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Abstract: In the modern age, the use of video has become fundamental in communication and this
has led to its use through an increasing number of devices. The higher resolution required for images
and videos leads to more memory space and more efficient data compression, obtained by improving
video coding techniques. For this reason, the Alliance for Open Media (AOMedia) developed a
new open-source and royalty-free codec, named AOMedia Video 1 (AV1). This work focuses on
the Wiener filter, a specific loop restoration tool of the AV1 video coding format, which features a
significant amount of computational complexity. A new hardware architecture implementing the
separable symmetric normalized Wiener filter is presented. Furthermore, the paper details possible
optimizations starting from the basic architecture. These optimizations allow the Wiener filter to
achieve a 100× reduction in processing time, compared to existing works, and 5× improvement in
megasamples per second.

Keywords: video coding; AV1; Wiener filter; VLSI

1. Introduction

In the last years, the need for an open media codec has increased with the growth
of internet video contents since the triumph of the internet is founded on the fact that
the basic technologies (such as browsers, operating system, etc.) are open and available
to be freely implemented. Combining these needs led several big companies to create
some alternatives to codecs with complex and expensive royalties. The main goal was
to create a new generation of video coding, to share video fast, easy and at low cost. In
this panorama, Mozilla, Google and Cisco, with Amazon and Netflix and some hardware
vendors like AMD and Intel, founded AOMedia in 2015 that, in 2018, published the
first version of AV1 [1,2], a video codec largely based on VP9 [3]. Still, including many
significant improvements, primarily the full compatibility with W3C Patent Policy [4]:
essentially, it can be fully implemented with royalty-free licensing requirements. The basic
idea was to start from the analysis of the entire AV1 codec and then focus on a particular
part based on the “profiling” results of the AV1 Software model [5] to understand the usage
percentage of each one and evaluate which one needed more attention. From this analysis,
the attention turned on Wiener filter [6]. The importance of the Wiener filter in image
processing is highlighted by the authors in [7,8]. The Wiener filter has many application in
video domain [9,10]. It is also used in other application including speech processing, noise
reduction, deblurring, etc. [11–14].

As mentioned, the Wiener filter reduces noise and removes blurring [15,16]. Among
other signal processing applications, the Wiener filter can be used in de-convolution, noise
reduction, signal detection [17]. The Wiener filter is used to reconstruct a degraded frame
by means of a non-causal filter. Each frame pixel is taken with a w × w window around
it. w is an odd number such that w = 2r + 1, where r is an integer number representing
the radius of involved window [5,10]. Thus the filtering block, instead of operating on
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w × w or w2 input taps, operates on a processed version of the input taps. These taps are
contained in the matrices H and M. In particular, H is given by

H = E[XXT ] (1)

that is the autocovariance of X, the column-vectorized version of the w2 input taps, where
E[·] corresponds to the expectation operation. M is given by

M = E[YXT ] (2)

that is the cross correlation between X and the source pixel Y. This approach requires
transmitting w2 values for each filtered pixel, and this will increment both bit rate cost and
decoding complexity. For this reason, some constrains are imposed [5,10]:

• The resultant filter has to be separable;
• Each horizontal and vertical filter has to be symmetric;
• Horizontal and vertical filter coefficients cannot take any possible value. Their sum

must be exactly S for both filters, where S is a constant value that, for the AV1
implementation, is equal to 216.

These constraints allows to send, for each filter, just r values instead of w. Moreover,
since the filter is now symmetric, it operates only to compute the first r elements. Thus, the
implementation complexity is reduced considering that both the vertical and horizontal
filter, from now on called a and b, respectively, can be reconstructed from the r values. They
can be derived as follows:

a(i) = a(w − 1 − i), i = 0, 1, ..r − 1 (3)

a(r) = S − 2
r−1

∑
i=0

a(i) (4)

b(i) = b(w − 1 − i), i = 0, 1, ..r − 1 (5)

b(r) = S − 2
r−1

∑
i=0

b(i) (6)

The filtering process follows a simple iterative scheme: it starts with an initial value of
horizontal and vertical filters. It optimizes one of them (a in this case) while the other is
kept fixed (bin). Once the first the r-taps version of the filter is obtained, it is reconstructed
using Equations (3)–(6). Then this is used as input for the other filter processing. The
Wiener filter process is represented in Figure 1.

This work provides hardware implementation of the Wiener Filter for AOMedia AV1
video coding. Also a possible high-speed implementation is provided. It is possible for it to
be used for real-time data processing. This is true due to the high frame rates achieved by
the hardware implementation. The next Section 2 details the architecture implementation
of the filter. Section 3 details the results and discussion. Section 4 presents a real-time
evaluation of the filter. Finally the conclusions are given in Section 5.
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Inputs: H, M, bin

Outputs: aupdated, bupdated

Figure 1. Wiener filter process.

2. Architectural Implementation

From an initial mathematical analysis of the algorithm described in [5] and looking
at the implementation into the AV1 codec, it was possible to create an architecture that
performs the same function as the codec. Thus, it obtains the same results. The inputs of
the architecture are:

• The Hij matrix, a single element of the H matrix, of size 7 × 7.
• The M matrix of size 7 × 7.
• The starting guess vector bin, composed of 7 elements.

The outputs are the new couple of horizontal and vertical filters, represented by the
vectors a and b, each comprising 7 elements. The whole architecture can be divided into
two main blocks, referred to as update a and update b. Further, both blocks can be divided
into different steps and eventually into different sub-blocks. As shown in Figure 1, the
update a block receives the initial b vector and computes a 4 × 4 B matrix and a 4-element
A vector using the following equations:

B =
w−1

∑
i=0

w−1

∑
j=0

Hijb(i)b(j) (7)

A =
w−1

∑
i=0

Mib(i) (8)

The output of the filter is obtained by solving a linear system of equations in which:
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• Matrix B is the coefficients matrix
• Vector A is the vector of constant terms

The resulting solution of the system of equations represents the output values of
the filter a. As the software model of AV1 gives r = 3, thus it is necessary to process
these structures by an Enforcement block, which reduces the dimensions. For matrix B, the
dimension is reduced to 3 × 3. The vector A is reduced to 3 elements. Thus, a proper
dimensioned linear system of equations is obtained. To solve this system, the Gaussian
elimination method is exploited. The Gaussian method consists of Partial Pivoting, Forward
Elimination and Back-Substitution steps which are implemented by using blocks of Partial
Pivoting, Forward Elimination and Back-Substitution, respectively. The result is the output
vector X consisting of 3 elements. Finally, by applying the symmetry constraints, the
updated a vector is reconstructed to the dimension w. Similarly, for the update b block,
starting from the new a vector, b vector is obtained by following the same steps. The only
difference is, instead of using a feedback approach in the computation method of martx B
and vector A, a matrix storing mechanism is utilized. We can summarize the operations
performed in the following equations:

B =
w−1

∑
i=0

w−1

∑
j=0

Hija(i)a(j) (9)

A =
w−1

∑
i=0

Mia(i) (10)

Finally, applying the same constraints as for for a vector, the updated b vector is
reconstructed. A more detailed presentation of the block that performs the mentioned
operations is reported below:

• The Enforcement block compresses the inputs adapting them to the 3-dimensional
linear system of equations. By using every component of A, the enforced output
vector is computed as represented in Figure 2. The same approach has been used to
process the B matrix, exploiting the same flow for every 16 components, reducing
them to 9, i.e., 3 × 3. To be coherent with the C model, from now on, B matrix will be
called A and vector A will be called b.

Inputs: A, B

Outputs: Aenforced

Figure 2. Enforcement architecture.

• The Partial Pivoting operation is the simplest block inside the whole architecture as
it only involves interchanging rows of the matrix. Figure 3 represents its hardware
architecture, where k = 0 indicates the first stage of Partial Pivoting , while k = 1
represents the second one. In particular, in the first stage, the absolute values of
A0, A4 and A8 are compared two by two, to find the largest one. Then by using
the Swap Rows block, changing the position of b elements based on the outcome
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of comparators. Similarly, in the second stage, the absolute values of A5, A9 are
compared and eventually swapped to adapt the matrix to be solved with the Gaussian
Elimination Method.

• Forward Elimination is the mathematical step of linear system resolution: it performs
multiplication, division and subtraction to combine properly two rows and transforms
the matrix as close as possible to an upper triangular form. Figure 4 reports the
hardware implementation of the Forward Elimination operation for b vector.

Inputs: A, b

Outputs: Apivot,bpivot

Figure 3. Partial Pivoting architecture.

(a) First stage (b) Second stage

Inputs: A, b

Outputs: bF-E

Figure 4. Forward Elimination architecture.

• What remains is to solve a linear system by using the Back-Substitution and stor-
ing block: 

A0 · a0+A1 · a1+A2 · a2=b0

A5 · a1+A6 · a2=b1

A10 · a2=b2

This implemented architecture is shown in Figure 5. From a computational perspective,
this block is complex because it involves several expensive operators like dividers and
multipliers. Figure 6 shows the update a data path. This contains all the previous blocks
combined inside. The critical path is displayed with an arrows going from Counter i to
the adder on top left. This is because Hijxbixbj involves cascaded multipliers.

• The dividers in the first basic architecture has been implemented in a purely combina-
torial way. In particular, the one used here performs an n-bit division exploiting 2n
consecutive operations of addition and subtraction.



Electronics 2021, 10, 1961 6 of 12

The key idea of the presented work is to use the basic implementation as a starting
point and optimize it. The architecture that will be presented in Section 2.1 is based on
the same data path implementation, but each component block is designed differently
depending on the kind of optimization to reach. Finally, each architecture contains a
specific FSM.

Inputs: A, b

Outputs: X

Figure 5. Back-Substitution and Storing architecture.

2.1. High Speed Architecture

One of the main goals of modern architectures is to process data in the shortest
possible time, which means working at high frequency. Additionally, along with this the
throughput is an important parameter when matrix processing is involved. Thus, the
architecture needs to be accelerated. For this acceleration, the following steps have been
performed. Starting from the original architecture, different timing reports have been
generated to identify the critical issues of the starting architecture. These reports were
analyzed to identify the critical blocks limiting the speedup. Then possible improvements
were found to resolve the limitations, thus reducing the clock time and increasing the
maximum operating frequency and throughput eventually. This analysis pointed out the
two critical points of the structure:

• The length of the combinational paths;
• The combinational dividers.

The first point is due to many operators present along different combinational paths,
which means that the time needed to elaborate a single piece of data is very long. This
slows down the clock period. The second point is due to the structure of the initial dividers,
which performs a division between two 64-bit operands. This means, that each division
consists of 128 operators of adders and subtractors along the same combinational path.
This also slows down the clock period as well as effecting the throughput. Therefore, the
first improvement is to insert pipeline registers to reduce the length of the combinational
paths following the typical Restoring division algorithm [18,19], as reported in Figure 7.
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Inputs: H, M, bin

Outputs: aupdated

The red line shows

critical path

?

Figure 6. Updating a data path.

This helps to improve the clock period, in other words, it allows to operate at higher
frequency. Pipelined registers are inserted in the Back-Substitution, Forward Elimination
basic block, update a and update b top-level architectures. In this way, the length of the
combinational paths has been reduced to a single operator block. The second improvement,
instead, consists of replacing all the old combinational dividers with optimized restoring
dividers [18,19]. The restoring dividers take the dividend and divisor, and store them in
respective registers shown in Figure 7. They are shifted to the left and subtracted. The
MSB of the result is complemented and shifted in the quotient register. The counter is
decremented. When the counter reaches zero, the result is ready in the quotient register. The
main feature of this new divider is that the maximum length of its internal combinational
paths is drastically shorter than the old one. In particular, there is a single adder along
the divider’s critical path. Thus, by implementing these improvements, we obtain a final
structure able to work at a higher frequency and providing a good throughput.
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Inputs: Divisor, Dividend

Outputs: Quotient

Figure 7. Optimized division data path.

3. Implementation Results

The behavioral simulation of the Wiener Filter is performed in modelsim6.2. The
design implementation and synthesis are achieved using Synopsis Design Compiler and
Innovus 20.11 with UMC NAND Gate 45nm technology. The solution is also implemented
using VIVADO 16.1 for obtaining area results in terms of LUT and DSPs on an FPGA. Zync
Zed Board (xc7z020clg484-1) is used as the target device. The video data are streamed to
the ASIC implementation of the Wiener filter. The FPGA implementation is just provided
to have a fair comparison of resources against state-of-the-art. The video is streamed to
the ASIC by using a script to convert the video to pixel values, which is then passed as
matrices. The video is streamed with the help of dual port static RAMs, which acts like a
buffer. The video can be streamed to the FPGA by using VIVADO video library, this helps
treat video as a sequence of frames. Each frame is considered as a matrix and is an input to
the Wiener filter.

High Speed Architecture

The architecture has been validated against the AV1 software model. The PSNR values
are reported by the authors in [5]. The results showed in the timing, area and power reports
are reported here.

Table 1 displays the timing and area results for the dividers. Combinational divider in
the basic architecture has a low frequency and higher area, while the Restoring Divider(RD)
performs much better in both aspects. In caparison to the dividers in [19,20] our timing
results are better by a factor of 100, while we suffer in terms of area. This is because our
design is for 64-bit integer divider. The divider in [19] is a 12 × 12 array divider and [20] is
a 16-bit divisor.

Table 1. Timing and Area results for the restoring divider.

Divider Frequency [MHz] Latency [us] Area [um2]

Combinational 15.15 29.91 87,258.107
Restoring 153.6 1.59 3426.346
RD1 [19] - 577 740.44
RD2 [20] - - 2799
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Table 2 displays the timing, power and area results for the Wiener filter (WF), our
solution is called HSF (High Speed Final). The result is shown for post synthesis and post
place-and-route. The die aspect ratio is set 1.0 × 0.6 with 5 um die margins. For the clock
the fixCap and fixTran are kept true with 10ns provided as the period to satisfy by the
tool. From the results shown, the clock is improved after post P-and-R optimization with
a maximum frequency of 100 MHz. Power of the solution is 1011 mW. The area is much
larger because of unrolling and parallel execution to achieve high performance. The layouts
from the ASIC and FPGA implementation are displayed in Figure 8. The post P-and-R
timing for technology corners, i.e., fast and slow are 9.95 ns and 24.128 ns, respectively. The
fast corner consumes 1519 mW power while the slow one consumes 1196 mW. The fast one
consumes more power working at a higher frequency.

Table 2. Area, Timing and Power results for the Wiener filter ASIC implementation.

HSF Clock [ns] Freq [MHz] Area [um2] Power [mW]

Synthesis 13.29 75.24 1,988,927.227 12.816
P-and-R 10.03 99.7 1,966,505.5 1011

(a) VIVADO Layout (b) INNOVUS Layout

Figure 8. Layouts of the Wiener filter.

Table 3 shows the timing and area results of the HSF for the FPGA implementation. For
latency, clock cycles information is extracted from the simulation. The latency is obtained by
a product of clock cycles with the clock frequency information. The Wiener filter performs
better by a factor of 1000 in terms of timing performance compared to state-of-the-art CPU-
and FPGA-based solutions. The price is paid in terms of area. It consumes more DSPS, LUT
and FFs than other FPGA based solutions. HSF is better in comparison to both software
and hardware solutions for latency at the cost of 10 times higher area consumption. The
LUT and DSP area results were obtained with the help of Xilinx VIVADO tool. This is
only performed to have a reasonable comparison for the HSF architecture. This solution
occupies 10 times more area then other solutions but consumes 1000 times less time. A
good parameter for comparison is Area-Latency product (A-L), which is the obtained in
terms of FPGA cells consumed. Since one FPGA cell contains two LUTs and two FF, so
for this calculation half of the maximum from LUT and FF is considered as the number of
cells. This is because each cell has two FF and two LUTs In terms of A-L our solution is two
orders of magnitude better then the other solutions. Therefore, the area penalty is rectified
here. Moreover, this solution is for a 3-times-higher resolution, as shown in Table 4 and
4 times more bit precision. Thus, high resource consumption is justifiable. The frequency
determines the latency, a low frequency means high area-latency product, resulting in a
poor solution. Whereas, a higher frequency decreases overall latency, thus decreasing the
area-latency product. Hence, a better solution.



Electronics 2021, 10, 1961 10 of 12

Table 3. Timing and Area results for the Wiener filter.

Arch Device Latency LUT FF DSP A-L
[ms] [Cells/s]

HSF FPGA 0.00159 565,181 27,423 166 0.449
WF [21] CPU 406.7 - - - -
WF [22] FPGA 10 3912 4109 14 20.545
WF [23] FPGA 4 - - - -
WF [24] FPGA 25 6721 6186 16 84.013
WF [25] FPGA - 8360 2385 13 -

Table 4. Video sequences fps.

Architecture Resolution fps Msamples/Sec 1

High-Speed 720 × 480 254.452 87.94
Final 720 × 576 211.864 87.86

1280 × 720 95.328 87.85
1920 × 1080 42.372 87.86

WF [22] (FPGA) 512 × 640 - 3.2

WF [23] (FPGA) 256 × 256 250 16.4

WF [25] (FPGA) 2 32 × 32 4541 4.6
1 The Msamples/sec reported are calculated by taking the product of fps and resolution. 2 The fps reported is
extracted from the latency information and sample size given in the article.

4. Elaboration for a Real-Time Video Sequence

In order to better analyze the provided results, the effect of the explained improve-
ments has been measured for a target real-time application. By evaluating throughput,
intended as the number of samples processed per second, it is possible to define how many
frames can be elaborated in real time for a specific target application. This analysis was
conducted for high-speed architecture.

For a very precise idea, the best-known video formats were analyzed: SD and HD. For
each of them, different resolutions were analyzed for approximated fps (frames per second)
to obtain a good measure of the implementation speed. A good parameter for comparison
is megasamples per second (Msamples/s), which is the product of frame size (height ×
width) and the reciprocal of latency. Thus, it also takes into account the resolution of the
frames. Along with the fps, Msamples/s is also reported in Table 4. The fps of [25] is
much better than our solution but at a very small resolution. In terms of Msamples/s, our
solution outperforms all of the solutions in literature by a factor of 5. Results shown in
Table 4 show that the proposed architecture can sustain very high frame rates both for SD
and HD video resolution.

5. Conclusions

The presented work provides an algorithm-to-architecture mapping of the Wiener Fil-
ter for AOMedia AV1 video coding. To make it compatible with different sets of application,
a possible high-speed implementation aimed at the speed increment is explained. Thus,
it is possible to exploit a high-speed architecture in a very efficient way to improve the
working frequency. In terms of throughput, the solution is much better then the state of the
art. The design choice reported in this paper aims to create a special-purpose application
coherent in terms of data, parallelism and operations with the C implementation of the
Wiener filter [26]. Future works include the overall power and accuracy analysis of the
implemented filter relative to the literature.
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