the ARIMA algorithm is influenced by three parameters:
p, d and q, as mentioned in Section V-A. Two of these
parameters for the algorithm configuration are derived from the
Autocorrelation Function (ACF) and Partial Autocorrelation
Function (PACF) plots (Fig. 4a and Fig. 4b): ACF is used to
determine q while PACF for p. ACF is a common method to
establish how well the present value of the series is related
to its past values. On the other hand, PACF measures the
correlation between the time series with a lagged, i.e., past,
version of itself, but after eliminating the already found. The
p and q values can be inferred from the figure as follows: p is
the x-value at which the function of the PACF graph crosses
the upper confidence interval (dotted line) for the first time
[50]. Similarly, q is the x-value where the function of the ACF
chart crosses the upper confidence interval for the first time.
Experiments and results shown in Fig. 4 refer to our collected
dataset comprised of more than 40, 000 historical samples,
then split into training (80%), validation (10%), and test (10%)
set. While the prediction error is computed on the test only,
the parameters investigation is conducted on the validation set.
From the graphs, it is possible to identify that p = q = 1. We

further investigate empirically the optimal value of d using the
cross-validation, and we found that d = 1 provides the best
performance.

Moreover, we evaluate the accuracy of the ARIMA method
in comparison to other time-series algorithms. A good pre-
dictor should at least outperform a very trivial algorithm in
which the next value is the exact replica of the Last Sample
(LS). Given the simplicity of the approach, it is not considered
a statistical method; still it is a recommended baseline to
establish the quality of the regressor algorithm. Besides LS,
we study other two time-series alternatives: (i) Holt-Winters
(Holt), a basic model that captures three submodels (also
known as influences) to fit a time series, i.e., an average value,
a slope (or trend) over time and a cyclical repeating pattern
(seasonality); (ii) SARIMA, following the same definition of
the analogous ARIMA, it can also include seasonal compo-
nents of the time series. This makes SARIMA able to deal with
seasonal effects. Fig. 4c displays the error of the mentioned
algorithms encountered during prediction, using the formula
(18). The results show that the ARIMA outperforms the other
solutions: the dynamic of the conditions makes inefficient a
simple method like LS, and also Holt is unable to consider
this data evolution. Besides, as the collected metric does not
exhibit seasonality, SARIMA appears to be vain. We can hence
conclude that ARIMA is the preferred choice to fit this context.

We then evaluate the time required to train the dataset,
and we report it in Fig. 5. As mentioned, our choice is to
offline train the model and then use it to online predict future
values. As can be noticed, Holt-Winters is the longest to
converge to a stable model, while the others demand less time
to train. Furthermore, ARIMA is faster than SARIMA, given
the reduced number of parameters to configure. However,
the time needed for training for this class of algorithms is
definitely shorter than the training time of other deep learning
or reinforcement learning solutions [21].

D. Channel Model Impact

We then compare the impact of the diverse channel models
over RITMO. Our solution executes all the tasks of the appli-
cation under the three models: a simple block-fading channel
with a constant data rate R = 60 kb/s, IID whose expected data
rate is E(R) = 60 kb/s, the Markovian channel characterized
by pGG = 0.995 and pBB = 0.96, with RG = 100 kb/s and
RB = 10 kb/s. For each channel model, we report in Fig. 6 the
cost defined in (17) evaluated for the four migration policies,
namely: (i) load balancing: when an agent’s queue exceeds a
set threshold, the drone with less waiting tasks is selected. In
the case of two nodes with the same number of enqueued tasks,
the system selects the closest agent. If still more nodes have
the same properties, the destination is chosen randomly among
them; (ii) random: the destination is a randomly selected; (iii)
closest: when an agent’s queue overcomes the threshold, the
system reassigns its tasks to the closest agent. If two agents
are at the same distance from the task, we insert the task
in the queue of the drone with fewer tasks in its queue; ties
are split at random if two queues have the same number of
tasks; (iv) cost minimization: for each task we select the node
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Fig. 4: Analysis of the regressor method. (a) Autocorrelation function (ACF) and (b) Partial autocorrelation function (PACF)
for collected data, used for tuning the predictor’s parameters p and q. (c) Error in queue length prediction for different time
series algorithms, where ARIMA provides the higher accuracy.
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Fig. 5: Training time comparison for the diverse regressor
algorithms. ARIMA is the fastest to converge.

which minimizes the migration cost of (15), if such a cost
is lower than (16). Otherwise, the task is kept on the source
node. Nevertheless, the purpose of this experiment is not to
compare policies, that will be conducted in Section VII-E, but
rather to analyze how the channel models affect the system
performance.

First, it is fundamental to remark that the block-fading is
conveniently used as a baseline approach. However, it poorly
approximates real channel conditions by using optimistic
assumptions, leading to lower costs than other models. We
can then observe how the IID and Markovian channel models
produce comparable results. For this reason, in the following,
we could utilize one of these two options indiscriminately.
However, we set as default Markovian due to the reduced
variance in the obtained results and its more realistic model.

E. Consequence of Diverse Migration Policies

In this section, we compare the effects of diverse strategies
for the destination node selection in a scenario with stable
conditions and no failing agents (Fig. 7). Specifically, we
evaluate (a) the task completion time and (b) the energy
consumption for increasing nodes number, (c) completion
time, and (d) energy consumption for an increasing percentage
of node failures. In these circumstances, a few observations
are: (1) Cost minimization policy is particularly effective when
N ≤ 100. In fact, for a partially limited number of agents,
the state of channels and other nodes can be monitored, and
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Fig. 6: Effects of diverse channel models. The four migration
policies are evaluated for the (i) block-fading, (ii) independent
and identically distributed (IID), and (iii) markovian.

this information ameliorates the decision. However, when this
number rises, the overhead in accounting these metrics rises as
well, leading to intractable model. This increases both the task
completion time and the energy consumption, and is reflected
in the cost metric which for N = 150 is the highest among
the other policies. (2) Closest agent and random policies, even
if very trivial, cut off costs for large drone swarms. From the
graphs can be observed that they shorten task completion time
and can also diminish the average energy needed to perform
a task. When the options for migration magnify, it may be
convenient to decide quickly, as in closest and random, even
if less accurate. In fact, in these circumstances, minimizing
the expected cost incurs in high complexity that is often
unnecessary. (3) For large fleet, e.g., N = 150, load balancing
tasks among agents provides the lowest costs. Similarly to
the second observation, we observe that when the fleet size
increases, simple decisions are preferred. This profile can
indeed balance the effect of lower complexity and decisions
based on the current load, and emerges as preferable choice.

According to these considerations, in what follows, we set
the cost minimization policy when the number of drones is
lower than 100, and load balance for a higher number of
nodes.

F. RITMO Performance

Furthermore, we compare our solution against two of the
most related methods that are found in the literature: HAP [15]
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Fig. 7: Destination selection policies comparison. (a) Task completion time, (b) energy consumption, and (c) system cost
of a fleet of drones using APRON with different migration policies: (i) load balancing, (ii) random, (iii) closest, (iv) cost
minimization task migration.
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Fig. 8: System performance evaluation in terms of time to complete tasks. (a) Comparison of different solutions at varying
percentage of node failures. (b) Completion time of different algorithms for an increasing number of nodes. (c) Effect of the
average distance between nodes on the task completion time.
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Fig. 9: System performance evaluation in terms of energy consumption, at varying (a) percentage of node failures. (b) number
of agents in the system. (c) the average distance between two agents.

and APRON [26]. The former can establish close feedback
between the high-level planning based on a Markov Decision
Process (MDP) and the execution level. Using this feedback,
it then anticipates failures at the planning level. The latter
approach, instead, exploits Jackson’s network model to control
operations of a network of IoT devices while the network states
evolve. Although this work is presented with several options to
select the destination, in the following, we employ the closest
node policy since it has been shown that this setting provides
better results [26].

In Fig. 8a we show the average execution time of tasks for
the three algorithms when the percentage of failures varies. It
can be observed how RITMO achieves the shortest comple-
tion time with respect to analogous solutions, considering its
ability to manage a large number of failures by reassigning
the uncompleted tasks pro-actively and re-actively. We also
compare the completion time for an increasing number of

nodes in the system in Fig. 8b. As the fleet grows up, RITMO
can exploit all the available resources of agents without
overloading them, diminishing tasks’ completion time. This
ability makes RITMO outperforming the other solutions, as
can be seen in the graph. In particular, the benefits brought
by our solution comes even higher when the number of nodes
increases. In such a scenario, indeed, APRON is not always
able to take advantage of the more available resources offered
by more drones in the system, while RITMO can execute a
more profitable migration. Moreover, we consider the impact
of the average distance among two nodes over the system
performance (Fig. 8c). Clearly, as the distance increases, the
task completion time rises as well. Our findings, however,
show how RITMO provides better performance even when
it may be challenging to handle the agent locations, which
indicates the efficiency of our proposed system.

Another important aspect is the sustainability of the so-
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Fig. 10: (a) Impact of different values of processing time on the average time spent to complete a task. (b) - (c) For the use
case of a disaster response, RITMO is able to provide the highest number of completed tasks in the interval and lowest energy
consumption.

lution, and, consequently, we evaluate the energy consumed
during the mission for the different algorithms (Fig. 9). We
replicate the same conditions of Fig. 8, but we report now
the average energy consumption (the mean between nodes).
We can immediately observe how RITMO consistently lowers
energy consumption compared to other benchmark solutions.
In particular, RITMO provides stronger results when the chal-
lenged conditions are exacerbated, e.g., remarkable percentage
of failures (Fig. 9a) and large fleet of drones (Fig. 9b).
Remarkably, for N = 150 RITMO halves the consumption
with respect to APRON solution.

During our experimental campaign, we also evaluated the
impact of various task processing times (Fig. 10a). We can
observe how this time only partially affects the completion
time, which, instead, largely depends on the time spent waiting
for the execution. The migration is meant to reduce this time.
Therefore, even for heavier tasks, the solution moves jobs
among the agents to reduce this waiting time.

G. Benefits to the On Top Application

Lastly, we consider the performance when RITMO is em-
ployed for a monitoring surveillance use case, as the one
presented in [1], which entails a disaster response setup. The
scenario includes an edge cloud where information is sent to
the close computation, i.e., video record, and a corresponding
task is received, i.e., the location to explore with the camera.
Thus, we evaluate the specific metrics for this application, and
we quantify the number of completed tasks and the average
energy spent during the execution of the application in Fig. 10b
and Fig. 10c, respectively. The experiments refer to 5-minutes
of execution, and a task takes 5 seconds. Comparing RITMO
against the other approaches, we can notice how our solution
can increase the number of completed tasks by the system. At
the same time, RITMO reduces the average energy spent by
each agent.

VIII. CONCLUSION

This paper presents RITMO, a solution managing a fleet
of robotic agents, e.g., drones, to increase the resilience in
task replanning and migration problems. In the presence of
challenged edge networks, indeed, diminishing the time taken
to complete assigned tasks while not overloading agents is

particularly challenging. To this end, RITMO models the
network of nodes as a network of queues and predicts the
number of future tasks in the agent’s queue. This information
is thus used to determine the IoT device’s future utilization
and proactively redistributes tasks among the fleet. Our results
show that RITMO is notably effective as a policy programma-
bility mechanism for networks of UAVs. In particular, our
solution jointly shortens the task completion time and energy
consumption with respect to other benchmark solutions.
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