
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Image analytics and machine learning for in-situ defects detection in Additive Manufacturing / Cannizzaro, Davide;
Giuseppe Varrella, Antonio; Paradiso, Stefano; Sampieri, Roberta; Macii, Enrico; Patti, Edoardo; DI CATALDO, Santa. -
(2021), pp. 603-608. (Intervento presentato al  convegno 2021 Design, Automation and Test in Europe Conference and
Exhibition (DATE 2021) tenutosi a Virtual Conference (due to Covid-19) nel 2021)
[10.23919/DATE51398.2021.9474175].

Original

Image analytics and machine learning for in-situ defects detection in Additive Manufacturing

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.23919/DATE51398.2021.9474175

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the  corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2918890 since: 2021-08-27T17:44:28Z

Institute of Electrical and Electronics Engineers Inc.



Image analytics and machine learning for in-situ
defects detection in Additive Manufacturing

Davide Cannizzaro∗, Antonio Giuseppe Varrella∗, Stefano Paradiso†, Roberta Sampieri†,
Enrico Macii∗, Edoardo Patti∗ and Santa Di Cataldo∗

∗Politecnico di Torino, Turin, Italy.
†FCA Product Development AM Centre, Turin, Italy.

Emails: {name.surname}@polito.it∗, {name.surname}@fcagroup.com†

Abstract—In the context of Industry 4.0, metal Additive
Manufacturing (AM) is considered a promising technology for
medical, aerospace and automotive fields. However, the lack of
assurance of the quality of the printed parts can be an obstacle
for a larger diffusion in industry. To this date, AM is most of
the times a trial-and-error process, where the faulty artefacts are
detected only after the end of part production. This impacts on
the processing time and overall costs of the process. A possible
solution to this problem is the in-situ monitoring and detection
of defects, taking advantage of the layer-by-layer nature of the
build. In this paper, we describe a system for in-situ defects
monitoring and detection for metal Powder Bed Fusion (PBF),
that leverages an off-axis camera mounted on top of the machine.
A set of fully automated algorithms based on Computer Vision
and Machine Learning allow the timely detection of a number
of powder bed defects and the monitoring of the object’s profile
for the entire duration of the build.

Index Terms—Industry 4.0, Additive Manufacturing, Powder
Bed Fusion, Computer Vision, Machine learning

I. INTRODUCTION

Additive manufacturing (AM), also known as 3D printing, is
the process of joining materials layer by layer to make objects,
starting from a three-dimensional (3D) model. This process
typically enables the creation of lighter and more durable parts
and systems, with higher flexibility than traditional subtractive
techniques. Thanks to these characteristics, AM is typically
considered one of the pillars of the Industry 4.0 revolution.

Fig. 1 shows the main phases of a typical AM process. It
starts from a 3D CAD model of the objects, then the 3D CAD
model is converted into a stereolythography (STL) file format,
which is a triangular mesh representation of CAD geometry.
The STL is processed by a slicer, a software that converts the
model into a series of thin layers and produces instructions
tailored to a specific AM system. Finally, the manufactured
object may undergo a subtractive finishing process to achieve
the best resolutions.

Among metal AM technologies, Powder bed fusion (PBF)
involves the spreading of powder material on top of the
previous layers by means of a roller or recoater, with a
reservoir providing fresh material supply. A heat source, either
laser or electron beam, selectively melts together each layer
of metal powder [1]. One of the most used PBF technologies
in AM industry is Direct Metal Laser Sintering (DMLS), that
allows to print parts with a 95% density without requiring any
additional post-build sintering [2].
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Fig. 1: AM process: main phases.

Metal AM is primarily used for manufacturing in industry
fields such as aerospace, automotive and medical, where AM is
pushing forward innovative designs and applications in a com-
petitive market. In aerospace and automotive, AM is helping
suppliers and companies to develop consolidated, lightweight
components that lead to more efficient vehicles. In the medical
industry, manufacturers are taking advantage of a wide range
of high-strength and biocompatible 3D printing materials to
customize designs and create functional prototypes, true-to-
life anatomical models and surgical grade components [3].

Despite the many possibilities and advantages compared
to traditional technologies, the widespread diffusion of AM
in industry is limited by a lack of repeatability and quality
assurance. To this date, many AM manufacturing systems do
not have the capability to assess the quality of the products
that they produce, if not with expensive and time-consuming
post-process analysis. This majorly affects the overall costs
and time of the production.

To address this issue, in recent years many companies are
providing commercial software for real-time visualization and
monitoring of several process parameters. Nonetheless, these
commercial solutions are generally limited in their scope,
as they do not develop a fully automated quality control
strategy, and they fail to detect minor defects in the printed
part that could be automatically corrected before another layer
is built [4]. Moreover, monitoring tools are generally not
available on older machine models that are currently used by



manufacturers, or require expensive and complex set-up.
In the last few years, researchers are using more and more

data analytics approaches to address the problem of AM mon-
itoring, mostly combining off-line Machine Learning (ML)
methods with other types of algorithms such as Computer Vi-
sion and signal processing. For example, recent works describe
monitoring tools for AM machines and try to apply ML to
different types of sensed data, to obtain automated detection
of a number of defects [11]–[13]. Even though some of these
works show interesting proofs-of-concept, their application to
real industrial scenarios is very limited, due to lacks in the
efficient collection, storage, annotation and integration of the
data that are produced by the machines. Hence, the use of data-
driven techniques to monitor and improve the AM process,
even though very promising, is still at its very early stages.

In this paper, we describe a real-time fully-automated
framework for layer-wise defects monitoring in DMLS Addi-
tive Manufacturing. The system exploits an off-axis low-cost
camera to automatically acquire images of the powder bed
and of the manufactured object during the layering process.
Then, a set of fully-automated tools based on Computer Vision
and Machine Learning allow a real-time detection of possible
defects of the part, that are hard to spot by visual inspection.
The prototype was designed in a real-world industrial scenario,
and developed on top of a DMLS machine of an automotive
company. By allowing the early stopping/correction of the
faulty artefacts, this system is expected to improve process
repeatability and majorly reduce human intervention, with
major positive impacts on the production costs.

The outline of this paper is as follows. Section II provides
an overview of the state of the art of the monitoring systems
for AM. Section III describes our real-time AM monitoring
system, along with the defects detection tools. In Section IV,
case study results are shown to assess the system and the
algorithms developed. The paper is concluded in Section V.

II. STATE OF THE ART

One of the major challenges in AM is developing in-situ
sensing and feedback control capabilities to eliminate build
errors and allow qualified part creation, avoiding the need for
costly and destructive external testing. There is an industry pull
for in-situ inspection and closed-loop control techniques for
AM, which is not provided yet by commercial solutions [5].
Indeed, most of the available tools allow monitoring of AM
processes but they do not allow robust in-process identification
of material discontinuities [6].

Visual, camera-based methods have been used to identify
processing errors mostly for PBF, such as powder bed condi-
tion and geometrical accuracy. However, the main limitation
of such solutions is the lack of robustness, as they work only
for specific machines and experimental set-ups [7].

In [8], the authors rely on the idea that the by-products
of Laser Powder Bed Fusion (LPBF) can be used as process
signatures to design and implement statistical monitoring
methods. However, their solution is material and process
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Fig. 2: In-situ monitoring infrastructure.

dependent, and requires costly equipment that are usually not
available in a standard industrial scenario.

In [9], a low-cost thermal imaging solution is implemented,
that allows relative temperature measurements for detecting
unwanted process variability. Nonetheless, the proposed solu-
tion is not real-time and there is no control loop automation.

In [7], the authors propose an image processing method
designed to extract features from the melt pool in a PBF
process, using a high-speed camera to analyze the plumes
during the process. Hence, the system is susceptible to the
disturbance caused by vapour plume ejection.

To overcome these problems, we propose a low-cost and
machine-independent monitoring system based on a stan-
dard visible range camera, that can be replicated on top of
any industrial DMLS machine. The system includes a fully-
automated image analysis suite to identify a number of defects
in real-time during the layering process, without any a priori
knowledge of the process characteristics.

III. METHODS

In this section we describe our in-situ imaging infrastructure
for real-time layer-wise monitoring of powder bed defects and
object profile.

A. In-situ monitoring infrastructure

Our prototype is built using low-cost hardware and camera
on top of a EOS M290 DMLS printer in an automotive
company (FCA Product Development AM Centre). As shown
in Fig. 2, it includes:

• an Arduino Uno computing platform directly connected
with the 3D printer, used to manage the system, trigger
the camera and take images of the powder bed.

• an IDS UI-1540-SE 1.31Mpix camera (1280 × 1024
resolution). The camera is triggered through the Applica-
tion Programming Interface (API) made available by the
manufacturer. The acquisition is off-axis with respect to
the optical path of the laser.

• A standard low-cost PC running Linux, to collect images
and run the image analytics algorithms.

The image acquisition is automatically triggered by 3D printer
states, exploiting the signals emitted respectively by the action
of the laser and of the recoater, by means of photo-resistors. By
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Fig. 3: (a)-(e) Examples of powder bed defects targeted by the system. (f) Profile monitoring example.

doing so, the system is able to acquire images of the powder
bed before and after each layer is printed, without requiring
any user interaction.

B. Defects detection

In the current version of our prototype, the system includes a
set of real-time image analytics algorithms that allow the real-
time detection of five different powder bed defects, as well
as a continuous monitoring of the profile of the object that is
being printed. The algorithms are based on image processing
and Machine Learning and were developed in Python using
OpenCV and Keras standard libraries, respectively.

Fig. 3 (a)-(e) show five main categories of defects targeted
by our system:

• Holes: localised lacks of metallic powder that create small
dark areas in the powder bed image. The origin is a lack
of powder due to bad regulation of the dosing factor.

• Spattering: droplets of melted metal ejected from the melt
pool and landed in the surroundings.

• Incandescence: high-intensity areas in the completed
layer image, resulting from excess of laser energy density
and consequent inability by the melt pool to cool down
correctly.

• Horizontal defects: dark horizontal lines in the powder
bed caused by incorrect spreading of the powder, possibly
because of geometric imperfection of the piece or of the
metallic powder.

• Vertical defects: vertical undulation of the powder bed,
consisting in alternated dark and light lines along the
direction of the recoater’s path. The origin is either a
mechanical interference between the part and the recoater
or a mechanical defect of the recoater’s surface.

Each of these powder bed defects is known to cause either
porosities or microstructural alterations in the printed parts, as
well as lower mechanical characteristics.

The pipeline for real-time defects detection consists of
several image processing steps.

• Normalization. The images are first normalised against
a common reference frame, in order to correct uneven
illumination problems. To do so, an image of the powder
bed is acquired before the start of the layering process
and used as a reference throughout.

• Contrast enhancement. A standard background subtrac-
tion algorithm is applied to make the objects more
distinguishable from each other, as well as from the
background [14].

• Objects identification. Intensity discontinuities are iden-
tified by means of automated intensity thresholding algo-
rithm. This provides a rough identification of the different
objects in the image.

• Morphological filtering. Specific objects are recognized
based on their shape, exploiting morphological algo-
rithms. More in detail, Watersheds and Hough transforms,
followed by standard morphological regularization (i.e.,
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Fig. 4: Example of spattering defects detection pipeline.

opening, closing, holes filling), are respectively applied to
identify round-shaped and horizontal/vertical lines. Based
on the specific shape and number of objects that are
detected, the software identifies a specific category of
defect and triggers a corresponding alarm

As an example, in Fig. 4 we show the outcome of each
intermediate step of our pipeline, when applied to a spattering
defect. Spattering is indeed one of the defects that most
frequently happens during powder bed fusion: it involves tiny
particles of liquid metal being ejected from the laser’s path,
which may contaminate the powder bed and create issues
such as porosity, roughness, and lack of adhesion in the
finished parts. At the end of the last step in Fig. 4(d) (i.e.
morphological filtering), it is possible to see the most relevant
spatters identified.

C. Profile monitoring

Besides powder bed defects detection, the system includes
a fully automated profile monitoring suite, that is able to
monitor the profile of the build on a layer-by-layer basis (see
an example in Fig. 3(f)). This task has additional algorithmic
and computational challenges compared to basic powder bed

defects detection, because the printed parts may have very
different shapes and dimensions.

In our solution, profile monitoring is addressed as a se-
mantic segmentation problem. Semantic segmentation aims to
cluster parts of an image together, which belong to the same
object, using a pixel-level prediction to classify each pixel
in an image according to a category. In other words, image
segmentation becomes a binary classification task, where each
pixel needs to be labeled as belonging to the object of interest
(in our case, the printed part) or to the background. This is a
task that can be effectively addressed by a supervised Machine
Learning algorithm.

To achieve this purpose, we employ a U-Net architec-
ture [10], a state-of-the-art deep learning algorithm that was
initially designed for biomedical image segmentation and
then successfully applied to many different Computer Vision
applications. The network implements an end-to-end fully
convolutional network (FCN) that is only composed of con-
volutional and pooling layers without any dense layer, which
makes it is suitable for any image size. As shown in Fig. 5, the
architecture is composed of two paths. The first path is the con-
traction path or encoder, which is used to capture the context
in the image, and consists of a stack of various convolutional
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Fig. 5: U-Net architecture.

and max-pooling layers with gradually decreasing feature map
dimension. The second path is a symmetric expanding path or
decoder, which is used to enable precise localization using
transposed convolutions.

In our approach, the U-Net is initialised as suggested by [10]
and then fine-tuned on a representative PBF layer image,
acquired by our system.

IV. EXPERIMENTAL RESULTS

To validate the algorithms, we used a set of images pre-
annotated with all the defects targeted by our system. For the
five main categories of defects, we run a statistical validation
by analysing whether the algorithm identified the defect or not,
using metrics that are widely accepted in descriptive statistics:

• Accuracy: it represents the number of correct classifica-
tion with respect to the total cases.

Accuracy =
TP + TN

TP + TN + FP + FN

• Precision: it is the fraction of relevant cases among the
retrieved instances.

Precision =
TP

TP + FP

• Recall: it is the fraction of the total amount of relevant
instances that were retrieved.

Recall =
TP

TP + FN

In our work, True Positives (TP) represent the instances when
the algorithms were able to detect a defect that was really
present. True Negatives (TN) represent the instances when a
given defect was not present, and the algorithm was right in
not detecting it. False Positive (FP) and False Negative (FN)
represent the possible errors of the algorithms, respectively in
detecting a defect that was not present, or not being able to
identify a defect that was present.

In Table I we report the results obtained on a test set of 24
images with different powder bed conditions and defects.

For all the five defects, the results of the metrics considered
are ≥ 75% with the worst results for the Incandescence
defects (Precision: 75%) and Vertical defects (Recall: 75%).
According to our tests, Incandescence proved to be the most
challenging defect to be recognized, probably due to the high
variation of pixel luminosity. On the other hand, Spattering

TABLE I: Defects detection algorithms validation

Holes Spatt. Incand. Horizontal Vertical
TP 14 22 15 11 6
TN 8 1 4 11 16
FP 2 1 5 1 0
FN 0 0 0 1 2

Accuracy 91.3% 95.8% 79.2% 91.6% 91.67%
Precision 87.5% 95.6% 75% 91.6% 100%

Recall 100% 100% 100% 91.6% 75%

defects are the easiest due to the high amount of spatters
generated.

For the profile monitoring task, the validation exploits
the Sørensen–Dice coefficient (DSC) to compare the profile
segmentation obtained with our algorithm against a manually
obtained ground truth. This metrics is used to gauge a 0 to 1
similarity of two binary images, as follows:

DSC =
2|X ∩ Y |
|X|+ |Y |

where |X| and |Y | are the number of pixels of the two images
(in our case, the automatic segmentation and the ground truth)
and |X ∩ Y | the number of pixels that are common to both
images. Fig. 6 shows and example of this procedure, with (a)
the binary mask obtained by manual segmentation, used as the
ground truth, and (b) the binary mask obtained by our profile
monitoring suite.

In our tests, which involved 44 independent profiles from
4 different AM parts, we obtained a very good similarity
between automated segmentation and manual ground truth:
mean DSC value was equal to 0.878, when computed on each
single segmented object, and to 0.911, when computed on each
layer image taken as a whole.

Finally, in TABLE II we report the execution time of all the
tested algorithms. As it can be seen from the reported values,
execution times are all below 2.5s, which is well below the
time elapsing between two subsequent layers. Profile monitor-
ing is the algorithm taking the longest time (2.461s) because it
involves running deep neural network. The other algorithms,
which exploit standard image processing operations, are all
below 1s of execution time.

TABLE II: Mean execution time of the algorithms.

Operation Time [s] Operation Time [s]
Holes 0.791 Horizontal 0.593

Spattering 0.574 Vertical 0.932
Incandescence 0.821 Profile monitoring 2.461

V. CONCLUSIONS AND FUTURE WORK

Computer Vision and Machine learning have been proven to
be promising approaches to the problem of in-situ monitoring
of the AM process. Nonetheless, the actual use of these
approaches in a real industrial scenario is still limited due to
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Fig. 6: Profile monitoring: validation example.

a number of problems. First of all, the lack of effective data
collection infrastructure specifically devoted to AM. Second,
the necessity to train the models on large annotated datasets,
which are typically costly and difficult to obtain in industrial
environments. This paper presented a low-cost camera-based
in-situ defects monitoring system for metal PBF. The prelim-
inary prototype, developed and tested in a real industrial sce-
nario of an automotive company (FCA Product Development
AM Centre)), includes a set of real-time Computer Vision and
Machine Learning algorithms to detect five different categories
of powder bed defects, as well as the layer-wise monitoring
of the profile of a printed part. Our preliminary results show
that the algorithms have a good performance in terms of
defect detection accuracy and profile segmentation and they
are suitable for real-time execution with low-cost hardware.
The framework is currently being extended to provide layer-
by-layer comparisons between the profile of the printed part
(as returned by the profile monitoring suite) and the desired
profile as defined by the slicer. This will allow a real-time
automated detection of any profile alterations during a build.

Future works will include further optimization of the algo-
rithms, to allow even faster execution in a resource constrained
environment.

Additional efforts are also being directed towards the well-

known problem of the scarcity of annotated data, which
currently limits the possibility of training and testing Machine
Learning models. In this regard, we are currently investigating
the use of Generative Adversarial Networks (GANs [15]) for
the generation of synthetic images of powder bed defects, to
train deep learning classifiers even more efficiently.
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