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Abstract—The rapid increase in bandwidth-driven applications
has resulted in exponential internet traffic growth, especially in
the backbone networks. To address this growth of internet traffic,
operators always demand the total capacity utilization of underlying
infrastructure. In this perspective, precise estimation of the quality
of transmission (QoT) of the lightpaths (LPs) is vital for reducing
the margins provisioned by uncertainty in network equipment’s
working point. This article proposes and compares several data-
driven Machine learning (ML) based models to estimate QoT of
unestablished LP before its deployment in the future deploying
network. The proposed models are cross-trained on the data
acquired from an already established LP of an entirely different
in-service network. The metric considered to evaluate the QoT of
LP is the Generalized Signal-to-Noise Ratio (GSNR). The dataset
is generated synthetically using well tested GNPy simulation tool.
Promising results are achieved to reduce the GSNR uncertainty
and, consequently, the provisioning margin.

Index Terms—Machine learning, Quality of Transmission esti-
mation, Generalized SNR

I. INTRODUCTION

In the past few years, the telecommunication industry trans-
formed to meet the vastly growing internet traffic requirements
using optical-transmission systems. In recent times, a myriad
of bandwidth-intensive applications are being deployed, conse-
quently increasing the internet traffic [1]. The full utilization
of the already deployed infrastructure’s residual-capacity is
needed to meet these ever-increasing internet traffic require-
ments. In this direction, the cornerstone technologies are;
coherent-technology and DWDM, particularly optical trans-
mission and fiber usage. Furthermore, the optical network’s
goal towards network dis-aggregation also paves a path for
SDN and EON technologies. SDN’s notable features are to
provide adaptive and dynamic utilization of network resources
both in control and data plane [2], [3]. Moreover, EONs enable
flexible spectrum assignment, enhances the network capacity

at a meager network cost. Due to this resilience, the LP-
provisioning problem becomes more crucial than conventional
fixed grid wavelength-division-multiplexing (WDM) networks.

At present, optical networks have started progressing to-
wards network dis-aggregation goal. For the network dis-
aggregation, the first requirement is to inspect the optical-line-
systems (OLSs) that associate the network nodes. Currently,
the degradation of QoT is based on an OLS-controller’s
proficiency to run at the best possible working point [4], [5].
The more precisely this working point is achieved, the more
significant the traffic rate for deployed traffic is achieved,
and consequently, it leads to a minimum margin for traffic
deployment. Hence, it is imperative to estimate an accurate
QoT of LP before its actual deployment with a reduced
margin. Generally, QoT is well appraised by the GSNR, which
incorporates the cumulative effect of NLI and ASE noise [6].
The GSNR reports the path viability along with the deployable
rate by utilizing the attributes of the transceiver.

In the current work, we assume a Domain-Adaption (DA)
approach. In this technique, the data is acquired from the
already deployed in-service network (source domain ”S”) to
learn the valuable knowledge about the network, and later on,
this learned knowledge is utilized to estimate the QoT in an
un-used or newly deployed network (target domain ”T”). This
investigation’s primary focus is to minimize the uncertainty
in GSNR assessment of the T. This leads to reliable LP
deployment in the T network with minimum margin. Typi-
cally the QoT-E uses several analytical techniques to measure
the GSNR precisely with the required knowledge of system
parameters as shown in [7]. The analytical approach cannot
be implemented in the absence of the required description of
system-parameters. Therefore, it is impossible to implement it
in the present DA’s scenario as we do not know the target do-
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Fig. 1: Architecture of Optical Network

main T network’s exact physical characteristics. Consequently,
the current investigation corresponding to DA reports that the
analytic techniques are not working on getting provisioning of
QoT of LP before its actual deployment in such an agnostic
scenario. To overcome this, we choose to use an alternative
ML paradigm that has already been proved to be very useful in
various scenarios of managing optical networks; look at [8]–
[11]. An extensive survey of ML practices in optical-networks
is given in [12]. Specifically, coming towards QoT-E of LP
before its establishment, an approach based on random forests
(RF) is suggested to employ the stored-database in [13] to
reduce the unreliability concerning network design margins
and parameters. Ample ML techniques are proposed in [14],
[15] for estimating QoT-E of LP prior to its establishment.
An approach based on RF for binary classification is proposed
in [16] to estimate the bit-error-ratio (BER) of un-established
LPs. The performance evaluation of two DA techniques is
carried out in [17]. Finally, in [18] the authors examined
the QoT-E accuracy furnished by a DA approach and active
learning (AL) technique on two dissimilar network-topologies.

The significant difference between the past investigation and
the present investigation is that we propose to employ various
ML-based approaches considering the DA technique for the
reduction of system-margin of the T network utilizing the
mimicked dataset of GSNRs response against particular traffic
settings of LPs of the S network in an open environment.
We also compare the performance of employed ML models
considering cross-feature training and relevant-feature training
techniques for GSNR estimation.

II. NETWORKS MODEL & DATA GENERATION

Typically an optical-transport-network generally consists of
a set of Optical-Network-Elements (ONE) linked via bidi-
rectional optical fiber as shown in Fig. 1. After a certain
span distance, the amplifiers are installed using the Raman
amplification method or the Erbium-Doped Fiber Amplifiers
(EDFAs) method, or the hybrid of both. ONE linked via fibers
is generally demonstrated as an optical-line system (OLS) and
a particular controller to perform configurations in an advanced
network. In our proposed network model, we simulate an
open OLS consists of several cascaded-amplifiers and optical
fibers. In our simulation framework, the C-band with a 50GHz
grid size and 76 channels are considered. Owing to resource

Fig. 2: European Network

limitation, we have considered only 76 channels over the total
bandwidth of around 4 THz. The transmitter produces signals
at 32 GBaud. The launch-power for a signal is kept to 0 dBm
and fixed by employing the EDFA approach. The noise value
for EDFA varies uniformly between 4.5 dB and 6 dB with a
1 dB uniform variation of ripple gain. Standard-Single-Mode
Fiber (SSMF) is considered for all the links with a total
distance of 80 km. Fiber-impairments particularly dispersion
(D) = 16 ps/nm/km and attenuation (α) = 0.2 are also consid-
ered. To make simulation framework more realistic, insertion
losses are also calculated with λ = 4, as reported in [19],
[20]. We make use of the Dijkstra algorithm to compute the
shortest paths. For the GSNR computation, we modeled ASE
noise and other nonlinear impairments by utilizing Additive-
White-Gaussian Noise (AWGN) and Generalized Gaussian-
Noise (GGN) models, respectively [21]. GNPy tool is utilized
to mimic the signal characteristics i.e., received power, NLI,
ASE noise, etc., during its propagation against two distinct
networks. The GNPy is an open-source library based on GGN
model and used for optimization [7], [21]. It simulates an end-
to-end environment for the network physical layer abstraction.

TABLE I: European Network Source-Destination pairs

Source Destination Number of Spans
Amsterdam Berlin 8

Brussels Bucharest 30
Frankfurt Istanbul 34
Vienna Warsaw 7
Paris Rome 34

TABLE II: USA Network Source-Destination pairs

Source Destination Number of Spans
Kansas City Las Vegas 30
Milwaukee Minneapolis 6

The synthetic-dataset is generated against two distinct
network-topologies; European (EU) network and USA net-
work as illustrated in Fig. 2 and Fig. 3 respectively. Here
we considered the EU Network as a well-deployed source S
network, whereas the USA Network acts as T network. Both
networks are identical to fiber type and ONE. Nevertheless,
they are distinct in terms of fiber insertion-losses and amplifier
specifications such as ripple gain and noise figure. The dataset
employed for this investigation is comprised 5 paths for EU-
network and 2 paths for USA-network given in Table I and
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Table II. The spectral load considered for each simulated-link
in a dataset is a subset of 276. We considered arbitrary traffic in
the range of 34% to 100% of total utilized bandwidth for each
source-to-destination (s → d) pair. Furthermore, normalization
is performed on a generated dataset to get scaled values using
the Z-score normalization.

III. GSNR AS QOT-ESTIMATION METRIC

Generally, the well-acknowledged metric utilized for QoT-E
of a specific LP routed by particular OLSs from source-node
to destination-node is specified GSNR computation, which
combines the accumulated effect of NLI perturbation and
ASE-noise. Generally, GSNR is defined as Eq. 1, where OSNR
= PRx/PASE, SNRNL = PRx/PNLI, PRx represents the
received signal power of a specific channel, PASE defines the
ASE-noise power, whereas PNLI represents the NLI power.

GSNR =
PRx

PASE + PNLI

=
(
OSNR

−1
+ SNR

−1
NL

)−1
(1)

Exploring the sequential characteristics of a transceiver, the
GSNR seems to provide more precise BER measurements
as indicated in [6]. The PNLI is generated through fiber-
propagation, and it depends on the spectral-load and power
of the particular channel [4]. In this scenario, it is explicit that
there is an ideal spectral-load for each particular OLS that en-
hances GSNR [5]. Inspecting LP propagation’s consequences
for a particular source and destination pair, we provide an
abstracted operation for every ONE as a cascading effect that
adds up QoT deterioration. Simultaneously, a given LP from
a particular source-node to destination-node also encounters
various impairments of all the OLSs traversed earlier. Each
crossed-OLS introduce a certain quantity of NLI and ASE-
noise. However, in addition to the ROADMs effects, every
LP encounters the aggregated impairments of all the OLSs
traversed earlier. For QoT, we can abstract the OLS with
a single variable which is marked as SNR degradation and
generally depends on the frequency (GSNRi(f)). Hence, we
can abstract a network as a weighted-graph (W), where W =
(V, E) corresponds to the specific network topology concerning
the above scenario. The vertices (V) are used to represent
the nodes of the ROADM network, whereas the edges (E)
are used as the OLSs having GSNRi(f) degradation illus-
trated as weights on the corresponding edges, demonstrated
in Fig. 4. Specifically, for an LP routed from source-node I
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to destination-node F that passes along intermediate nodes B,
the QoT is given as follows:

GSNR
−1
IF (f) = GSNR

−1
IB (f) + GSNR

−1
BF(f) . (2)

Following the availability of network abstraction, LPs’ pro-
visioning with a reduced margin for a particular source to
destination is possible based on the GSNR of a particular
source to destination path.

IV. MACHINE LEARNING MODELS

In general, ML has a broad variety of applications in
both optical communications and networking [22]. ML model
implements previously learned knowledge to make predictions.
In this work, three ML models are utilized to evaluate the QoT
of an un-deployed LP. In the following, we shortly give an
overview of these applied ML models.

A. Random Forest

It is an ML model that utilizes an ensemble-learning strategy
that depends on the bagging tree method. In this approach,
each tree executes separately, and eventually, the mean of the
outcome of all the trees is taken to get the final result. In RF,
an arbitrary subset of features and training samples are used
to form a tree. We implemented the Bagging technique, where
n separate ensembles are designed to provide intellectual
information about the dataset, the output of these ensembles
is not correlated. When we get the mean of these ensembles,
it usefully brings in the insights from each of them, and we
achieve a perfect generalization of the end result.

B. Neural Networks

Neural Networks (NN) is an ML model inspired by the
human brain to process information. It generally includes
the input layer, hidden layers, and output layer, where each
layer comprises the set of neurons. NN usually learns with a
feedback approach where the predicted label is compared with
the actual label, then the difference between them is calculated.
The error is assessed for each former layer using a back-
propagation mechanism to adapt the weights with a stochastic
gradient descent approach. For QoT estimation, we executed
the NN model with various tuned parameters to obtain an
effective model providing good accuracy.
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Fig. 6: Paris to Rome: Cross features training.

C. K-Nearest Neighbours

K-nearest neighbors (KNN) is a kind of non-parametric
supervised ML model. We implemented this model to make
estimations by calculating the distance between new instances
and training data points and then classify the data point based
on feature similarity. The foremost hyper-parameters needed
for KNN are number of nearest neighbors (k) and distance
metric.

V. RESULTS & DISCUSSION

This section describes the definition of features and labels
used for ML models and the performance comparison of three
proposed ML models in both the Same Domain (SA) and
DA framework. The normalized dataset is split-ted into train
and test set. The train set incorporates 12,000 samples (four
paths) of the EU network, while the test set includes 3000
samples (one path) from the EU network and 6000 samples
(two-path) from the USA network. The set of ML models’
features are received signal power, frequency of channel NLI,
span-length, ASE noise, and the total distance for all the
76 channels, illustrated in Fig. 5. The Mean Absolute Error
(MAE) metric is used to evaluate all the employed ML models;
it quantifies the GSNR estimations by taking the difference
between the actual value and the predicted value. Furthermore,
the proposed models are simulated using MATLAB® platform
and are configured applying the specifications/hyperparameters
given in the Tab. III.

TABLE III: Hyperparameters of ML Models

ML Model Parameter Value
Method ′Bag′

Random Forest Min leaf size 4
Cycles 50

No of Var to sample 1/3 of max splits
Hidden layers 3
No of units 3

Activation Function ′ReLU ′

Neural Network ′Linear′

Learning rate 0.01
Epochs 1000

k 5
KNN Distance metric Euclidean
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=  14.07 = 2.64
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Fig. 7: Kanas to Las-Vegas: Cross features training.

We compare the performance of three employed ML models
in the Same Domain (SA) and DA scenarios. In the SA
scenario, both the training and testing are performed on the
EU network paths. In contrast, for the DA scenario, ML
models utilized the learned knowledge from the EU network to
estimate the GSNR of LP in the USA network. Furthermore,
we also implemented a feature engineering approach to obtain
important features in GSNR prediction. Additionally, the mod-
els are trained on the cross and relevant features against the
particular label (i.e., GSNR of LP) for performance assessment
and comparison. Initially, we explored the MAE for the SA
mechanism, where the ML model is trained and tested on
the EU network paths. For this approach, we utilized all the
features of 76 channels for performing cross-feature model
training to evaluate the GSNR of channel 1. We reported the
paths in Table I, where the first four paths of the EU Network
are utilized for training the ML models, and the last path
is utilized for assessing the performance of models. Fig. 6
demonstrates the performance of all the models with a mean
(µ) and standard deviation (σ) on the test path (i.e., From Paris
to Rome). It clearly illustrates that the NN model exhibits
excellent results concerning GSNR prediction. However, the
KNN model shows the worst performance than all other
employed ML models. The performance of NN’s becomes
more good owing to the iterative learning mechanism.

For the further performance assessment of ML models, the
DA mechanism is employed where the models are trained on
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EU network and tested on USA network paths given in Table
II. The performance of the DA mechanism for all the ML
models on two test path of the USA network (i.e., From Kanas
City to Las-Vegas and Milwaukee to Minneapolis) is depicted
in Fig. 7 and Fig. 8. In the results, it is explicitly demonstrated
that the outcome of the predictions of the NN model follows
the same trend as the actual values, and it performs better than
all the other employed ML models. However, the prediction
performance of KNN is again the worst among all the models.
Based on these results, we build the following statement that
the NN can generalize effectively in DA’s case due to its
potential to learn more complex patterns very well. It gets
optimum results by continual adjustment of weights at each
input layer.

To perform feature engineering, we implemented the Ran-
dom Forest ML model to find out a set of features that are
most important for the prediction of GSNR. In Fig. 9, several
employed features (on the y-axis) and their importance score
(on the x-axis) is illustrated concerning our label (i.e, GSNR in
our case). It is demonstrated in Fig 9. that the total-distance is
the most striking feature followed by the number of spans,
ASE, NLI, and power for the estimation of GSNR of LP.
After analyzing a set of important features, we trained the ML
models on the relevant important features of channel 1 which
is assumed as a Channel-Under-Test (CUT), and assessed the
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Fig. 10: Paris to Rome: Relevant features training.
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Fig. 11: Kanas to Las-Vegas: Relevant features training

estimation of CUT against one test path of the EU network (SA
scenario) and two test paths of USA network (DA scenario).

Firstly, we evaluated all the ML models’ performance on
a test path, i.e., Paris to Rome in the SA scenario. The result
of the actual and estimated distribution of all the employed
models is depicted in Fig.10. From the values of σ and µ, it
is clear that NN’s performance is excellent compared to other
implemented ML models. Furthermore, in the case of the DA
scenario, the distribution of actual against predicted GSNR for
the CUT on the two test paths, i.e., Kanas to Las-Vegas and
Milwaukee to Minneapolis, is illustrated in Fig. 11 and Fig.
12. The results in both Fig. 11 and Fig. 12 show that NN also
performs best in the case of DA, whereas the performance
of KNN is worst as compared to all the other employed ML
models.

The comparison of ML models for the whole EU and
USA network based on MAE is illustrated in Fig.13, when
trained on cross features vs. relevant features. In the case of
the EU network, Fig. 13 shows that all the three models’
performance is improved with training on relevant features.
When these models are tested on the USA network to examine
NN’s performance further considering both the cross feature
and relevant feature training, the results in terms of MAE
are demonstrated in Fig. 13. From the results, we observed
that NN trained on the relevant feature generalizes well on
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USA network paths and gives an outstanding performance.
Moreover, the performance of KNN and Random Forest is
also enhanced by employing relevant feature training.

From these observations, we conclude that the NN model
trained on CUT’s relevant-features is capable of generalizing
effectively on an unseen-network with an outstanding perfor-
mance. Generally, we observed that when ML models are
trained with relevant features, their performance gets boosted.

VI. CONCLUSION

We explored various ML approaches to estimate the QoT of
LP of an unseen network before its deployment. We utilized
the GSNR of LP as a QoT metric. From our simulation
results, we conclude that NN produces the best results for
the EU and USA network with an MAE of 0.001 dB and
0.005 dB are achieved considering relevant feature training.
For cross-features-based training with the EU network, we
achieved MAE of 0.007 dB and 0.008 dB for the USA
network. Overall, we observed that all the employed ML
models’ performance gets enhanced when relevant features
are considered for training. The results clearly illustrate that
ML-based approaches, particularly NN, notably diminish the
provisioning GSNR-margin in both SA and DA scenarios.
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