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Abstract—Deep Neural Networks (DNNs) computation-hungry algo-
rithms demand hardware platforms capable of meeting rigid power
and timing requirements. We introduce the Serial-MAC-engine (SMAC-
engine), a fully-digital hardware accelerator for inference of quantized
DNNs suitable for integration in a heterogeneous System-on-Chip (SoC).
The accelerator is completely embedded in the form of a Hardware
Processing Engine (HWPE) in the PULPissimo platform, a RISCV-based
programmable architecture that targets the computational requirements
of IoT applications. The SMAC-engine supports configurable precision
for both weights (8/6/4 bits) and activations (8/4 bits), with scalable
performance. Results in 65 nm technology demonstrate that the serial-
MAC approach enables the accelerator to achieve a maximum throughput
of 14.28 GMAC/s, consuming 0.58 pJ/MAC @ 1.0 V when operating at a
precision of 4 bits for weights and 8 bits for activations.

Index Terms—VLSI, hardware accelerator, Deep Learning, energy
efficiency, bit-serial, DNN, CNN, low power

I. INTRODUCTION

Today, Artificial Intelligence (AI) is increasingly permeating many
aspects of our society, gaining attention and unleashing powerful
applications that go beyond all expectations from just a few years ago.
Deep Learning (DL) enables a large variety of ad-hoc brain-inspired
applications such as image and speech recognition [1] [2], object
detection and segmentation [3] or financial forecast [4]. Even if Deep
Learning has a high computational cost with respect to conventional
Machine Learning (ML), it has strongly emerged in recent years.
The reason why DL is taking off compared to traditional ML lies
in its capability to process and take advantage of a huge amount of
data. Despite the data availability increase, ML has no significant
performance-enhancing, while the counterpart can exploit its deep
layer design to boost the task outcome performance. Moreover,
the continuous digitization concerning the reality surrounding us
produces an outstanding amount of information from which the DL
can draw and thrive tirelessly. However, such remarkable accom-
plishment comes at a cost represented by the fact that constant data
stream combined with challenging algorithms make DL applications
computation-hungry. This problematic landscape poses an obstacle
for the Internet-of-Things (IoT) future development since many of
its constituent smart nodes have limited resources. Edge computing
intervenes by cutting off the need for data transmission and broad
bandwidth by pushing the analytic part from servers to sensors and
portable devices, encouraging the integration of accelerators next to
the data sources.

In this scenario, the call for suitable architectures able to tackle
both computation and power demands arises. Hardware accelerators
can play an essential role in enabling the deployment of intense infer-
ence sessions on Application Specific Integrated Circuit (ASIC)-scale
devices [5]. Software and hardware co-design techniques are heavily
employed to cut off Deep Neural Networks (DNNs) complexity, along
with the energy required per operation such as quantization [6]. In
addition, architectural strategies exploit the data spatial locality of the
DNN to reuse activations or weights. Consequently, this reduces the
required memory bandwidth and leads to stationary Datapaths (DPs).

In this work, we present the Serial-MAC-engine (SMAC-engine), a
65 nm hardware accelerator with wide flexible parallelism that targets
quantized DNNs: 8 or 4 bits for activations and 8, 6, or 4 bits for
weights (considered the standard in the inference at the edge [7]).
The main contributions of this paper are:

• A parametric DP easy to be adapted to any dataflow. In this case,
an input/output stationary DP in which activations are shared and
reused, dedicating the whole available memory bandwidth to the
weights loading process.

• The serial attitude allows scaling between the various paral-
lelisms, reaching almost 100% of the hardware utilization, w.r.t.
parallel solutions. The consumption of 0.58 pJ/MAC only makes
the power budget of the order of mW, suitable for IoT.

• The proposed solution is equipped with a memory-based inter-
face and integrated into a heterogeneous System-on-Chip (SoC),
like PULPissimo [8], in which one or many cores can orchestrate
the processing of the data directly coming from the sensors.

• This work is entirely open-source available at [9].

In Section II, we introduce the most promising work found in
the literature. Section III describes the architectural features and the
design choices from the basic block up to the final integrated engine.
In Section IV, performance concerning frequency and synthesis are
outlined in detail (see Table I) as well as the validation performed on
popular DNN topologies (VGG16 [10] and SqueezeNet [11]). Finally,
Section V sums up the work and suggests some future developments.

II. RELATED WORK

During the last years, many efforts have been lavished to produce
cutting-edge hardware. Computation-hungry DL applications com-
bined with IoT expansion have started the race for the edge computing
development. This last offers a tradeoff among several factors, such as
performance, accuracy, and power consumption. The main bottleneck
for energy is the continuous stream of data coming from the memory
as an effect of DNN algorithms greed for activations and weights.
Based on this assumption, two main possible solutions can be adopted
(often used together): to reduce either the amount (pruning [20])
or bitwidth (quantization [21] [22]) of data and to reduce the data
movements across the architecture [5]. Quantization allows cutting
down the bit-precision of activations and weights, reducing the
memory and computational complexity enormously. Concerning such
techniques, several software approaches tried to provide efficient
libraries to boost quantized DNN process over microcontroller unit
architectures such as CMSIS-NN [12] and PULP-NN [13]. Despite
both of them being oriented towards maximizing the overall perfor-
mance but minimizing the memory footprint, CMSIS-NN targets the
Arm Cortex-M processors, while PULP-NN (based on the previous
one) targets the PULP SoCs [23] [8] [24].

To better exploit quantization, new bit-serial architectures have
been proposed like UNPU [17], Stripes [18], and Loom [19]. These



TABLE I
COMPARATIVE TABLE.

HW solution Technology Frequency Area Throughput Power (@ 25°C) Energy Efficiency Throughput/Area
[nm] [MHz] [mm2] [GMAC/s] [mW] [pJ/MAC] [GMAC/s/mm2]

SW CMSIS-NN [12] - - - 0.05 - 0.15 1 - 1000 667 - 2000 -
PULP-NN [13] - - - 0.5 - 1 1 - 100 40 - 67 -

bit-parallel

ShiDianNao [14] 65 1000 4.86 64 320 5 13.17
Eyeriss [15] @ 1 V 65 200 12.25 23 278 12.09 1.88
BRein [16] @ 1 V 65 400 3.9 518 600 2 132.82

bit-serial

UNPU [17] @ 1.1 V 65 200 16 827 5.92 0.36 51.69
Stripes [18] - - 16 345.6 297 0.86 21.6
Loom [19] - - - - - - -

SMAC-E @ 1.0 V * 65 476 0.36 14.28 7.38 0.58 40.8
SMAC-E @ 1.2 V * 65 625 0.36 18.75 12.91 0.76 52.08

* SMAC-E results refer to Pa=8 and Pw=4

allow to dynamically adapt to the incoming data bitwidth by enhanc-
ing hardware utilization compared to parallel solutions. Moreover,
the serial approach requires straightforward arithmetic logic hardware
that grants reduced area and power budgets, enabling the inference
at the edge required by IoT.

A way to drastically reduce the data movement is to have a memory
closely-coupled to the accelerator, avoiding deep hierarchy. UNPU
[17] rely on a Tightly Coupled Data Memory (TCDM) through
which it can be programmed and reach activations and weights. Data
movement can also be minimized by adopting aggressive strategies
of activations or weights reuse at the local level through the sub-
components of the design, like in the case of Eyeriss [15] where just
0.0029 DRAM access/multiply occur. Exploiting a different paradigm
called logic-in memory, it is possible to drastically reduce the memory
accesses since the computation is performed directly inside the
memory like in BRein [16].

III. ARCHITECTURE

A. Background

The fundamental operation for both fully connected and convolu-
tional layers is the multiply-and-accumulate (MAC). Since tens of
thousands of MACs per layer occur, the need for high performance
requires to develop a highly parallel structure able to allocate millions
or billions of operations per second. Commonly, the most used
paradigms are two: temporal and spatial architectures. Temporal
ones are typically represented by CPUs and GPUs, where clusters
of Arithmetic-Logic Units (ALUs) are driven from a unique core
control. ALUs are decoupled, making communication or data transfer
impossible, indeed data only come from the memory hierarchy. On
the other hand, hardware accelerators exploit spatial architectures
where ALUs, also named Processing Elements (PE), are distributed,
forming a network in which data can travel through local memory
buffers. Since data fetch and relocation are two of the most expensive
tasks in terms of energy, architecture designs are tailored to ad-
hoc dataflows [5], which data reuse cuts off memory and energy
consumption. Each MAC needs to fetch an activation and a weight,
for a total of two memory accesses, another memory access is needed
to write back the result. In order to overcome such bottleneck,
input and output stationary approaches have been developed. The
former consists in reading the activations or weights once and then
retain these values by means of registers as much as possible. On
the contrary, the output stationary approach minimizes the energy
demanded to write and read partial sums to and from memory. In

fact, by allocating accumulators, partial results are retained and reused
locally.

In this work, we present an architecture that is both input and
output stationary. Activations are shared among PEs and reused, while
weights are continuously fetched. Three different accumulation levels
avoid stressing the memory from the partial results stream as detailed
in Subsection III-B.

Despite accelerators are specialized units able to perform just
a few tasks, although, with high performance, they have to work
in complex systems, such as a microprocessor. As a consequence,
each accelerator must have a proper interface. In this current work,
we integrated our SMAC-engine into the PULPissimo platform
as a Hardware Processing Engine (HWPE) [25]. PULPissmo is a
parallel ultra-low-power microcontroller architecture suitable to be
embedded in an IoT endpoint [8]. Thus, the SMAC-engine would
serve as a power-efficient extra-core for DNN edge processing. Its
interface is composed of a TCDM and a microprogrammed Control
Unit (CU). While the first is used by the central core to transfer
data to the accelerator, the latter orchestrates the elaboration phase.
The memory bandwidth towards the TCDM has been identified in
128 bits/cycle since this value ensures a good trade-off between the
area and frequency of the engine as it will be further discussed in
Subsection III-D.

With regard to the parallelism, the architecture aims to present a
flexible solution able to process the state-of-the-art quantized neural
networks found in the literature. Nowadays, thanks to quantization
techniques, the required bitwidths have been identified in 8 and 4
bits for the activation width, called Pa, and in 8, 6, and 4 bits for
the weights width, called Pw. The data bitwidth can be suitably
modified (Pa and PW) in order to accommodate any application. The
parallelism chosen in this work is now considered the state of the
art for video applications and beyond [7]. Such choice allows not
to deteriorate classification tasks of the DNNs while simultaneously
speeding up the computation and strongly reducing the memory
occupation, especially for the weights, which overall number tends
to be greater than the number of activations.

For what concerns the data flow, we derived output and input
stationary data flow in which convolution is performed by fetching
the activations along the channels’ direction. Algorithm 1 describes
the data flow loops required to complete a convolution task using
the typical sliding window technique, where x is the input feature
map, y the output one, and w the kernel. Six nested loops are needed
to cycle first over the channel depth, then over the kernel size, up
to the feature maps size, moreover, two further loops serve for bit-



wise operations. Shifting first the activations and then the weights
from the Least Significant Bit (LSB) towards the Most Significant
Bit (MSB), the engine produces the partial results through bit-serial
multiplications and sums. n[i]

W , n[i]
H , n[i]

C identify the width, height,
and depth of the i-th feature map, while f [i] is the size of the i-
th filter. Figure 1 is a representation of the above-mentioned data
flow where activations and weights are fetched along the channel
direction to produce output feature maps in the same orientation.
Such an approach allows us to retain activations for as many kernels
as possible inside the considered convolutional volume and locally
accumulate partials sums until the end of the task.

Algorithm 1 Convolution nested loops and bit-serial loops.
ConvolutionLoops :

1: for hout = 0 : n
[i]
H do

2: for wout = 0 : n
[i]
W do

3: for kout = 0 : n
[i]
C do

4: for l = 0 : f [i] do
5: for j = 0 : f [i] do
6: for kin = 0 : n

[i−1]
C do

Bit− SerialLoops :
7: for wbit = LSB : MSB do
8: for xbit = LSB : MSB do
9: y[kout][wout][hout] + =

x[kin][wout + l][hout + j][xbit]×W [kout][kin][l][j][wbit]

 x              =n[i-1]
H

n[i-1]
W

n[i-1]
C

n[i-1]
C

f [i]
f [i]

kernels

n[i]
W

Input feature map Output feature map

n[i]
H

n[i]
C

Fig. 1. Input/Output stationary data flow visualization.

B. SMAC

The SMAC’s basic structure, Figure 2, is based on the one proposed
by Sharify et al. named Loom [19] and by Lee et al. UNPU [17].

While we derived the main architecture from the first, we were
inspired by the second in terms of energy efficiency and data bitwidth,
however, using limited resources w.r.t. UNPU to make the architecture
more suitable to the target platform (Subsection III-D).

Loom architecture was inspired in turn by DaDianNao [26], where
the structure can perform M MAC operations per cycle concurrently.
Nonetheless, allocating M multipliers and an adder tree would
severely impact the final clock frequency, especially when M is large.
By replacing the parallel structure with a serial one, multipliers can
be substituted by AND gates. The throughput is kept unchanged
by increasing the number of computational engines. With such a
structure, M MAC operations, equivalent to the ones performed by the
parallel structure, can be performed only thanks to two accumulators
inserted after the AND block to retain the partial sums. Indeed,
while the weight bits are stationary, the activation bits are shifted

serially, and the partial sums relative to the fixed weight bit have to be
summed together by a first accumulator AC1. The coherence among
the partial sums is kept by performing a shift to the right. This is
correct provided that activations and weights are shifted from the least
significant bit (LSB) to the most significant bit (MSB), otherwise, the
shifting would be performed in the opposite direction.

Following the same logic, a second accumulator AC2 has been in-
serted after the previous one to take care of the partial results obtained
for each of the weight bit. Moreover, since data are represented in
two’s complement, a register between AC1 e AC2 allows inverting
the content of AC1 whenever the weight bits are fixed to the MSB.
Unlike AC1, AC2 is composed of 4 registers, this allows to work
with four different filters in parallel and retain their partial sums. A
third and final accumulator AC3 has been inserted to sum together
partial results belonging to the same convolutional volume.

Ideally, after the convolution operation has been completed, the
outcome must be quantized to be again represented with the same
bitwidth of the input activations, thus with Pa bits. The amount of
required shifting depends on the size of the specific convolutional
layer. However, the idea of instantiating barrel shifters to perform
quantization is not particularly convenient, mostly due to the area
overhead requirements, which would lead to an unacceptable area
occupation. A simple, but effective solution is to perform quantization
serially by using shift registers in AC3 stage. Hence, once the
convolution operation is done, a pre-loaded programmable counter
can be exploited to serially shift the registers’ values. Finally, after
the quantization step, one of the most used activations function,
the Rectified Linear Unit (ReLU), has been inserted. The ReLU is
performed thanks to a multiplexer that uses as input selection the
MSB of the convolution output.

C. SMAC-engine

The hardware datapath’s width has been designed on the worst
case, i.e., considering the maximum bitwidth for both activations and
weights, Pa = 8 and Pw = 8.

Unlike the parallel solution, the serial one requires increased
latency to perform M MACs. Instead of M MAC/cycle, it can perform
M MACs after Pa×Pw cycles. Thus, for the serial solution in order
to match the same throughput as the parallel one, the number of
MAC blocks must be increased by Pa×Pw times. Since the serial
solution employs far less hardware than the parallel counterpart, even
instantiating more multipliers, the area remains reasonable.

To establish an acceptable value for M, a comparison in terms of
area vs. operating frequency between parallel and serial approaches
has been performed. Using the UMC-65 nm library in worst-case
conditions, namely 0.9 V supply voltage @ 125 °C, we found that
even if the SMAC block is replicated Pa×Pw times, the area for
the parallel case is still 2.9× larger. Indeed, a SMAC block requires
an order of magnitude less area than the parallel counterpart and is
capable of reaching a maximum frequency that is nearly twice. This
analysis has shown that a good trade-off among area, bandwidth, and
frequency is obtained with M = 16, as described in Subsection III-D.

In conclusion, the SMAC-engine is a cluster of Pa×Pw = 64 SMAC
blocks designed to support the worst-case (Pa = 8 and Pw = 8) and
with M = 16. Activations are shared among SMACs, so the engine can
process M activations per convolution, while each SMAC can take
care of M weights per filter. Thus, the SMAC-engine can process
64 filters per convolution, that can be expanded to 256 thanks to the
four registers in AC2 and AC3 stages. When more than 256 filters
are involved, such as 512 for example, the structure handles splitting
the operation into two parts.



+

w0

wM-1

1 1 1

1

1

1 1

1

1

AC1 AC2

MSB_a

+

>>1

MSB_w

+

>>1

>>1

>>1

>>1

AC3 & QUANTIZATION

+
>>q

>>q

>>q

>>q

0

P a

1

ReLU

a0aM-1 aM-2

wM-2

ACTIVATIONS

W
E
IG

H
T
S

M

BIT-SERIAL CONVOLUTION

Fig. 2. Datapath architecture of a single SMAC block.

Besides the datapath, the SMAC-engine is equipped with a low-
level Control Unit (CU) in charge of generating the control signals
to orchestrate the convolution operation. It can work with kernels up
to 3×3, but potentially it can be expanded to work with larger filters,
provided that the accumulator AC3 is adequately sized to store more
partial results. Low-level CU is composed of two main modules: a
16 states Finite State Machine (FSM) able to drive the DP progress,
and a cluster of counters required to schedule the FSM evolution.
The FSM generates status signals required by a high-level FSM that
handles address generation and the memory interface as described in
Subsection III-D.

D. PULPissimo-integration
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Fig. 3. HWPE architecture. The SMAC-engine is integrate in PULPissimo
by means of a control and a Streamer. The first orchestrates the elaboration
thanks to a Low-Level and a High-Level FSM and a register file, while the
second manages the data streams.

One of this paper’s main contributions is to provide a hardware
accelerator fully integrated into a microcontroller-based platform
capable of enabling DL in an IoT node. The target platform is
PULPissimo since it offers the opportunity to integrate accelerators
in the form of HWPE, and it is also entirely open-source. There is no
direct communication between the processor present in PULPissimo
and the HWPE, but data (activations and weights) are written in the

TCDM by the former and fetched by the latter, and vice-versa. Since
the TCDM is shared with other components present in the SoC, an in-
terface mechanism that manages the accesses is needed, as described
in [23]. Such an entity is called Streamer. It follows a handshake
protocol to establish a directional connection through which data
streams can flow. Whenever different clock domains are present, a
FIFO can be used to connect a Load Unit and a Store Unit avoiding
the leak of information. Besides the Streamer, another interface is
necessary to program the accelerator by setting the counters’ values
accordingly to the size of the convolutional layer to be processed.
This is why the HWPE presents a peripheral channel connected with
a memory-mapped register file, as illustrated in Figure 3. The central
core present in PULPissimo exploits such peripheral to upload setting
values, which will then be used to program the counters (present
in the low-level CU) and the microprogrammed high-level CU. At
the beginning of the convolution operation, while activations and
weights are uploaded to the engine, counters are updated with the
corresponding value of the register file that depends on the current
convolutional layer’s size.

As previously stated, the maximum bandwidth is 128 bit/cycle.
This bandwidth is related to how the Streamer handles the TCDM
both during reading and writing operations. Considering the maxi-
mum activations and weights bitwidth, we can state that it is possible
to fetch either 128/Pa = 16 activations or weights in a single cycle.
This is another reason to choose M = 16.

Since the dataflow has been chosen to be input stationary, the
SMAC-engine is built in a direction that maximizes the number
of usable filters with the same activations. Explicitly, allocating 64
SMAC blocks sharing the same activations is feasible thanks to the
serial approach in executing multiplications. Exploiting the available
bandwidth to fetch 128 weight bits per cycle (instead of 128/Pw =
16 weights on the entire bitwidth), in Pa = 8 cycles (required to shift
the activation bits) it is possible to achieve a total of 128×8 = 1024
bits, that is precisely the number of bits necessary to feed 64 SMAC
blocks, each working with M = 16.

All the source files of the SMAC-engine and the instructions for
its correct integration in Pulpissimo are available online [9].



IV. RESULTS

The Serial-MAC-engine has been synthesized with a 65 nm UMC
technology in worst-case conditions (0.9 V @125 °C) leading to
0.36 mm2 silicon area coverage. To validate the architecture and
define its behavior, VGG16 and SqueezeNet have been used as a test-
bench implementing different parallelism widths. Table I compares
the SMAC-engine with other state-of-the-art architectures devoted
to DNN algorithms processing described in Section II. Considering
that in convolutional networks, the basic operation is represented
by a MAC, we used the energy efficiency metric defined as the
energy needed to perform a complete MAC. The SMAC-engine
with its 0.58 pJ/MAC can be compared with the efficiency expressed
by UNPU [17]. Even if the latter has a much higher throughput,
our solution features a 44.4× smaller area, fundamental in area-
constrained platforms such as IoT edge nodes. Moreover, with the
same silicon coverage, the performance would be almost identical,
as depicted by the throughput to area ratio in the last column, Table
I. Furthermore, while UNPU is a stand-alone accelerator, our work
is already integrated in a microcontroller-based system and ready to
use. The SMAC-engine outperforms Eyeriss [15] and BRein [16]
in terms of energy efficiency, while being comparable to Stripes
[18] that follows the same serial approach. Although the architecture
was inspired in part by Loom [19], unfortunately, the latter does
not offer an implementation on any technological node, making the
comparison incomplete. The SMAC-engine, therefore, represents a
possible detailed implementation of a Loom alike architecture.

Software methods like [12] and [13] offer high-level flexibility
suitable for several different hardware platforms, boosting their
applications. However, our ASIC-based approach represents a DNN-
tailored hardware accelerator capable of optimizing every step from
data transaction to the MAC execution.

The current design represents an example of how the SMAC-engine
could scale. We fixed M = 16 and the maximum width of activations
and weights to 8 bits, but potentially the scheme can be enlarged to
accommodate more general cases as well as tailored on a specific
instance where the optimization has to be pushed to the limit. Even
the maximum kernel size can be modified by adjusting the AC3
width. In all the above-mentioned scaling paradigms, the DP bitwidth
needs to be tuned according to the application to be tackled, while
the CU remains unchanged since it can be programmed through the
external peripheral. Additionally, as SMAC blocks are replicated to
share activations, they can be replicated to share weights in a systolic
array fashion (this will be investigated as future work).

Figure 4 illustrates how in VGG16 and SqueezeNet, the through-
put, intended as the number of MAC per clock cycle, remains
unchanged over the kernel sizes according to different values of
Pa and Pw. Consequently, the bottleneck is represented by the data
parallelism regardless of which layer is being processed. Therefore,
knowing that, as mentioned above, the SMAC-engine can easily be
scaled in all its parameters, the designer can adapt those features in
such a way that the required throughput is met. The efficiency drop
in Squeezenet’s conv1 is due to the fact that the 7x7 kernel has been
decomposed into two 3x3 kernels that slow down the execution.

Table II shows how data bitwidth affects the latency and the
power consumption having as target the third layer of VGG16. This
condition stresses the SMAC-engine to work with a number of filters
greater than the default one (64), resulting in one of the most power-
hungry configurations. The number of cycles refers to the clock
latency required to load activations and weights, process the entire
convolutional volume, and store the results back into the memory.
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TABLE II
NUMBER OF CYCLE AND POWER CONSUMPTION WITH DIFFERENT DATA

BITWIDTH RELATED TO A FILTER OF SIZE 3× 3× 128× 128.

Bitwidth # cycle [M] Throughput [MAC/cycle] Power [mW]SMAC SMAC-engine
Pa=4, Pw=4 30.84 0.937 59.97 7.38
Pa=8, Pw=4 58.92 0.490 31.39 7.38
Pa=8, Pw=6 88.67 0.326 20.86 7.41
Pa=8, Pw=8 117.57 0.246 15.73 7.42

Results obtained @ 1.0 V with an operating frequency of 476 MHz

Since multiplications are performed serially, the throughput tends to
decrease by increasing data width as depicted in the third and fourth
columns, where both single SMAC and SMAC-engine (64 SMACs)
are results reported. Even though the required clock cycles increase
4x going from the narrower bitwidth to the larger one, the power
undergoes a negligible increase of just 40 µW, thanks again to the
bit by bit multiplication. This is an excellent indicator that hardware
usage is constant and there are no parts that waste energy when
halving bitwidth.

V. CONCLUSION

This work introduces the Serial-MAC-engine (SMAC-engine), a
65 nm convolutional hardware accelerator with variable parallelism
suitable for quantized neural networks. The 14.28 GMAC /s at the
cost of 0.58 pJ/MAC @ 1.0 V have been achieved exploiting a serial
approach where multiplication is performed bit by bit, reducing
enormously the hardware required for multipliers and consequently
boosting the maximum accessible frequency. The wide choice in the
data parallelism enables the architecture to make inference on several
applications and networks targeting the Internet-of-Things paradigm.

The accelerator is fully integrated into a microcontroller-based plat-
form, namely PULPissimo. In such an SoC platform, the central core
drives the SMAC-engine through its memory-based programmable
interface specifying which kind of operation the accelerator must
execute.

The source code and the instructions to integrate the accelerator
in PULPIssimo are available online [9].

ACKNOWLEDGMENT

The authors would like to thank Mr. Mattia Carlo Petruzzellis for
his precious work during his master thesis period. His attitude and
expertise have been fundamental in order for the project to succeed.



REFERENCES

[1] E. Ichikawa, K. Sawada, K. Hashimoto, Y. Nankaku, and K. Tokuda,
“Image recognition based on separable lattice hmms using a deep neural
network for output probability distributions,” in 2018 IEEE International
Conference on Acoustics, Speech and Signal Processing (ICASSP),
pp. 3021–3025, April 2018.

[2] J. P. Dominguez-Morales, Q. Liu, R. James, D. Gutierrez-Galan,
A. Jimenez-Fernandez, S. Davidson, and S. Furber, “Deep spiking neural
network model for time-variant signals classification: a real-time speech
recognition approach,” in 2018 International Joint Conference on Neural
Networks (IJCNN), pp. 1–8, July 2018.

[3] J. Redmon, S. K. Divvala, R. B. Girshick, and A. Farhadi, “You only look
once: Unified, real-time object detection,” 2016 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), pp. 779–788, 2015.

[4] A. Maratkhan, I. Ilyassov, M. Aitzhanov, M. F. Demirci, and M. Ozbayo-
glu, “Financial forecasting using deep learning with an optimized trading
strategy,” in 2019 IEEE Congress on Evolutionary Computation (CEC),
pp. 838–844, June 2019.

[5] V. Sze, Y. Chen, T. Yang, and J. S. Emer, “Efficient processing of deep
neural networks: A tutorial and survey,” CoRR, vol. abs/1703.09039,
2017.

[6] M. Courbariaux and Y. Bengio, “Binarynet: Training deep neural net-
works with weights and activations constrained to +1 or -1,” CoRR,
vol. abs/1602.02830, 2016.

[7] H. Gao, W. Tao, D. Wen, T. Chen, K. Osa, and M. Kato, “Ifq-net:
Integrated fixed-point quantization networks for embedded vision,” in
2018 IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion Workshops (CVPRW), pp. 720–7208, 2018.

[8] D. Rossi, F. Conti, A. Marongiu, A. Pullini, I. Loi, M. Gautschi,
G. Tagliavini, A. Capotondi, P. Flatresse, and L. Benini, “Pulp: A parallel
ultra low power platform for next generation iot applications,” in 2015
IEEE Hot Chips 27 Symposium (HCS), pp. 1–39, Aug 2015.

[9] M. Capra, “Smac-engine.” https://github.com/MaurizioCapra/
SMAC-engine.git, 2020.

[10] K. Simonyan and A. Zisserman, “Very deep convolutional networks for
large-scale image recognition,” CoRR, vol. abs/1409.1556, 2014.

[11] F. N. Iandola, S. Han, M. W. Moskewicz, K. Ashraf, W. J. Dally,
and K. Keutzer, “Squeezenet: Alexnet-level accuracy with 50x fewer
parameters and ¡0.5mb model size,” 2016.

[12] L. Lai, N. Suda, and V. Chandra, “CMSIS-NN: Efficient Neural Network
Kernels for Arm Cortex-M CPUs,” arXiv e-prints, p. arXiv:1801.06601,
Jan 2018.

[13] A. Garofalo, M. Rusci, F. Conti, D. Rossi, and L. Benini, “PULP-NN:
Accelerating Quantized Neural Networks on Parallel Ultra-Low-Power
RISC-V Processors,” arXiv e-prints, p. arXiv:1908.11263, Aug 2019.

[14] Z. Du, R. Fasthuber, T. Chen, P. Ienne, L. Li, T. Luo, X. Feng, Y. Chen,
and O. Temam, “Shidiannao: Shifting vision processing closer to the
sensor,” in 2015 ACM/IEEE 42nd Annual International Symposium on
Computer Architecture (ISCA), pp. 92–104, June 2015.

[15] Y. Chen, T. Krishna, J. S. Emer, and V. Sze, “Eyeriss: An energy-efficient
reconfigurable accelerator for deep convolutional neural networks,” IEEE
Journal of Solid-State Circuits, vol. 52, pp. 127–138, Jan 2017.

[16] K. Ando, K. Ueyoshi, K. Orimo, H. Yonekawa, S. Sato, H. Nakahara,
S. Takamaeda-Yamazaki, M. Ikebe, T. Asai, T. Kuroda, and M. Moto-
mura, “Brein memory: A single-chip binary/ternary reconfigurable in-
memory deep neural network accelerator achieving 1.4 tops at 0.6 w,”
IEEE Journal of Solid-State Circuits, vol. 53, pp. 983–994, April 2018.

[17] J. Lee, C. Kim, S. Kang, D. Shin, S. Kim, and H. Yoo, “Unpu: An
energy-efficient deep neural network accelerator with fully variable
weight bit precision,” IEEE Journal of Solid-State Circuits, vol. 54,
pp. 173–185, Jan 2019.

[18] P. Judd, J. Albericio, T. Hetherington, T. M. Aamodt, and A. Moshovos,
“Stripes: Bit-serial deep neural network computing,” in 2016 49th
Annual IEEE/ACM International Symposium on Microarchitecture (MI-
CRO), pp. 1–12, 2016.

[19] S. Sharify, A. D. Lascorz, P. Judd, and A. Moshovos, “Loom: Exploiting
weight and activation precisions to accelerate convolutional neural
networks,” CoRR, vol. abs/1706.07853, 2017.

[20] K. Nan, S. Liu, J. Du, and H. Liu, “Deep model compression for
mobile platforms: A survey,” Tsinghua Science and Technology, vol. 24,
pp. 677–693, Dec 2019.

[21] J. Choi, Z. Wang, S. Venkataramani, P. I-Jen Chuang, V. Srinivasan,
and K. Gopalakrishnan, “PACT: Parameterized Clipping Activation for

Quantized Neural Networks,” arXiv e-prints, p. arXiv:1805.06085, May
2018.

[22] D. Zhang, J. Yang, D. Ye, and G. Hua, “LQ-Nets: Learned Quantization
for Highly Accurate and Compact Deep Neural Networks,” arXiv e-
prints, p. arXiv:1807.10029, Jul 2018.

[23] F. Conti, R. Schilling, P. D. Schiavone, A. Pullini, D. Rossi, F. K.
Gürkaynak, M. Muehlberghuber, M. Gautschi, I. Loi, G. Haugou,
S. Mangard, and L. Benini, “An iot endpoint system-on-chip for secure
and energy-efficient near-sensor analytics,” CoRR, vol. abs/1612.05974,
2016.

[24] E. Flamand, D. Rossi, F. Conti, I. Loi, A. Pullini, F. Rotenberg, and
L. Benini, “Gap-8: A risc-v soc for ai at the edge of the iot,” in 2018
IEEE 29th International Conference on Application-specific Systems,
Architectures and Processors (ASAP), pp. 1–4, July 2018.

[25] F. Conti, P. D. Schiavone, and L. Benini, “Xnor neural engine: A
hardware accelerator ip for 21.6-fj/op binary neural network inference,”
IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, 2018.

[26] Y. Chen, T. Luo, S. Liu, S. Zhang, L. He, J. Wang, L. Li, T. Chen,
Z. Xu, N. Sun, and O. Temam, “Dadiannao: A machine-learning super-
computer,” in 2014 47th Annual IEEE/ACM International Symposium
on Microarchitecture, pp. 609–622, Dec 2014.

https://github.com/MaurizioCapra/SMAC-engine.git
https://github.com/MaurizioCapra/SMAC-engine.git

	Introduction
	Related work
	Architecture
	Background
	SMAC
	SMAC-engine
	PULPissimo-integration

	Results
	Conclusion
	References

