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Abstract—Disseminating the main research findings is one of
the main requirements to become a successful researcher. Presen-
tation slides are the most common way to present paper content.
To support researchers in slide preparation, the NLP research
community has explored the use of summarization techniques
to automatically generate a draft of the slides consisting of
the most salient sentences or phrases. State-of-the-art methods
adopt a supervised approach, which first estimates global content
relevance using a set of training papers and slides, then performs
content selection by optimizing also section-level coverage. How-
ever, in several domains and contexts there is a lack of training
data, which hinders the use of supervised models. This paper
focuses on addressing the above issue by applying unsupervised
summarization methods. They are exploited to generate sentence-
level summaries of the paper sections, which are then refined
by applying an optimization step. Furthermore, it evaluates the
quality of the output slides by taking into account the original
paper structure as well. The results, achieved on a benchmark
collection of papers and slides, show that unsupervised models
performed better than supervised ones on specific paper facets,
whereas they were competitive in terms of overall quality score.

Index Terms—Automatic slides generation, unsupervised text
summarization, sentence extraction

I. INTRODUCTION

Dissemination is crucial for sharing theoretical and applied
research findings [1]. The most common way to disseminate
knowledge to the research community is to attend conferences,
workshops, and seminars and present the latest ideas and
achievements. However, generating presentation slides of aca-
demic papers is known to be a time-consuming task activity.
Hence, to present their work at conferences or workshops,
authors commonly pick, on first approximation, slide content
from the original paper. The first draft of the slides is com-
monly aligned to the original sequence of paper sections (e.g.,
introduction, method, experimental results, and conclusions).
Next, authors refine the presentation to make it more effective
and attractive by adding enumerated lists, images, tables,
animations, and videos. This paper addresses the automatic
generation of a first draft of the presentation slides including
textual content only. Unlike traditional methods (e.g., [2], [3])
input documents are neither manually annotated nor aligned
with the slide content.

The aforesaid problem can be reformulated as an extractive
text summarization task. Extractive summarization entails se-
lecting part of the existing content of a document corpus to
compose its summarized version [4]. In recent years, it has
been largely investigated by the Natural Language Processing
community since it applies to a wide range of application
contexts, among which timeline extraction [5], papers high-
light extraction [6], and learning analytics [7]. Most of the
existing summarization methods aim at generating a summary
that consist of a shortlist of the most significant sentences
or phrases. Sentence/phrase significance is usually evaluated
in terms of relevance and conciseness. Relevance guarantees
that the summarization process preserves the most informative
content, whereas conciseness quantifies the redundancy of the
extracted content.

A draft of presentation slides may consist of a summary of
the corresponding paper content. State-of-the-art approaches to
automatic slides generation (e.g., [8], [9]) adopt a supervised
two-step process: firstly, to each paper sentence a global
relevance score is assigned. The aforesaid task is accomplished
by training a regression model on a set of training papers and
slides. The model predicts sentence relevance scores based
on the similarity between the considered sentence and those
occurring in the training set. Then, an optimization step is
applied to select the most appropriate slides content. The
evaluation process analyze sentence relevance and conciseness
at both paper- and section-levels. The latter task is addressed
using Integer Linear Programming (ILP) solvers.

State-of-the-art slides generation methods have the follow-
ing drawbacks: (A) Since they mostly rely on supervised
techniques (e.g., [8], [9]), they require a sufficiently large
set of papers annotated with presentation slides. (B) The
outcomes of the slides generation process are evaluated using
standard summary evaluation metrics, based on n-gram com-
parison [10]. However, since they are commonly applied to the
whole paper, the evaluation process disregards the underlying
paper structure.

In the absence of training data (issue A), existing approaches
are not applicable, unless trusting papers and slides in related
domains or similar contexts. This hinders the use of state-of-
the-art solutions in many real scenarios and prompts the need



for new, unsupervised methods.
When the output slides need to be focused on specific

discourse facets such as Introduction, Method, Results, or Dis-
cussion [11] (issue B), researchers would be more interested
in getting high-quality outcomes on specific slides. In the
latter scenario, it would be advisable to assess slides generator
performance not only globally but also locally within facet.

To tackle the above issues, this paper proposes to inte-
grate unsupervised summarization methods into the automatic
slides generation pipeline and to evaluate the corresponding
outcomes both globally and locally within facet, according to
the IMRaD classification of the scientific paper structure [11].
Since many unsupervised summarization methods inherently
provide a ranked shortlist of sentences/phrases, we explore
two pipeline variants: (i) the standard one (hereafter denoted
as ILP-based), which relies on a cascade of summarization and
optimization steps. (ii) A simplified version (hereafter denoted
as summarization-only), which neglects the optimization step
and exclusively relies on the content selection and ranking
produced by the summarizer. The idea behind is to also
investigate the impact of the optimization phase, since most
summarizers inherently provide a sentence rank.

We tested the proposed approach on a benchmark collection
of scientific papers and presentation slides. The achieved
results, evaluated in terms of global quality of the slide content,
reflect the expectation: supervised methods are averagely supe-
rior to unsupervised ones, even if the performance differences
were not always statistically significant. Furthermore, the best
performing unsupervised ILP-based strategy outperformed all
the corresponding summarization-only versions.

Conversely, while focusing on specific paper facets things
did not always go as we expected. Specifically, for specific
sections (e.g., Introduction) some unsupervised methods per-
formed significantly better then all the supervised ones. This
evidences that the training phase was not able to capture
the most salient trends in that particular part of the paper
structure. Therefore, to generate slides tailored to specific dis-
course facets the use of unsupervised methods is particularly
appealing.

The paper is organized as follows. Section II describes
the original slides generation pipeline. Section III details the
pipeline variants presented in this work. Section IV reports the
standard evaluation metrics and presents the newly proposed
faceted version. Finally, Sections V and VI summarize the
main results and draw conclusions of this work, respectively.

II. THE SLIDES GENERATION PIPELINE

The slide generation task entails automatically generating
presentation slides for scientific papers. Presentation slides are
useful, for instance, for a presenter who has to give a talk on
her/his most recent research findings. The idea behind is to
propose an automated, data-driven strategy to generate a draft
version of the slides. The generated slides will include textual
content solely, i.e., handling multimedia content is out of the
scope of the current work.

A. Preliminaries
The draft version of the presentation consists of a set

of slides SL whose content is aligned to that of the main
paper sections SE. More specifically, the content of each
section sex∈SE in the paper is assumed to be aligned to
k presentation slides slxy , sl

x
y+1, . . . , sl

x
y+k−1 ∈ SL (k ≥ 1),

where k may vary from one section to another.
Each slide slxy consists of (i) a title, (ii) a list of key phrases

that summarize the most relevant topics covered by the section,
and (iii) a separate list of bullet points per key phrase, which
provide more insights into the corresponding topic.

B. Pipeline description
The standard pipeline for automatic slides generation [8],

[9] is depicted in Figure 1. It consists of six key steps, which
are briefly summarized below.

a) Preprocessing: This step focuses on preparing the
training set of scientific papers and presentation slides on top
of which the machine learning-based slide generation process
is executed. The training set consists of a set of paper-slides
pairs whose content ranges over the same domain of the target
paper (i.e., the paper whose presentation slides are currently
missing and need to be created).

Since the textual content of papers and slides is usually
not promptly usable, a preliminary text extraction phase is
performed. It requires properly handling documents of various
document formats while preserving text sectioning. Similarly,
the textual content of the slides is extracted by separating the
titles from the remaining content.

b) Feature extraction: Based on the hypothesis that sen-
tences occurring in the author-written slides are likely to be
representative of the main paper content, we label sentences
in each paper of the training corpus with a numerical score
that quantifies the similarity between the considered sentence
and the author-written slides at the sentence level. Specifically,
to enable supervised learning from the prepared data we label
each sentence s of the paper with the following relevance score
score(s):

score(s) = maxs∗i∈SSL

(
sim(s, s∗i )

)
(1)

where SSL is the set of sentences occurring in the paper slides.
A sentence s is labeled with the maximal similarity score

between s and an arbitrary sentence in SSL. Next, each
sentence in a paper of the training corpus is described by
a set of features described in [8]. The feature set can be also
extended by including features extracted by Deep NLP models
(see, for example, [9]).

Sentence-level paper descriptions are collected into a la-
beled dataset, which stores for each sentence the corresponding
feature values and label. Then, a supervised regression model
is trained on the labeled dataset.

c) Sentence importance evaluation: This step aims at
predicting for each sentence sp its relative importance in the
target paper importance based on the information available in
the training corpus. Sentence importance is quantified by the
score scorepr(sp) returned by the regression model.



Fig. 1. The standard slide generation pipeline [8].

d) Keyphrase extraction: Key phrases are extracted from
the sentences in the target paper using a NLP parsing tool.
The goal here is to automate the extraction of the level-1 key
phrases from the same sentences that will be used as level-2
bullet points.

e) Sentence selection: This step focuses on shortlisting
the sentences and key phrases of the target paper that are worth
appearing the presentation slides. The selection criteria can
be summarized as follows: (i) maximize the overall sentence
importance (i.e., the sum of the sentence scores). (ii) maximize
sentence diversity, which is estimated as the syntactic overlap
between the selected paper sentences and the presentation
slides. (iii) maximize the relevance of the selected key phrases
and their coverage in the level-2 bullet points. In [8] the
problem stated above is modelled and solved by using an
Integer Linear Programming (ILP) optimizer.

f) Slides generation: The presentation slides are an en-
semble of the previously shortlisted sentences. The slides
generation procedure entails the following steps:
• Each slide contains at most 4 sentences.
• Sentences that refer to the same keyphrase are grouped

together and placed below the same bullet point.
• The bullet point is titled with the reference keyphrase.
• Each slide contains up to 2 bullet points, together with

the corresponding sentences.
• The slide title is set by using the titles of the section to

which the first sentence in the slide belongs to (truncated
to the first 5 token, whenever necessary).

III. PROPOSED SOLUTION

We propose a variant of the standard slide generation
pipeline, which can be applied in the absence of a training set
of papers and slides. The idea behind is to rely on unsupervised
text summarization algorithms [4], which, by construction, do
not require a training phase.

Extractive sentence-based summarization entails generating
a summary of a document corpus that consists of the most
relevant sentences. A huge body of work has been devoted
to applying unsupervised methods such as clustering algo-
rithms (e.g., graph-based techniques (e.g., CoreRank [12],

LexRank [13], TextRank [14]), Latent Semantic Analysis (e.g.,
LSARank [15]) and word embedding techniques (e.g., [16]). A
recent survey of summarization methods can be found in [4].

The goal here is to explore the applicability of various un-
supervised summarization methods for generating presentation
slides for academic papers. To this aim, Figure 2 depicts a
sketch of the proposed pipeline variants relying on unsuper-
vised text summarization. They will be hereafter denoted as
variants (b) and (c), respectively. The main differences with
the standard pipeline, denoted by (a), are enumerated below.

1) Feature extraction: since most text summarization
methods take as input raw text, the feature extraction
and labeling phase are no longer required.

2) Split paper content into section: In the proposed
variants, section-level content splits are instrumental in
building separate per-section summaries, which incorpo-
rate the most salient information about a specific paper
section. Conversely, in the standard pipeline the paper
structure is neglected by supervised learning whereas it
is re-considered for the subsequent optimization-based
content selection step.

3) Sentence importance evaluation: In variant (b) the
ILP-based sentence evaluation is omitted thus sentence
ranking exclusively relies on the sentences’ shortlists
produced by the summarization process. In variant (c)
ILP-based optimization is applied as in the standard
pipeline, but the sentence scores used to infer sentence
importance and diversity are no longer inferred by a
supervised learner, but rather produced by the unsuper-
vised summarization process.

4) Slide generation: In variant (b) a greedy strategy similar
to those presented in [9] is used in place of the ILP-
based selection process. Specifically, summary sentences
are picked in order of decreasing importance until a
maximum length is reached (10% in our experiments).
Variant (c) applies the same strategy used in the standard
pipeline.

Point (3) deserves a more detailed explanation. Let Sp be the
set of sentences in the target paper. A text summarizer takes Sp

as input and produces a summary Sum consisting of a ranked



Fig. 2. Proposed variants of the slide generation pipeline.

list of sentences s1stp , s2ndp , . . ., sq−thp in Sp. We focus on the
subset of text summarizers that inherently provide as output a
sentence score score(·) such that score(s1stp ) ≥ score(s2ndp )
≥ . . . ≥ score(sq−thp ).

The proposed pipeline variants aim at replacing the sentence
score in Equation 1 with the score produced by the text
summarizers. In principle, every summarization method that
is able to produce a ranked list of sentence can be applied to
the target paper in place of the supervised learner. Notably,
the designed variants do not require a training set.

IV. EVALUATION METRICS AND PROPOSED VARIANTS

Previous studies (e.g., [8], [9]) have assessed the quality of
the automatically generated slides by using the standard Rouge
toolkit, which is established for summary evaluation [10]. It
counts the unit overlaps between the two snippets of text.
Depending on unit type (e.g., unigrams, bigrams), different
Rouge metrics can be selected (e.g., Rouge-1, Rouge-2). the
Rouge scores indicate the precision, recall, and F-measure
values [17] achieved by the summarization system according
to a specific metric.

In the slide generation context, the empirical comparisons
carried out in previous studies were focused on evaluating
the overlap between the whole content of the automatically
generated slides and that of the hand-written ones. However,
doing them this way implies neglecting the separate contribu-
tion of each paper section. For instance, the quality of the slide
content relative to the introductory and experimental sections
can be rather different. Currently, such a difference cannot be
quantified.

To address the aforesaid issue, we propose to tailor slide
evaluation to specific paper facets according to the official
IMRAD classification of the scientific paper structure [11].
More specifically, slide content is first classified as Intro-
duction, Methods, Results, or Discussion according to the
particular section it refers to. Next, separate Rouge scores,
hereafter denoted by Facet-specific scores, are produced for
each IMRAD class. This allows us to differentiate between the
slide generation techniques that achieved variable performance

on different paper sections due to the peculiar properties that
characterize the text of each section.

V. EXPERIMENTAL RESULTS

We report here an empirical comparison between the per-
formance of the proposed variants and that of the stan-
dard pipeline version. Throughout the evaluation process, we
considered as reference metrics the Rouge-1 (R1), Rouge-2
(R2), and Rouge-SU4 (RSU4) F-measure scores, as they are
standard for evaluating slides generation performance [8].

A. Paper and slide data collection

For evaluation purposes we exploited a real data collection1

consisting of 195 academic papers enriched with the corre-
sponding presentation slides. Benchmark data, provided by
the project owner upon request, include also the ground-truth
slides. Slides were manually created by the respective papers’
authors to disseminate their research findings.

B. Tested methods

For the standard pipeline we evaluated the performance of
the slide generators based on several (supervised) regression
methods. Specifically, we tested Support Vector Machines
(SVR), MultiLayer Perceptron (MLP), Gradient Boosting
(GB), Decision Tree (DT), and Random Forest (RF). We
exploited the algorithm implementations and settings provided
by the Scikit-Learn library [18].

To assess the newly proposed pipeline variants, we tested
several unsupervised summarization algorithms, which pro-
vide as output a sentence ranking. Specifically, Graph-based
(TextRank [14], LexRank [13]), LSA-based summarization
(LSARank [15], [19]), Embedding-based methods (Centroid-
with-BERT [16], using the sentence embedding approach
proposed in [20]).

To study the impact of the ILP-based optimization on the
performance of variants (b) vs. (c), we tested a larger set
of text summarizers, including also the graph-based strategies

1The data collection is relative to a Open GitHub project available at https:
//github.com/hairav/SlideSpawn (latest access: January 2021)



that produce an output summary without explicitly assigning
a importance score to each sentence, i.e., CoreRank [12] and
TextRankBM25 [21].

C. Overall comparisons between supervised and unsupervised
methods

Table I compares the results of the supervised and unsuper-
vised pipelines embedding the ILP-based sentence selection,
i.e., variant (a) vs. variant (c). The results were computed in
terms of the standard Rouge scores. We recall that they are
independent of the paper structure.

The performance of the supervised pipeline variant (a) is
superior to that of the corresponding unsupervised version.
The performance improvements were statistically relevant for
four out of five regressors. The best performing approach relies
on a Random Forest Regressor and the overall quality scores
achieved by the majority of the tested models are roughly
comparable with each other.

To study the effect of the optimization step, Table I com-
pares the two variants of the unsupervised pipeline, i.e., variant
(b) vs. variant (c). The results show that the ILP-based methods
performed better than summarization-only ones. The perfor-
mance gap is particularly evident for LSA- and embedding-
based strategies.

D. Section-level comparisons between supervised and unsu-
pervised methods

We deepen the comparative analysis between supervised
and unsupervised strategies separately on each paper facet
specified by the IMRaD classification [11].

Table II reports the results of the comparison of the two
pipeline variants (a) and (c) (i.e., the ILP-based supervised
and unsupervised strategies) by integrating multiple regres-
sors/summarizers.

The results show significant changes from one paper section
to another. Specifically, the results on Method reflect the over-
all results discussed earlier, whereas the outcomes achieved on
Introduction and Discussion reverse the situation. In the latter
cases, the unsupervised LSA-based approach [19] performed
significantly better than most of the supervised models. A
possible reason is the potential inability of the NLP features
used in the standard pipeline [8] to capture the text correlations
within each separate discourse facet.

VI. CONCLUSIONS AND FUTURE WORKS

The paper explores the integration of unsupervised text
summarization methods deeply into the pipeline of automatic
slides generation for scientific papers. The main goal is to
avoid the supervised learning phase, which requires the avail-
ability of a sufficiently large corpus of training data, including
both papers and slides. It investigates also the influence of
paper structure on the quality of the generated slides. To the
best of our knowledge, the aforesaid contributions have never
been investigated in previous studies.

The results achieved by using the standard evaluators con-
firmed the expectation: supervised methods have shown to be

on average superior to unsupervised techniques. Conversely,
while deepening the analysis on specific paper sections (e.g.,
the introductory and discussion parts) the results were oppo-
site: the unsupervised pipeline that integrates a state-of-the-art
text summarizer outperformed all the supervised methods.

The future research agenda will address (1) the study and
development of new unsupervised methods based on contex-
tualized embeddings, (2) the training of separate supervised
models each one tailored to a different IMRaD class, and (3)
The study of innovative multi-modal approaches that would
be able to produce slides containing not only text but also
images, videos, and audio.
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TABLE I
ROUGE-BASED COMPARISON BETWEEN SUPERVISED / UNSUPERVISED SENTENCE SCORING AND STANDARD SUMMARIZATION METHODOLOGIES.

STATISTICALLY SIGNIFICANT VARIATIONS WITH RESPECT TO THE BEST PERFORMING ALGORITHM (P-VALUE < 0.05) ARE STARRED.

Method R1-P R1-R R1-F R2-P R2-R R2-F RSU4-P RSU4-R RSU4-F
Supervised ILP-based approach

MLP 0.281 0.239 0.256* 0.116 0.099 0.106 0.117 0.100 0.107
SVR 0.282 0.240 0.257* 0.115 0.098 0.105 0.118 0.100 0.107
GB 0.283 0.241 0.258 0.114 0.098 0.104 0.118 0.101 0.108
DT 0.274 0.230 0.248* 0.106 0.089 0.096* 0.110 0.092 0.099*
RF 0.288 0.246 0.263 0.119 0.102 0.109 0.121 0.104 0.111

Unsupervised ILP-based approach
ELSA [19] 0.265 0.224 0.241* 0.097 0.083 0.089* 0.105 0.089 0.096*

Centroid 0.261 0.214 0.233* 0.086 0.072 0.078* 0.097 0.080 0.087*
LexRank 0.261 0.214 0.233* 0.086 0.072 0.078* 0.098 0.080 0.087*
TextRank 0.260 0.213 0.232* 0.086 0.072 0.078* 0.097 0.080 0.087*
LSARank 0.246 0.207 0.223* 0.071 0.060 0.065* 0.085 0.071 0.077*

Unsupervised standard (summarization-only) approach
ELSA [19] 0.241 0.202 0.218* 0.066 0.056 0.060* 0.083 0.070 0.075*

Centroid 0.257 0.212 0.230* 0.077 0.064 0.070* 0.092 0.076 0.082*
LexRank 0.248 0.197 0.218* 0.066 0.053 0.058* 0.084 0.066 0.073*
TextRank 0.240 0.197 0.214* 0.068 0.055 0.060* 0.083 0.068 0.074*

TextRank BM25 0.253 0.207 0.226* 0.069 0.057 0.062* 0.087 0.071 0.078*
LSARank 0.242 0.205 0.220* 0.070 0.060 0.064* 0.083 0.070 0.075*
CoreRank 0.254 0.218 0.233* 0.079 0.069 0.073* 0.092 0.079 0.084*

TABLE II
ROUGE F1-SCORE COMPARISON BETWEEN SUPERVISED AND UNSUPERVISED METHODS. STATISTICALLY SIGNIFICANT VARIATIONS WITH RESPECT TO

THE BEST PERFORMING ALGORITHM (P-VALUE < 0.05) ARE STARRED.

Introduction Method Results Discussion
Approach R1-F R2-F RSU4-F R1-F R2-F RSU4-F R1-F R2-F RSU4-F R1-F R2-F RSU4-F

Supervised ILP-based approach
MLP 0.035* 0.000* 0.007* 0.035* 0.001 0.006 0.044 0.001 0.008 0.053 0.003 0.011
SVR 0.037* 0.003 0.007 0.038* 0.002 0.007 0.044 0.001 0.008 0.048* 0.002 0.009*
GB 0.042 0.003 0.008 0.040 0.001 0.008 0.044 0.001 0.008 0.053 0.003 0.011
DT 0.037* 0.003 0.007* 0.045 0.001 0.008 0.044 0.001 0.008 0.051* 0.002 0.010
RF 0.032* 0.003 0.006* 0.038* 0.002 0.007 0.043 0.000 0.008 0.046* 0.002 0.009*

Unsupervised ILP-based approach
ELSA [19] 0.045 0.003 0.009 0.041 0.001 0.008 0.041 0.000 0.007 0.06 0.003 0.012

Centroid 0.026* 0.000* 0.005* 0.032* 0.000* 0.006 0.044 0.000 0.008 0.052* 0.003 0.010
LexRank 0.026* 0.000* 0.005* 0.032* 0.000* 0.006 0.044 0.000 0.008 0.052* 0.003 0.010
TextRank 0.026* 0.000* 0.005* 0.032* 0.000* 0.006 0.044 0.000 0.008 0.052* 0.003 0.010
LSARank 0.042 0.003 0.008 0.036* 0.001 0.006 0.024* 0.000* 0.004* 0.059 0.003 0.012

Unsupervised summarization-only approach
ELSA [19] 0.033* 0.001 0.006* 0.026* 0.000* 0.005* 0.032* 0.000 0.006* 0.033* 0.001* 0.006*
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