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Figure 17. Experimental waveforms in steady-state conditions with Vdc = 800 V, ϕ = 15° and
S = 15 kVA. From top to bottom: (a) reference bridge-leg voltages vam, vbm, vcm and zero-sequence
voltage vo (from DAC of the MCU), (b) converter-side currents iabc, (c) grid-side currents ig,abc,
(d) and mid-point current im, with and without the zero-sequence voltage saturation vo,max/min.
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Figure 18. Experimental waveforms in steady-state conditions with Vdc = 800 V, ϕ = 0 and
P = 15 kW. A constant zero-sequence voltage component vo = 0.15 Vdc/2 is added to vo,3 (ZM-
PCPWM). From top to bottom: (a) reference bridge-leg voltages vam, vbm, vcm and zero-sequence
voltage vo (from DAC of the MCU), (b) converter-side currents iabc, (c) grid-side currents ig,abc,
(d) and mid-point current im, with and without the zero-sequence voltage saturation vo,max/min.



Energies 2021, 14, 5280 24 of 33

3.2.1. Total Harmonic Distortion (THD)

The grid-side current total harmonic distortion (THD) is defined as

THD =

√
I2
g,RMS − I2

g,1,RMS

Ig,1,RMS
(28)

where Ig,RMS is the total RMS value of the grid-side current and Ig,1,RMS is the RMS value
of the grid current first harmonic.

The rectifier performance is mapped over the complete modulation index M and
converter-side power factor angle ϕ operating region, both at 50% and 100% of the nominal
apparent power (i.e., S = 30 kVA). The results are shown in Figure 19, where the THD
performance obtained with and without vo,max/min saturation are compared. As expected
from Figure 14, the quality of the grid-side current improves at higher load levels, as the
zero-crossing distortion is reduced. Moreover, by enforcing the zero-sequence voltage satu-
ration, the THD lies below the conventional 5% limit (i.e., required by grid standards [44])
for all operating points, which is not the case when vo,max/min is disabled. Finally, it is
observed that the THD values are not symmetrical with respect to ϕ, resulting in worse
distortion for ϕ < 0 (i.e., capacitive operation). The main explanation resides in the fact
that the zero-sequence voltage saturation modifies the current ripple shape and amplitude,
leading to a wider DCM operation around the zero-crossings for negative values of ϕ.
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Figure 19. Experimental grid-side current total harmonic distortion (THD) for S = 15 kVA (a,b) and
S = 30 kVA (c,d). Results without zero-sequence voltage saturation (a,c) and with zero-sequence
voltage saturation (b,d).
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3.2.2. Displacement Power Factor (DPF)

The displacement power factor (DPF) of the rectifier is defined as

DPF = cos
(
∠~U −∠~Ig

)
=

P
S

(29)

where ∠~U and ∠~Ig are the phase angles of the grid voltage vector (i.e., measured at the
PCC) and the grid current vector, respectively. It is worth noting that DPF 6= ϕ, as the
grid-side converter current also includes the filter capacitor current contribution. The
experimental DPF is illustrated in Figure 20a,c for 50% and 100% of the nominal apparent
power (i.e., S = 30 kVA). In both cases, the zero-sequence voltage saturation is enabled.

For a better understanding of the phase-shift between ~U and~Ig, the DPF angle (i.e.,
cos−1(DPF)) is shown in Figure 20b,d, where a positive value indicates a lagging power
factor (i.e., inductive behavior) and a negative value indicates a leading power factor (i.e.,
capacitive behavior). It can be observed that the current flowing into the filter capacitor Cf
is completely compensated for ϕ ≈ 4.2° at 50% of the rated power and ϕ ≈ 3° at 100% of
the rated power, as expected from basic theoretical considerations.
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Figure 20. Experimental displacement power factor (DPF) (a,c) and DPF angle (b,d) for S = 15 kVA
(a,b) and S = 30 kVA (c,d). The current flowing into the filter capacitor Cf is completely compensated
for ϕ ≈ 4.2° in (b) and ϕ ≈ 3° in (d).
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3.2.3. Maximum Mid-Point Current (Im,max)

The maximum DC-link mid-point current capability of the rectifier (Im,max) is as-
sessed experimentally by operating the converter at 50% of the rated apparent power (i.e.,
S = 15 kVA) and injecting a zero-sequence voltage equal to vo,min. The results are illustrated
in Figure 8b in Section 2.5, where they are normalized with respect to the converter-side
peak current value I. It is observed that the theoretical and the experimental results are
in close agreement, achieving a maximum deviation of 5% over the complete operating
range of the rectifier. Therefore, the analytical Im,max formulas derived in Appendix A can
be considered successfully verified.

3.2.4. Minimum Mid-Point Charge Ripple (∆Qm,pp,min)

The minimum DC-link mid-point peak-to-peak charge ripple ∆Qm,pp,min is assessed
experimentally by operating the converter at 100% of the rated apparent power (i.e., S =
30 kVA), injecting the zero-sequence voltage component vo,3 defined by ZMPCPWM and
saturating it according to the vo,max/min limits. In particular, the mid-point charge is obtained
in post-processing as the integral of the measured mid-point current im. The results are
illustrated in Figure 10b in Section 2.6, where they are normalized with respect to the converter-
side peak phase current I and three-times the grid frequency 3 f . Additionally in this case, the
theoretical and the experimental results are in close agreement; however, the value ∆Qm,pp,min
obtained experimentally does not reach 0 for ϕ = 0. This is mainly due to the converter-side
current not being perfectly sinusoidal, as it features a slight zero-crossing distortion that
yields a non-zero mid-point current local average (see Figure 15). Nevertheless, ∆Qm,pp,min =
0 can never be achieved in practice, as the switching-frequency mid-point current ripple
(i.e., neglected in the theoretical model) yields a non-zero charge ripple: theoretical and
experimental results at ϕ = 0 would only coincide for fsw = ∞. Overall, the analytical
∆Qm,pp,min formula derived in Appendix B can be considered successfully verified, achieving
best estimation accuracy for systems with fsw � f (i.e., with high pulse ratios).

4. Conclusions

This paper has presented a comprehensive analysis and performance assessment of
three-phase three-level unidirectional rectifiers under non-unity power factor operation
and unbalanced split DC-link loading.

The complete analysis applies to all three-level unidirectional rectifiers and thus fea-
tures a wide range of applications, e.g., active front ends for the supply of variable-speed
drives, uninterruptible power supply systems, battery chargers, data centers and high-
power DC loads. In particular, the ability to operate under non-unity power factor is be-
coming a desired feature of modern rectifiers, as distribution system operators worldwide
are starting to charge end consumers for the excess reactive energy injected/withdrawn
into/from the grid. In this scenario, properly controlled unidirectional rectifiers could
support the reactive energy flows and potentially substitute traditional power factor cor-
rection capacitor banks, without requiring new or additional hardware. Furthermore, the
ability to operate under unbalanced split DC-link loading is necessary when separate
loads are connected to the rectifier DC-link halves, which is typically the case for modular
high-power converters (e.g., the DC/DC stage of electric vehicle DC fast chargers).

Therefore, this paper has focused on analyzing, improving and extending the oper-
ation of three-phase three-level unidirectional rectifiers. First, the operational basics of
three-level rectifiers have been recalled and the theoretical operating limits of the con-
verter in terms of zero-sequence voltage, modulation index, power factor angle, DC-link
mid-point current and minimum DC-link mid-point charge ripple have been derived.
A unified carrier-based pulse-width modulation (PWM) approach aiming for the undis-
torted operation of the rectifier across all feasible operating conditions has been proposed,
de facto enabling the converter operation under non-unity power factor and unbalanced
split-DC-link loading. This approach, uniquely based on restraining (i.e., saturating) the
zero-sequence voltage within its feasible limits, has been described in detail and its effects
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on the DC-link mid-point current generation have been investigated. Furthermore, novel
analytical expressions have been derived in the Appendix, defining the rectifier maximum
mid-point current capability (i.e., directly linked to the converter DC-link load unbalance)
and the minimum peak-to-peak DC-link mid-point charge ripple (i.e., allowing for the
straightforward sizing of the DC-link capacitance value) over the complete converter oper-
ating region. Finally, the theoretical analysis has been successfully verified on a digitally
controlled 30 kW T-type rectifier prototype operating at 20 kHz. The input phase current
total harmonic distortion (THD), the maximum mid-point current capability and the min-
imum mid-point peak-to-peak charge ripple have been experimentally assessed across
all rectifier operating points, demonstrating excellent performance and a high-level of
agreement with the analytical predictions.
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Appendix A. Analytical Derivation of the Mid-Point Current Limits

The boundaries of the mid-point current periodical average Im can be derived av-
eraging the maximum and minimum feasible envelopes of im along the grid period, i.e.,
integrating (24) over 2π/3. In particular, being the integrals of im,max and im,min identical
but with opposite sign, the Im limits are symmetrical:

Im,max = −Im,min = − 3
π Vdc

2π/3∫
0

[
∑

x= a, b, c
vx |ix| + vo,min ∑

x= a, b, c
|ix|
]

dϑ. (A1)

(a)

im,max

im,min

φ

(b) (c)

vo,max

vo,min

δ γ γδ

Figure A1. Zero-sequence voltage limits vo,max, vo,min and mid-point current local average limits
im,max, im,min for (a) M = 0.5 (region 1 ), (b) M = 0.6 (region 2 ) and (c) M = 0.7 (region 3 )
assuming ϕ = 10°. The focus is on 0 ≤ ϑ ≤ π/3 to highlight the most relevant angle definitions for
the analytical calculations (i.e., ϕ, δ, γ).
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Due to the 2π/3 periodicity of the first term, its integral is null, thus resulting in

Im,max = − 3
π Vdc

2π/3∫
0

vo,min (|ia|+ |ib|+ |ic|)dϑ. (A2)

To ease the solution of (A2), it is worth observing that im,max for 0 ≤ ϑ ≤ π/3 is equal
to −imin for π/3 ≤ ϑ ≤ 2π/3 (see Figures 6 and 7). Therefore, the integration interval
may be restricted to ϑ ∈ [0, π/3] by considering both maximum and minimum im en-
velopes. A highlight of the waveforms within the selected integration interval is provided
in Figure A1.

Therefore, leveraging the vo,min definition and the signs of ia, ib, ic inside the consid-
ered averaging window, different Im,max expressions are obtained depending on the value
of the modulation index. In particular, three main regions can be defined, as illustrated
in Figure A2: region 1 with M < 1/

√
3, region 2 with 1/

√
3 ≤ M ≤ 2/3 (i.e., the transition

region) and region 3 with M > 2/3. The current and voltage waveforms for regions 1 , 2
and 3 are reported in Figure A1a–c, respectively.

c

b

a

ϑ
V *

321

δ

γ

V 

Figure A2. Overview of the modulation index regions 1 , 2 and 3 on the space vector diagram,
focusing on 0 ≤ ϑ ≤ π/3. The transition region 2 is highlighted in grey and the most significant
angle definitions for the analytical calculations are indicated (i.e., ϑ, δ, γ).

The expressions of Im,max are therefore:

Im,max, 1 =
6

π Vdc

[ π/6+ϕ∫
0

ia va dϑ −
π/3∫

π/6+ϕ

ic vb dϑ −
π/6+ϕ∫

0

ia vb dϑ +

π/3∫
π/6+ϕ

ic vc dϑ

]
, (A3)

valid for M < 1/
√

3,

Im,max, 2 =
6

π Vdc

[
−

π/6+ϕ∫
0

ia vb dϑ −
π/3−δ∫

π/6+ϕ

ic

(
Vdc
2
− va

)
dϑ +

π/3∫
π/3−δ

ic vc dϑ +

+

δ∫
0

ia va dϑ +

π/6+ϕ∫
δ

ia

(
Vdc
2

+ vc

)
dϑ −

π/3∫
π/6+ϕ

ic vb dϑ

]
, (A4)
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valid for 1/
√

3 ≤ M ≤ 2/3, and

Im,max, 3 =
6

π Vdc

[ π/6+ϕ∫
0

ia

(
Vdc
2

+ vc

)
dϑ −

π/3−γ∫
π/6+ϕ

ic vb dϑ −
π/3∫

π/3−γ

ic

(
Vdc
2

+ vc

)
dϑ +

+

γ∫
0

ia

(
Vdc
2
− va

)
dϑ −

π/6+ϕ∫
γ

ia vb dϑ −
π/3∫

π/6+ϕ

ic

(
Vdc
2
− va

)
dϑ

]
, (A5)

valid for M > 2/3. The angles δ, γ are graphically illustrated in Figures A1 and A2, and
their expression is obtained by setting va = vc + Vdc/2 and va − Vdc/2 = vb, respectively, as

δ =
π

6
− cos−1

(
1√
3M

)
1√
3
≤ M ≤ 2

3
, (A6)

γ =
π

3
− sin−1

(
1√
3M

)
M ≥ 2

3
. (A7)

Finally, substituting (3), (5), (A6), (A7) into (A3)–(A5) and solving the integral terms,
the following analytical expressions are obtained:

Im,max, 1 =
3
π

I
M
4

cos ϕ
(

π +
√

3− 2
√

3 ϕ tan ϕ
)

(A8)

valid for M < 1/
√

3 and

Im,max, 2 = Im,max, 3 =
3
π

I

[
1 +

1
2M

cos ϕ

(√
3M2 − 1− 1√

3

)
+

+
M
2

cos ϕ

(
3 sin−1

(
1√
3M

)
− π −

√
3

2
− 2
√

3 ϕ tan ϕ

)]
(A9)

valid for M > 1/
√

3. Expressions (A8) and (A9) are graphically illustrated in Figure A3,
where the modulation index regions 1 , 2 and 3 are also indicated.

1 2 3

φmin

φmax

Figure A3. Maximum mid-point current periodical average Im,max (i.e., normalized with respect to
the peak phase current I) as a function of the modulation index M and the converter-side power
factor angle ϕ. The three modulation index regions 1 , 2 and 3 are indicated.



Energies 2021, 14, 5280 30 of 33

It is worth noting that this analytical derivation extends the approach reported in [16],
where the mid-point current periodical average limits are derived uniquely for ϕ = 0.

Appendix B. Analytical Derivation of the Minimum Mid-Point Charge Ripple

To identify the minimum value of DC-link mid-point peak-to-peak charge ripple
∆Qm,pp, the zero mid-point current modulation (ZMPCPWM) is considered, therefore
the third-harmonic zero-sequence voltage reported in (26) is added to the phase voltage
references. Figure A4 shows the zero-sequence voltage vo waveform and the mid-point
current local average im waveform for M = 0.8 and ϕ = 15°. In particular, it is observed
that the zero-sequence voltage saturation occurring for ϕ 6= 0 causes a deviation of the
mid-point current average, which in turn leads to a non-zero ∆Qm,pp.

(a)

vo

(b)
im

φ

ε

ΔQm,pp,min

Figure A4. Zero-sequence voltage vo (a) and mid-point current local average im (b) for M = 0.8
(region 3 ) and ϕ = 15°. Zero mid-point modulation (ZMPCPWM) is adopted. The most relevant
angle definitions for the analytical calculations (i.e., ϕ, ε) are indicated.

Figure A4 also shows that when ZMPCPWM is adopted, im ≥ 0 within 0 ≤ ϑ ≤ π/3,
thus leading to a simplified expression of the mid-point charge ripple:

∆Qm,pp =
1

2π f

π/3∫
0

im dϑ, (A10)

Therefore, due to im being null for most of the period, the minimum ∆Qm,pp can be
calculated by restricting the integration interval to

∆Qm,pp,min =
1

2π f

π/6+ϕ∫
π/6+ε

im dϑ = − 1
π f Vdc

π/6+ϕ∫
π/6+ε

[
∑

x= a, b, c
vx |ix| + vo,min ∑

x= a, b, c
|ix|
]

dϑ, (A11)

where im has been substituted with (16), vo = vo,min within π/6 + ε ≤ ϑ ≤ π/6 + ϕ, and ε is
obtained by setting vo,3 = −vb, as

ε =
1
2

[
ϕ− π

2
+ cos−1

(
1
2

sin ϕ

)]
. (A12)
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Finally, substituting (3), (5), (A12) into (A11) and solving the integral terms, the
following analytical expression is obtained:

∆Qm,pp,min =

√
3

8π f
IM
[√

4− sin2 ϕ− 2 cos ϕ− sin ϕ

(
cos−1

(
sin ϕ

2

)
− π

2
− ϕ

)]
, (A13)

valid for the complete modulation index range 0 ≤ M ≤ 2/
√

3. Expression (A13) is
illustrated in normalized form in Figure A5, where the modulation index regions 1 , 2
and 3 are also indicated.

φmin

φmax

1 2 3

Figure A5. Minimum DC-link mid-point charge ripple ∆Qm,pp (i.e., normalized with respect to the
peak phase current I and three-times the grid frequency 3 f ) as a function of the modulation index M
and the converter-side power factor angle ϕ. The three modulation index regions 1 , 2 and 3
are indicated.
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