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ABSTRACT
Timeline summarization aims at presenting long news stories in a
compact manner. State-of-the-art approaches first select the most
relevant dates from the original event timeline then produce per-
date news summaries. Date selection is driven by either per-date
news content or date-level references. When coping with complex
event data, characterized by inherent news flow redundancy, this
pipeline may encounter relevant issues in both date selection and
summarization due to a limited use of news content in date selection
and no use of high-level temporal references (e.g., the past month).
This paper proposes a paradigm shift in timeline summarization
aimed at overcoming the above issues. It presents a new approach,
namely Summarize Date First, which focuses on first generating
date-level summaries then selecting the most relevant dates on
top of summarized knowledge. In the latter stage, it performs date
aggregations to consider high-level temporal references as well.
The proposed pipeline also supports frequent incremental timeline
updates more efficiently than previous approaches. We tested our
unsupervised approach both on existing benchmark datasets and
on a newly proposed benchmark dataset describing the COVID-19
news timeline. The achieved results were superior to state-of-the-
art unsupervised methods and competitive against supervised ones.

CCS CONCEPTS
• Information systems→ Summarization; •Computingmethod-
ologies →Machine learning algorithms.

KEYWORDS
Timeline summarization; Natural Language Processing; COVID-19
timeline
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1 INTRODUCTION
Long-lasting news topics such as the outbreak of the Sars-Cov-2
pandemic and the 2020 U.S. elections have captured the attention
of the main newspapers and online broadcasters for a long period.
This has produced a huge volume of on-topic news articles that can
be retrieved and analyzed. The ubiquity of complex event data over
the Web makes the problem of extracting succinct descriptions of
long-lasting news topics particularly challenging. News timelines
must be highly relevant, minimally redundant, and with minimal
latency, thus embedding timeliness information [28].

TimeLine Summarization (TLS) aims at extracting timestamped
summaries on long-lasting news topics [31]. To help newspaper
readers to keep track of long-lasting news stories, TLS approaches
focus on extracting a temporarily ordered selection of news articles’
content. Unlike temporal summarization [1], TLS assumes that the
input news data stream is already filtered by focusing on portions
of raw data that are relevant to the main event topic.

TLS is commonly addressed as a two-step process. The first one
entails identifying the key dates in the news timeline, namely the
date selection step. The second extracts the most relevant content
(typically, a selection of news sentences) from the news articles
relative to the previously selected dates, i.e., the date summarization
step. These steps can be addressed either as separate tasks, i.e., date
selection followed by date summarization on top of the selected
dates (e.g., [10]), or as a unified process (e.g., [18]).

Challenges. The main issues encountered by state-of-the-art ap-
proaches are enumerated below.

• Limited use of news content in date selection. State-of-the-
art date selection approaches do not (or minimally) rely on
content-based strategies, instead focusing on analyzing date-
level references. Furthermore, the inherent redundancy of

https://doi.org/10.1145/3404835.3462954
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the input news flows makes current content-based similar-
ity models prone to errors. Therefore, there is a need for
new date selection strategies able to effectively exploit both
content and temporal references.

• No use of high-level temporal references. Best performing date
selection strategies rely on the analysis of date-level refer-
ences (e.g., a news article that cites a past event occurred on
a specific date). However, to the best of our knowledge, they
currently disregard high-level references (e.g., a news article
citing the events occurred in a past month). Notably, the
number of occurrences of high-level references in the bench-
mark datasets (see Table 2) is higher than those of date-level
ones. This leaves room for substantial model enrichment.

• Need for periodic timeline updates. News timelines need to be
frequently updated until the long-lasting event ends. How-
ever, in the existing TLS pipeline each update requires to
recompute the news summaries of all the relevant dates.
Thus, frequent updates can be computationally expensive.
This calls for more efficient, incremental timeline summa-
rization strategies.

To tackle the above issues, this paper proposes a paradigm shift
in TLS. It consists in reversing the two-step TLS process from the
traditional pipeline (i.e., select dates first and then summarize) to
Summarize Dates First (SDF, in short) and then select the key dates
on top of summarized knowledge.

Contribution. The main contributions of the present work are
detailed below.

• New TLS pipeline. We first generate summarized versions
of the per-date news content, which can be conveniently
exploited to drive the date selection process. To this purpose,
SDF leverages summarized knowledge in content-based date
selection. As shown in Section 5, exploiting a less redundant,
summarized version of the per-date content significantly
improves TLS performance.

• Exploitation of high-level temporal references. The date selec-
tion step in SDF effectively combines content-based analyses
with a multiple-level date reference model. More specifically,
the proposed approach does not only rely on date-level refer-
ences, but also on the high-level ones neglected by previous
approaches. For example, when a news article published
in November 2020 includes an explicit reference to Decem-
ber 2019 (i.e., the beginning of the Sars-Cov-2 pandemic in
China), such information is deemed as relevant to reward
the dates within the referenced time period.

• Incremental approach. SDF efficiently supports frequent time-
line updates. When the updating frequency is relatively high,
SDF requires to recompute a more limited number of new
summaries. Conversely, the traditional pipeline requires to
extract again the summaries of all the relevant dates. Since
the summarization process is the most computationally ex-
pensive step (see Section 3.4), this yields a relevant efficiency
improvement.

• New benchmark dataset. State-of-the-art TLS algorithmswere
tested on three main benchmark event datasets (i.e., [10, 30,

32]). However, they show rather variable performance de-
pending on the dataset characteristics. To strengthen the re-
search findings in TLS, we release a new benchmark tailored
to the TLS task, which describes the Sars-Cov-2 pandemic
timeline. For validation purposes, the dataset is associated
with a humanly generated public ground truth1.

To compare the performance of the proposed approach with
state-of-the-art methods, we conducted an extensive empirical eval-
uation. The results show that SDF, which relies on a unsupervised
summarization pipeline, performs significantly better than all unsu-
pervised methods and is competitive against supervised approaches
(which require the availability of on-topic training data).

The remainder of the paper is organized as follows. Section 2
discusses the position of the current work in the state of the art.
Section 3 thoroughly describes the SDF approach. Sections 4 and 5
respectively describe the benchmark datasets and summarize the
main experimental results. Finally, Section 6 draws conclusions and
discusses the future research agenda.

2 RELATEDWORKS
A relevant research effort has been devoted to Timeline Summariza-
tion (TLS). Table 1 reports a categorization of the previous studies,
sorted by publication date. Beyond paper citation and publication
year, for each study we report (i) the process type (supervised or un-
supervised), (ii) the addressed tasks, (iii) the main techniques used,
(iv) the type of analyzed data, and (v) whether a new benchmark
dataset was released.

According to the accomplished tasks, existing approaches can
be classified as (i) Date selection methods, which mainly focused
on identifying the key timeline dates, (ii) Summarization methods,
which particularly address the date summarization step of the TLS
pipeline, or (iii) Full pipeline, which addressed both the TLS steps.
Hereafter, we will separately analyze the previous works belonging
to each of the above-mentioned categories.

2.1 Date summarization methods
These works focused on summarizing the news streams relative to
long-lasting events by creating a summary per date (both publica-
tion and referenced dates were considered). Unlike SDF, they did
not select the key dates in the event timeline.

A pioneering work in TLSwas presented in [28]. It relied on topic
detection and monitoring exploiting entropy-based term evaluation
metrics. In [7] the underlying news sub-topics were specified by
the end-user through an input query. Hence, TLS was modelled
as a sentence-level content retrieval task and solved using ad hoc
ranking functions. The use of optimization methods to refine sen-
tence selection both locally at the date level and globally for the
whole event timeline was investigated by [35] on news data and
by [14, 34] on microblogging data. The current work is not query-
driven. To enable timeline updates, it adopts a data-wise approach,
i.e., it explores news content separately per date.

1https://covidreference.com/timeline (latest access: January 2021)
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Paper Publ. year Process type Addressed tasks Main techniques Data type Benchmark release
[28] 2000 Unsupervised Summarization KL-based Topic Detection News No
[7] 2004 Unsupervised Summarization IR-based ranking News No
[35] 2011 Unsupervised Summarization Local/Global Optimization News No
[12] 2012 Unsupervised Date Selection Reference and IR-based ranking News No
[4] 2013 Supervised Full Pipeline Linear Regression News No
[20] 2014 Unsupervised Full Pipeline Temporal Clustering News No
[34] 2015 Unsupervised Summarization Incremental clustering Tweets No
[31] 2015 Unsupervised Date Selection Graph ranking News Yes [30] [32]
[18] 2018 Unsupervised Full Pipeline Submodular Optimization News No
[10] 2020 Supervised Full Pipeline Supervised Date Ranking News Yes 2

Our 2021 Unsupervised Full Pipeline Graph ranking News Yes 3

Table 1: Literature overview: categorization of existing methods.

2.2 Date selection methods
Few works focused on identifying the most salient dates in the
news timeline. Specifically, in [12] the task was accomplished as a
re-ranking problem, where the chronological date order was con-
veniently modified to reflect the number of explicit date references
that occurred in the news article corpus.

A more advanced, graph-based ranking strategy was adopted
in [31]. The key idea was to model date references using a graph
model, where the temporal distance between date pairs was ex-
ploited to weigh graph edges. The ranking strategy relied on a
influence-based random walk on the graph.

Similar to [31], the date selection process adopted in SDF re-
lies on graph ranking. However, the graph model is enriched with
(i) pairwise date similarity measures, which reflect the similarity
between the referencing sentence and the summarized content
relative to the referenced date and (ii) high-level temporal refer-
ences, which provide additional knowledge neglected by previous
approaches.

2.3 Methods addressing the full pipeline
These works addressed both date selection and summarization
tasks. Unlike SDF, all of them prioritize the date selection step in
the TLS pipeline. Specifically, the work presented in [4] proposed
a supervised date selection method, which ranks the given dates
according to the outcomes of a regression model. The goal was to
learn a ranking function that embeds the key date relationships. A
similar (supervised) strategy was adopted to tackle the date sum-
marization step. An extension of [4] was recently proposed by [10].
They combined a supervised date selection process based on re-
gression models with an unsupervised date summarization step.
Unlike [4, 10] the present work proposes to reverse the TLS pipeline
(i.e., date summarization first) and relies on a fully unsupervised
pipeline. Hence, it can be applied even in the absence of on-topic
training data.

To the best of our knowledge, the previous works that are most
similar to SDF are [20] and [18]. In the former study, the authors
applied a temporal clustering approach on top of an established
date ranking strategy [12]. In the latter, the authors proposed a
unified optimization-based method, where date selection and sum-
marization constraints were jointly embedded into the objective

function. The main drawbacks of the aforesaid methods are (i) the
lack of content-based date relevance scores, (ii) the use of date-level
temporal references only, and (iii) the need to recompute the sum-
maries as soon as new dates are added to the event timeline. SDF
aims at overcoming the above issues.

3 THE PROPOSED PIPELINE
A sketch of the newly proposed pipeline for TimeLine Summa-
rization (TLS), namely Summarize Dates First (SDF), is depicted in
Figure 1. It consists of the following steps:

(1) Temporal tagging: it focuses on extracting temporal refer-
ences from the news articles’ text (see Section 3.1).

(2) Per-date summary extraction: it aims at extracting a sen-
tence shortlist separately for each news article corpus pub-
lished on the same date (see Section 3.2).

(3) Summary-Driven date selection: it addresses the selec-
tion of the key event dates, together with the corresponding
summaries, using both the multiple-level temporal refer-
ences extracted at Step (1) and the content of the per-date
summaries extracted at Step (2) (see Section 3.3).

In the following, we will separately describe each SDF step. Then,
in Section 3.4 we will discuss the ability of the SDF system to incre-
mentally update the news timelines as soon as new timestamped
data become available.

Outline of the used notation.

• 𝑃 : period in which the news story happened.
• A: set of news articles published in 𝑃 and pertinent to the
news story.

• S: set of news articles’ sentences extracted from A.
• 𝑝 (𝑠): publication date in 𝑃 of the article containing sentence
𝑠 ∈ S.

• R(𝑠): set of dates in 𝑃 referenced by sentence 𝑠 .
• R𝑑𝑙 (𝑠): subset of dates in R(𝑠) referenced at the date level.
• Rℎ𝑙 (𝑠): subset of dates in R(𝑠) referenced at a higher tempo-
ral level.

• C𝑑 : news corpus reporting the events occurred on 𝑑 .

2https://github.com/complementizer/news-tls (latest access: April 2021)
3https://github.com/MorenoLaQuatra/SDF-TLS
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Figure 1: Sketch of the full TLS pipeline.

• 𝑆𝑢𝑚(C𝑑 ): sentence-based summary of the date-specific cor-
pus C𝑑 .

3.1 Temporal tagging

Figure 2: Graph enrichment driven by high-level temporal
references and summary content.

This step takes as input the collection of timestamped news
articlesA describing the same topic (e.g., the outbreak and evolution
of the Sars-Cov-2 pandemic).

The raw text of the input news articles is first split into sentences
using the text parser available in the NLTK library [5] and then
annotated using the HeidelTime temporal tagger [27].

A arbitrary sentence 𝑠 ∈ S is annotated with (i) the publica-
tion date of the corresponding article, (ii) the date-level references
R𝑑𝑙 (𝑠), and (iii) the high-level temporal references Rℎ𝑙 (𝑠).

In the top left corner of Figure 2 an example of annotated news
article is depicted. The news article is assigned to a specific news
group based on its publication date (2020-01-15). Then, the temporal

references R(𝑠) occurring in the article sentences are exploited to
generate date-level references. For instance, the date-level reference
31 December 2019, written in boldface, links the publication date
of the analyzed article to a specific past date in the event timeline.
Conversely, the high-level reference last December, highlighted in
red, indirectly links the article’s publication date to all the past
dates in December 2019.

The last column of Table 2 reports the percentage of high-level
references over the total number of references present in each of
the analyzed datasets, i.e.,∑

𝑠∈S

|Rℎ𝑙 (𝑠) |
|R𝑑𝑙 (𝑠) | + |Rℎ𝑙 (𝑠) |

· 100

Since they all include more than half high-level references, the
latter represent a relevant source of knowledge.

The importance of date-level references in TLSwas demonstrated
by previous research findings (e.g., [18]). Conversely, the informa-
tion provided by high-level temporal reference was neglected by
previous works. Leveraging these particular type of temporal refer-
ences is one of the main paper goals.

3.2 Per-date summary extraction
It extracts a summary per publication date consisting of the most
relevant sentences. Each summary is extracted from a date-specific
corpus, which consists of the sentences of all news articles either
published on a given date or referencing that particular date are
collected.

This step entails a two-step process: firstly, the date-specific
corpus is generated. Then, the summarization algorithm is applied.

Data preparation. It takes as input the set S of news articles’ sen-
tences extracted from the raw articles and produces the date-specific
sentence corpus C𝑑 relative to each date 𝑑 within the reference
period 𝑃 . C𝑑 consists of (i) all the sentences 𝑠 ∈ S such that 𝑝 (𝑠)=𝑑
and (ii) all the sentences 𝑠∗ ∈ S such that 𝑑 ∈ R𝑑𝑙 (𝑠∗).



Condition (ii) ensures the inclusion of every sentence that ex-
plicitly references a given date (e.g., 31th December 2019 Wuhan
Municipal Health Commission, China, reported a cluster of cases...),
as the provided information could be deemed as relevant to extract
an informative per-date summary.

Summarization. A summary per date is generated by applying
state-of-art unsupervised summarization algorithms. The summa-
rizer generates a summary 𝑆𝑢𝑚(C𝑑 ) from each date-specific corpus
C𝑑 . The summary consists of a sentence shortlist. According to the
official TLS problem statement, the per-date summary length is
bounded to 𝑁𝑠 sentences [18].

Currently, the SDF method integrates the following sentence-
based summarization algorithms:

• TextRank [19]: a traditional graph-based methodology lever-
aging on syntactic similarity measures.

• LexRank [8]: a standard graph-based approach that relies on
the well-known TF-IDF [2] term relevance score.

• CoreRank [29]: a summarizer based on both submodular
optimization and graph-based text representation.

• TextRank-BM25 [3]: a variant of the established TextRank
summarizer that leverages the Okapi-BM25 [26] score to
estimate pairwise sentence similarity.

• ELSA [6]: a recently proposed itemset- and LSA-based sum-
marization system.

• SubModular [16], Centroid-Rank [23], Centroid-Opt [9], Em-
beddingRank [22]: four variants of state-of-the-art unsuper-
vised summarizers that leverage on BERT-based contextual-
ized representations [25].

3.3 Summary-driven date selection
This step aims at identifying the key dates in 𝑃 and returning
the corresponding summaries. Unlike previous approaches, SDF
considers also per-date summary content 𝑆𝑢𝑚(C𝑑 ) and high-level
references Rℎ𝑙 (·) in the date selection process.

We present here a new date selection strategy based on graph
ranking, namelyGraph-Based Date Selection (GBDS, in short). It first
builds a graph model that embeds the key information provided by
both multiple-level date references and summary content. Next, it
applies established graph ranking strategies to retrieve the most
authoritative dates.

Date graph model. We build a directed graph 𝐺 (𝑁, 𝐸), whose
nodes represent distinct publication dates in 𝑃 , whereas each ori-
ented edge in 𝐸 connects the node corresponding to a referencing
date to the one corresponding to the reference date.

To reward highly cited candidate dates, graph edges are weighted
by (i) the date-level reference count and (ii) the pairwise similarity
between the content of the sentences including high-level refer-
ences and that of the referenced date summary. The former contri-
bution rewards the candidate dates that receive many date-level
references such as 31th December 2019 Wuhan Municipal Health
Commission, China, reported a cluster of cases...) in Figure 2. In a
nutshell, the higher the number of date-level references, the more
authoritative the candidate date. The latter contribution weighs the
relative importance of a high-level reference based on the summary

content. For example, let us the month-level reference such as Coro-
navirus outbreak started last December 2019 in Figure 2. It subtends
an implicit reward to all publication dates in December 2019. To
quantify edge importance we compute the similarity between the
citing sentence (i.e. the sentence that includes the high-level ref-
erence) and the summary of each publication date in referenced
period (December 2019). The idea behind is to reward the dates in
December 2019 whose summary content is highly similar to those
of the citing sentence, because they are most likely to be actually
linked to the referencing date.

Given a monthly period𝑀⊂𝑃 referenced by sentence 𝑠 ∈ S, the
weight of the graph edge 𝐸 : 𝑝 (𝑠) → 𝑑𝑟 s.t. 𝑑𝑟 ∈𝑀 is computed as
𝑠𝑖𝑚(𝑆𝑢𝑚(C𝑑𝑟 ),𝑠). In the current SDF system implementation, text
similarity scores are computed using the n-gram-based ROUGE-
2 Precision [15]. To improve the effectiveness of the next graph
ranking step, edge weights are first normalized in the range [0,1]
and then pruned by filtering out the edges whose weight is below
a user-provided cutoff threshold4.

Graph ranking. To compute the date relevance scores, SDF cur-
rently supports the following established ranking functions: (i)
Pagerank [22], (ii) HITS [13], (iii) Weighted degree, i.e., the sum of
the weights of all incoming and outgoing edges [11], (iv) Weighted
in-degree, i.e., i.e., the sum of the weights of all incoming edges [11].

3.4 Incremental timeline updating
The newly proposed variant of the TLS pipeline retrieves the most
relevant event dates on top of per-date summarization outcomes.
This makes frequent timeline updating more efficient when the
updating frequency is rather high and, thus, the number of new
dates to be added is limited.

More specifically, as discussed in Section 5.5, the time complexity
of the TLS process is mainly influenced by the summarization step,
which is approximately one order of magnitude slower than the date
selection one. Hence, when the requested frequency of timeline
updating is relatively high (e.g., daily or weekly), SDF is more
efficient than the traditional pipeline as it requires to generate a
significantly lower number of per-date summaries.

Let us assume that the existing event timeline needs to be up-
dated on a daily basis. Every day SDF requires the computation
of 𝑛 + 1 per-summary dates, where 𝑛 is the average number of
dates referenced by the new date (e.g, 𝑛=5.63 in CovidTLS, 𝑛=9.71
in Crisis). Conversely, the traditional pipeline requires to recom-
pute the summaries of all the relevant dates, both old and new.
For example, on CovidTLS the ground truth comprises 218 dates.
Hence, using the traditional pipeline timeline updates would be
more computationally expensive.

4 BENCHMARK DATASETS
We carried out experiments on three existing benchmark datasets
and a newly released one collecting timestamped news articles
relative to the Covid-19 pandemic. Table 2 summarizes the main
dataset statistics.

The existing datasets consist of a collection of news documents
that ranges over various topics (e.g., 4 topics in Crisis [32], 47 in

4We will set the cutoff threshold to 0.8 in our experiments



Entities [10]). Each article in the collection has a publication date.
The goal is to separately analyze the articles relative to the same
topic in order to extract a separate timeline per topic. For validation
purposes, a human-annotated timeline per topic is also given.

The characteristics of the existing datasets are rather diversified.
Specifically, they include a rather variable number of articles per
topic, ranging from few hundreds (Timeline 17 [30]) to over four
thousands (Crisis [32]). The average timeline duration is also quite
diversified (in the order of months for Timeline 17 and Crisis, in the
order of years for Entities). However, the number of distinct dates
per timeline is comparable and not very high (i.e., it varies between
22 and 36). This calls for new benchmark datasets including highly
complex topics as well (i.e., many articles and dates).

To tackle the above issue we present CovidTLS, a newly bench-
mark dataset with peculiar characteristics: just one, complex topic
(i.e., the outbreak Covid-19 pandemic) reported by over 26 thou-
sands news articles. The number of candidate dates in CovidTLS is
one order of magnitude higher than those of all the existing topics.
More details about the analyzed datasets are given below.

The CovidTLS dataset. The newly released CovidTLS dataset de-
scribes the outbreak and evolution of the Covid-19 pandemic since
the early 2020. Since it has been indisputably among the most rele-
vant worldwide events, it has been reported by an unprecedented
amount of news articles. The news article corpus was crawled from
several English-written journals. It was annotated with a ground
truth timeline retrieved from a public, authoritative website.

CovidTLS is freely available, for research purposes, at https:
//github.com/MorenoLaQuatra/SDF-TLS.

Other datasets. Timeline 17 [30] comprises 19 news timelines
extracted from various news agencies. They ranged over 9 different
topics relative to different event types (e.g., catastrophic events or
civil wars). Crisis [32] collects event data related to long-term armed
conflicts happened in North Africa. Entities [10] contains timeline
data for entities rather than events. Specifically, it consists of 47
different timelines ranging over an equal number of topics. Most
of the covered topics are related to life-spanning events of famous
people. The remaining ones are related to business companies and
no-profit organizations.

5 EXPERIMENTS
We performed an extensive experimental validation of the per-
formance of the SDF approach. The experiments were run on a
machine equipped with Intel® Xeon® Gold 5115 CPU, 512 GB of
RAM and running Ubuntu 18.04.5 LTS.

Hereafter, we will separately discuss results achieved on the date
selection and summarization steps. More details on the evaluation
process are given below.

Date selection evaluation. The date selection problem can be
reformulated as the following Information Retrieval task: given a
collection of timestamped news articles relative to a specific news
topic, retrieve the dates that are most relevant to the news story
according to the reference timeline (i.e., the ground truth).

For each dataset and system, TLS performance was measured in
terms of the average F1-score over all the analyzed topics, which is
the harmonic mean of retrieval precision and recall [24].

Date summarization evaluation. Text summarization outcomes
are commonly evaluated using the established Rouge toolkit [15].
It counts the unit overlaps between an automatically generated
summary and a reference summary (i.e., the ground truth), which is
typically hand-written by domain experts. Depending on the type
of considered textual unit, different Rouge metrics can be analyzed
(e.g., Rouge-1 for unigrams, Rouge-2 for bigrams). Separately for
each rouge metric TLS system performance is quantified by the
corresponding precision, recall, and F1-score values [24].

In the TLS scenario both source data and summary content
are timestamped. Hence, Rouge-based summary evaluation is tai-
lored to TLS by considering the timeliness of the selected content.
Specifically, we considered the following established Rouge variants:
concatenation, agreement, and alignment [17]. Concatenation-based
scores (concat, in short) replicate the standard ROUGE evaluation
by merging all the separate per-date summaries into a unique sum-
mary, regardless of the associated timestamp. Agreement-based
scores (namely agreement) limit the summary comparisons to the
dates that actually occur in the ground truth.Alignment-based scores
(namely align) rely on the following steps:

(1) Align the dates of the extracted and reference timelines us-
ing a many-to-one mapping function, which firstly looks for
an exact date matching. Whenever it is not found, a approx-
imated matching is generated by retrieving to the closest
date in the reference timeline.

(2) Compute the average ROUGE scores, according to the aligned
timeline versions.

Tested methods. We compared the results achieved by the SDF
system with that of the following approaches.

• The IR-based approach proposed in [7].
• The system proposed in [18], which is, to the best of our
knowledge, the best performing state-of-the-art unsupervised
TLS method.

• The regression-based approach proposed in [10], which is
(to the best of our knowledge) the latest supervised TLS ap-
proach.

Separately for each dataset and method, the best TLS perfor-
mance were achieved by exploring multiple configuration settings
via grid search.

5.1 Date summarization results
Table 3 reports the Rouge-1 and Rouge-2 F1-scores achieved by all
the tested TLS methods on the date summarization step. Although
all summarization outcomes are comparable with each other, we
graphically separate unsupervised methods, like SDF, from the su-
pervised one [10], as they are conceptually different. For the sake of
readability, the results of the best performing unsupervised method
are written in boldface. For each SDF competitor and dataset, we
report here the best result provided by the respective authors. For
SDF the best configuration setting is specified in brackets.

On Timeline 17, Crisis, and Entities datasets we assessed also the
statistical significance of the difference in performance between two

https://github.com/MorenoLaQuatra/SDF-TLS
https://github.com/MorenoLaQuatra/SDF-TLS


Data collection # topics Avg.# articles
per topic Avg. # dates in timeline Avg. timeline duration % of high-level references

Timeline 17 9 513.11 36.42 242.47 days 50.99
Crisis 4 4,560.75 29.22 387.86 days 54.61
Entities 47 1,086.49 22.57 19.02 years 62.68
CovidTLS (our) 1 26,376 218 266 days 61.07

Table 2: characteristics of the benchmark datasets.

TLS systems using the two-sided paired approximate randomization
test [21]5. On CovidTLS the statistical test was not applicable as it
focuses on a single topic. Every statistically significant performance
worsening against the best performing method is starred in Table 3.

SDF performed averagely best against all the tested unsuper-
vised methods. On Timeline 17 the Rouge scores were comparable
to those of the state-of-the-art supervised one (i.e., DateWise [10]),
despite the latter was facilitated by the a priori knowledge of train-
ing data. On CovidTLS, the SDF performance was significantly
better than all other methods: the achieved scores were roughly
ten times higher than the state-of-the-art unsupervised method
whereas doubled the supervised one.

5.2 Date selection evaluation
Table 4 summarizes the best results achieved for the date selection
task, where we separate again unsupervised methods from the
supervised one. To explore the effect of the graph ranking method
on SDF performance, we report the results achieved using different
strategies.

SDF performed best on all the tested dataset. On 3 out of 4
datasets, its performance was superior to that of the state-of-the-
art supervised method as well.

5.3 Effect of summarized knowledge on date
selection

We explored the impact of using summarized content, extracted
from high-level references, on TLS performance. The goal is to
understand whether and to what extent summary-driven content
analyses are useful for tackling the date selection task.

Figure 3 shows a result comparison, in terms of minimum, aver-
age and maximum F1-scores, between the graph-based strategies
relying on Summary-Driven Content-Based analysis (SDCB) and
not (no-SDCB).

The results show that integrating summary content in date se-
lection was particularly effective when the article news flow is
likely to be redundant. Specifically, it has shown to be helpful while
coping with (i) long-lasting news topics (e.g., Entities) or (ii) com-
plex, multi-faceted topics (e.g., CovidTLS). Conversely, its use was
detrimental on smaller news datasets (e.g., Timeline 17), where
summarizing per-date news content was apparently not beneficial.

5To run the tests we used the Python-based implementation publicly available at
https://github.com/smartschat/art (latest access: January 2021)

Figure 3: Comparison between content-based (SDCB) and
content-independent (no-SDCB) approaches.

5.4 Comparison between summarization
algorithms

We compared also the performance of different text summarization
algorithms independently of the date selection strategy, which was
selected according to the results summarized in Section 5.2 and
kept fixed.

Table 5 reports the results achieved using nine different summa-
rization algorithms. The results show that the graph-based approach
presented in [3] averagely performed best on the analyzed datasets.
The achieved results are in line with the previous research find-
ings [31], as graph ranking methods have shown to be particularly
effective in coping with timestamped news datasets.

5.5 Time complexity
We empirically analyzed the time complexity of the SDF approach.
Regarding the date selection step, the times spent in date selection
per timeline without considering news content (i.e., no-SDCB strat-
egy) ranged from 7s (Timeline 17) to 134s (CovidTLS). By integrating
the summarized knowledge, the computational times yielded 3x-5x
increase and ranged from 19s to 726s.

The time complexity of the date summarization step depends
on the selected algorithm. For example, by focusing on the best
performing summarizer, i.e., TextRank-BM25 [3], the execution
times varied between 65.19s (Entities) to 1032.43s (CovidTLS). In
conclusion, the summarization step was approximately one order of
magnitude more computationally expensive than the date selection
step.



Model Type concat agreement alignment-m21
R1-F1 R2-F1 R1-F1 R2-F1 R1-F1 R2-F1

Timeline 17
Chieu & Lee [7] U 0.275* 0.065* 0.028* 0.008* 0.057* 0.014*

TLS+reweighting [18] U 0.383 0.092 0.094 0.025* 0.109 0.028
SDFdegree, TextRank-BM25 U 0.401 0.101 0.106 0.033 0.120 0.035

DateWise [10] S-DS 0.385 0.097 0.107 0.032 0.120 0.035
Crisis

Chieu & Lee [7] U 0.368 0.066 0.028* 0.005* 0.051* 0.009*
ASMDS+DateRef [18] U 0.333* 0.07 0.051 0.011 0.073 0.016

SDFin-degree-SDCB, TextRank-BM25 U 0.360 0.073 0.064 0.014 0.086 0.018
DateWise [10] S-DS 0.347 0.075 0.071 0.023 0.089 0.026

Entities
Chieu & Lee [7] U 0.275 0.053 0.025* 0.011 0.038* 0.012

TLS+reweighting+DateRef [18] U 0.275 0.053 0.039 0.013 0.051 0.015
SDFin-degree-SDCB, TextRank-BM25 U 0.275 0.052 0.041 0.011 0.051 0.014

DateWise [10] S-DS 0.271 0.051 0.045 0.014 0.057 0.017
CovidTLS

Chieu & Lee [7] U 0.203 0.021 0.008 0.001 0.017 0.001
ASMDS+TempDiv+DateRef [18] U 0.249 0.036 0.028 0.001 0.03 0.001
SDFPagerank-SDCB, TextRank-BM25 U 0.439 0.076 0.062 0.011 0.072 0.012

DateWise [10] S-DS 0.318 0.038 0.036 0.005 0.040 0.006
Table 3: Date summarization: Rouge-based evaluation.

Model Type Timeline 17 Crisis Entities CovidTLS
Chieu & Lee [7] U 0.230* 0.166* 0.09* 0.176

Martschat & Markert [18] ASMDS-based U 0.531 0.278 0.163 0.685
TLS-constraint-based U 0.527 0.266 0.180 0.679

SDF

Weighted in-degree U 0.549 0.302 0.197 0.689
HITS U 0.553 0.206 0.095 0.679

Pagerank U 0.537 0.175 0.161 0.623
Weighted degree U 0.532 0.275 0.117 0.679

Ghalandari & Ifrim [10] S 0.544 0.295 0.205 0.679
Table 4: Date selection: IR-based evaluation in terms of F1-score.

6 CONCLUSIONS AND FUTUREWORK
We propose a new strategy, called SDF, to reverse the mainstream
TLS pipeline. In a nutshell, SDF works as follows: It summarizes
dates first. Next, it selects the key dates by conveniently exploiting both
multiple-level temporal references and the previously summarized
knowledge. This approach allows us to overcome the limitations of
previous date-wise approaches, which entail (i) exploring the con-
tent of textual news articles to drive the date selection process, (ii)
taking advantage of the presence of high-level temporal references,
and (iii) incrementally updating the news timelines as soon as new
candidate dates are added to the raw news collections.

A thorough experimental evaluation shows that SDF on average
performed best against all the previous unsupervised approaches,
whereas was competitive against supervised methods. This makes
SDF particularly appealing when there is a lack of on-topic training

news data (see Section 5.1). The experimental analysis yielded the
following takeaways.

• The summarized knowledge extracted from high-level refer-
ences is useful to identify the key event dates when either
the news story is long-lasting or the covered topic is rather
complex and multi-faceted (see Section 5.3).

• Real news collections include a large number of high-level
temporal references that can be profitably exploited in TLS
(see Table 2).

• Graph-based approaches appeared to be the most effective
strategies to summarize per-date news articles (see Section 5.4).

As future work, we plan to extend the current strategy to handle
cross-lingual and multimodal collections. The former task entails
extracting relevant content from streams of news articles written in
different languages. The latter focuses on generating news timelines
including also images, videos, and social content [33]. Furthermore,



Summarizer concat F1 agreement F1 align+m:1 F1
R1 R2 R1 R2 R1 R2

Timeline 17
TextRank 0.363* 0.084* 0.086* 0.023* 0.097* 0.025*
LexRank 0.370* 0.084* 0.088* 0.025* 0.100* 0.027*
CoreRank 0.371* 0.091* 0.092* 0.024* 0.105* 0.026*

TextRank-BM25 0.401 0.101 0.106 0.033 0.120 0.035
ELSA 0.389* 0.097 0.100 0.029 0.114 0.032

SubModular 0.367* 0.082* 0.086* 0.024 0.098* 0.025
Centroid-Rank 0.365* 0.082* 0.084* 0.023 0.096* 0.025
Centroid-Opt 0.372* 0.082* 0.084* 0.021* 0.097* 0.023*

EmbeddingRank 0.365* 0.084* 0.087* 0.022 0.098* 0.024*
Crisis

TextRank 0.311* 0.058* 0.043* 0.009 0.062* 0.012
LexRank 0.312* 0.056* 0.042* 0.009* 0.059* 0.012*
CoreRank 0.356 0.075 0.060 0.014 0.080 0.017

TextRank-BM25 0.360 0.073 0.064 0.014 0.086 0.018
ELSA 0.338* 0.064* 0.061 0.015 0.081 0.018

SubModular 0.337 0.057* 0.050* 0.009 0.068* 0.012*
Centroid-Rank 0.335* 0.056* 0.047* 0.008* 0.065* 0.011*
Centroid-Opt 0.337* 0.057* 0.049* 0.009* 0.068* 0.012*

EmbeddingRank 0.337 0.056* 0.048* 0.008* 0.066* 0.011*
Entities

TextRank 0.238* 0.041* 0.030* 0.007* 0.040* 0.010*
LexRank 0.245* 0.043* 0.032* 0.008* 0.041* 0.010*
CoreRank 0.258* 0.049 0.038 0.012 0.048 0.014

TextRank-BM25 0.275 0.052 0.041 0.011 0.051 0.014
ELSA 0.258* 0.044* 0.036* 0.009 0.046* 0.011

SubModular 0.249* 0.040* 0.031* 0.007* 0.040* 0.009*
Centroid-Rank 0.251* 0.042* 0.032* 0.008* 0.041* 0.009*
Centroid-Opt 0.251* 0.041* 0.032* 0.007* 0.041* 0.009*

EmbeddingRank 0.250* 0.041* 0.032* 0.007* 0.041* 0.009*
CovidTLS

TextRank 0.451 0.061 0.045 0.004 0.054 0.004
LexRank 0.461 0.065 0.051 0.005 0.061 0.006
CoreRank 0.383 0.053 0.044 0.003 0.051 0.004

TextRank-BM25 0.439 0.076 0.062 0.011 0.072 0.012
ELSA 0.428 0.065 0.050 0.005 0.058 0.005

SubModular 0.424 0.055 0.051 0.006 0.059 0.006
Centroid-Rank 0.419 0.053 0.050 0.005 0.058 0.006
Centroid-Opt 0.433 0.057 0.049 0.005 0.057 0.006

EmbeddingRank 0.425 0.057 0.050 0.006 0.058 0.007
Table 5: Comparison between summarization algorithms.

we plan to conduct a qualitative user study to assess summary
informativeness, coverage, and diversity.
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