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Abstract
Computationally fast and accurate mathematical models are essential for effective design, optimization, and control of wave
energy converters. However, the energy-maximising control strategy, essential for reaching economic viability, inevitably
leads to the violation of linearising assumptions, so the common linear models become unreliable and potentially unrealistic.
Partially nonlinear models based on the computation of Froude–Krylov forces with respect to the instantaneous wetted surface
are promising and popular alternatives, but they are still too slow when floaters of arbitrary complexity are considered; in fact,
mesh-based spatial discretisation, required by such geometries, becomes the computational bottle-neck, leading to simulations
2 orders of magnitude slower than real-time, unaffordable for extensive iterative optimizations. This paper proposes an
alternative analytical approach for the subset of prismatic floating platforms, common in the wave energy field, ensuring
computations 2 orders of magnitude faster than real-time, hence 4 orders of magnitude faster than state-of-the-art mesh-
based approaches. The nonlinear Froude–Krylov model is used to investigate the nonlinear hydrodynamics of the floater of a
pitching wave energy converter, extracting energy either from pitch or from an inertially coupled internal degree of freedom,
especially highlighting the impact of state constraints, controlled/uncontrolled conditions, and impact on control parameters’
optimization, sensitivity and effectiveness.

Keywords Nonlinear hydrodynamics · Nonlinear Froude–Krylov force · Floating platforms · Wave energy converter

1 Introduction

Wave-structure interactions are complex physical phenom-
ena, often difficult to model and predict with a degree of
confidence satisfactory for several non-trivial ocean engi-
neering applications. One field presenting major modelling
challenges is wave energy conversion, for two main reasons:
on the one hand, accurate mathematical models are essential
for the design and development of economically performing
wave energy converters (WECs); on the other hand, due to
the inherent requirement of exaggerating the device motion
to increase power capture, simple linear models are often
inadequate, demanding consideration of an appropriate com-
promise between higher-complexity and computational time.

B Giuseppe Giorgi
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1 Marine Offshore Renewable Energy Lab (MOREnergyLab),
DIMEAS, Politecnico di Torino, Corso Duca degli Abruzzi
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The importance of accurate mathematical models for
WECs has been widely stressed, even in recent years. Not
only a reliable power production assessment is essential for
correctly evaluating the performance of the device, but also
the prediction of structural loads is fundamental for parsimo-
nious but resilient design, for which high model accuracy is
mandatory (Windt et al. 2020). Moreover, the control strat-
egy, playing a fundamental role in modifying the response
of the system, increasing power absorption while ensuring
compliance with constraints (Ringwood 2020), is very sen-
sitive to modelling errors (Ringwood et al. 2018, 2019).
Furthermore, particularly due to the action of the energy-
maximising controller, linear models may become not only
inaccurate, but even physically absurd, with floating bodies
clearing the water if no constraint is applied (Faedo et al.
2020b). In general, under controlled conditions, the inclu-
sion of nonlinearities should always be at least considered.

Due to the established awareness of the need for nonlinear
models, a plethora of modelling options is available (Wolg-
amot and Fitzgerald 2015; Penalba et al. 2017; Davidson and
Costello 2020). However, what model for what device and
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what application condition remains an open question, so that
recent great collaborative effort is leading to a wide cross-
modelling comparison (Wendt et al. 2019; Ransley et al.
2020). Each model relies on a set of assumptions, more or
less restrictive, with consequent impact on the complexity
and computational burden. The resulting accuracy depends
on how representative the assumptions are of the expected
working conditions. In particular, while fully-nonlinearmod-
els may be of the highest accuracy, the time they require for
computation is not compatible with control, optimization,
or extensive power production assessment. On the contrary,
partially-nonlinear models have the potential to define a con-
venient compromise between computation and fidelity, since
only major nonlinearities are described. Among partially
nonlinear models, nonlinear Froude-Krylov force (NLFK)
models appear to be the most attractive for floaters rela-
tively small compared to the characteristic wavelength, as
WECs usually are: since radiation and diffraction effects
are relatively small, only the static and dynamic undisturbed
pressure field, known regardless of the floater motion, is inte-
grated over the instantaneous wetted surface, resulting from
the consideration of the floater displacement with respect to
the actual free surface elevation.

The appeal of NLFKmodels is certified by the large num-
ber of independent numerical implementations witnessed in
recent years. The vast majority of such models relies on a
discretized spatial representation of the external surface of
the floater, by means of planar mesh panels. The consid-
eration of the instantaneous wetted surface requires either
a very fine mesh or a re-meshing routine every time steps,
both solutions being computationally demanding. The pio-
neer of NLFK models in the WEC field is LAMSWEC,
developed for the nonlinear modelling of the SEAREV
device (Gilloteaux et al. 2007), and applied to a heaving
sphere (Merigaud and Gilloteaux 2012) and the WaveBob
device (Tarrant andMeskell 2016). The currentlywidespread
simulation software WEC-Sim (Lawson et al. 2014) also
includes a mesh-based NLFK computation feature, which
has been applied to a bottom-referenced point absorber (Tos-
devin et al. 2019), to a self-referenced 2-body heaving point
absorber (Van Rij et al. 2018), and a multi-body WEC
(Chandrasekaran and Sricharan 2020). Further examples of
software including NLFK computation via a mesh are SIM-
DYN (Somayajula and Falzarano 2015; Wang et al. 2019),
as well as various other in-house implementations (Guerinel
et al. 2013; Jang and Kim 2019, 2020). Such NLFK models
are already faster than weakly- or fully-nonlinear potential
flow models (Penalba et al. 2017), where the potential prob-
lem is solved for each time-domain simulation at each time
step on a continuously updating wetted surface (Letournel
et al. 2014).

In all of such NLFK implementations, the computation
bottleneck is the mesh discretization, leading to simula-

tions about 2-orders of magnitude slower than real time
(Gilloteaux 2007).Although for geometries of arbitrary com-
plexity a mesh is likely the only possible solution, simpler
shapes can offer symmetries that allow to reach an analytical
representation of the wetted surface, hence tearing down the
computational time. Extensive work has been recently done
for axisymmetric floaters, which are very popular geome-
tries for point absorbers WECs and spars. In case of purely
heaving devices, an algebraic solution for the NLFK force
can be obtained (Giorgi and Ringwood 2018a), with evident
computational advantage (simulations in about two orders
of magnitude faster than real time (Giorgi and Ringwood
2018b)). For multiple degrees of freedom (DoFs) simu-
lations, a numerical solution is still required (Giorgi and
Ringwood 2018c) but, since thewetted surface is represented
analytically, the computational saving with respect to mesh-
based approaches is significant (about real time computation
(Giorgi et al. 2020d)). This modelling approach is shown
able to articulate parametric resonance (Giorgi et al. 2020c)
and instabilities (Giorgi et al. 2020a), and has been validated
via comparison with wave tank experiments (Giorgi et al.
2020b). An open source demonstration toolbox is also avail-
able (Giorgi 2019).

The computationally efficient analytical formulation of
NLFK forces for axisymmetric floaters is particularly useful
for the class of WECs exploiting mainly the heaving motion,
absolute or relative, since such devices are usually designed
to be insensitive to the wave direction, hence axisymmetric.
This paper has the purpose to similarly exploit the geomet-
ric simplification of prismatic floaters in order to provide a
computationally efficient alternative to general mesh-based
approach. Prismatic floaters are often used for the class
of WECs extracting energy from the pitching motion, as
(Nemos GmbH 2020; WavePowerLab 2020; Heras et al.
2019;Ma et al. 2020; Bracco et al. 2014; Poguluri et al. 2019;
Sirigu et al. 2020c; Kurniawan and Zhang 2018; Sirigu et al.
2019; Marcollo et al. 2017; Wu et al. 2017), that can benefit
from an analytical formulation of NLFK forces.

The novel contribution of this paper is to provide a
fast NLFK force computation framework, based on the
analytical representationof thewetted surface of generic pris-
matic floaters. State-of-the-art mesh-based NLFK models,
although able to handle geometries of arbitrary complexity,
are too slow to be applied for computationally demanding
tasks, such as power production assessment and control;
moreover, mesh-based approaches are less transparent then
fully-analytical models: based on a closed-form analytical
description of the wetted surface, it is possible to apply
advanced model-order reduction techniques (Faedo et al.
2020a) and geometry-based optimizations (Garcia-Teruel
et al. 2020). The modelling approach has been validated
against experimental data for an application based on an
axisymmetric wave energy converter (Giorgi et al. 2020b),
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providing confidence that such a mathematical framework
is appropriate to describe the dynamics also of a pitching
wave energy converter under operational conditions, exclud-
ing extreme events.

The remainder of the paper is organized as follows: Sect. 2
presents the definition of nonlinear Froude–Krylov forces
and the mathematical formulation of the computationally
efficient computation for generic prismatic floaters; Section 3
presents the case study considered in this paper to quantify
different nonlinear effects and their impact on the behaviour
and performance of the WEC; in particular, two scenarios
are considered, where energy is directly extracted from the
pitching motion, in Sect. 3.1, or indirectly via inertial cou-
pling, in Sect. 4.3. Results are discussed in detail in Sect. 4,
while some concluding remarks are given in Sect. 4.

2 Nonlinear Froude–Krylov force
formulation

Assuming homogeneous, ideal, incompressible fluid, and
irrotational flow, a velocity potential ϕ can be defined (New-
man 1977), as follows:

u = ∇ϕ, (1)

where u is the velocity vector. Since the motion is assumed
incompressible,ϕ satisfies Laplace’s equation throughout the
fluid described as follows:

∇ × u = ∇2ϕ = 0 (2)

If a floating body is present in the fluid, the potential flow
can be decomposed as the sum of the undisturbed incident
flow potential (ϕI ), the diffraction potential (ϕD), and the
radiation potential (ϕR)as follows:

ϕ = ϕI + ϕD + ϕR (3)

The pressure p can be derived from the potential flow
applying Bernoulli’s equation as follows:

p = −ρgz − ρ
∂ϕ(t)

∂t
− ρ

|∇ϕ(t)|2
2

, (4)

where ρ is the water density, g the acceleration of gravity,
and p the total pressure, divided into static (−ρgz) and time-
varying components.

In a fully linear approach, the time-varying pressure is
notionally integrated over the (constant) meanwetted surface
of the floater, generating Froude–Krylov, diffraction, and
radiation forces, respectively, forϕI ,ϕD , andϕR components
of ϕ. Conversely, the balance between the static pressure and

the weight of the floater is computed as if the cross-sectional
area of the floater at the still water level (SWL) was constant,
hence leading to a hydrostatic restoring force linearly pro-
portional to the displacement. However, such a linearization
is acceptable only under small steepness and small ampli-
tude of motion assumptions, which are normally violated by
WEC under control conditions, eventually leading to large
inaccuracies or even unrealistic results (Faedo et al. 2020b).

Partially nonlinear models can preserve part of the com-
putational convenience of linearmodels, while increasing the
accuracy. If the characteristic dimension of the floating body
is much smaller than the wavelength, ϕD and ϕR are much
smaller than ϕI (Clément and Ferrant 1988), so that the total
wave field is sufficiently well approximated by the undis-
turbed pressure field. The NLFK force, accounting for the
greater portion of the total excitation force, can be computed
as the integral of the undisturbed pressure (pu) field over the
instantaneous wetted surface (Sw(t)).

Assuming two-dimensional waves in the (x, z) coordinate
system, where x is the direction of propagation of the wave,
and z is the vertical axis, positive upwards, with the origin at
the (SWL), a the wave amplitude, ω the wave frequency, k
the wave number, h the water depth, and z′ the vertical coor-
dinate modified according to Wheeler’s stretching (Giorgi
and Ringwood 2018d), pu follows:

pu(x, y, z, t) = −ρgz+a cos (ωt − kx)
cosh

(
k

(
z′ + h

))

cosh(kh)
,

(5)

where the second term at the right-hand-side is the dynamic
pressure. Note that Wheeler’s stretching is not a strict the-
ory, since it implies that the potential function does not
satisfy the Laplace equation in the fluid domain; however,
it has been demonstrated in (Giorgi and Ringwood 2018d)
that Wheeler’s stretching is the best option for computation-
ally efficient calculation of nonlinear Froude–Krylov forces,
since it significantly improves the pressure field description
accuracy without increasing its complexity.

Froude–Krylov generalized forces (FFK ), divided into
linear forces (fFK ) and torques (τ FK ), integrate the undis-
turbed pressure field (pu), shown in (5), as follows:

fFK (t) = fg + fp = fg +
∫∫

Sw(t)

pu(x, y, z, t) n dS, (6a)

τ FK (t) = τ g + τ p = (
rg − rR

)

×fg +
∫∫

Sw(t)

pu(x, y, z, t) (r − rR) × n dS, (6b)

where fg is the gravity force, τ g its contribution to the torque,
n is the unity vector normal to the surface, r is the generic
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position vector, rR = (xR, yR, zR)′ is the reference point
around which the torque is computed, and likewise rg is the
position vector of the centre of gravity. Finally, for future
reference fp and τ p indicate the pressure integrals for the
force and torque, respectively.

While genericNLFKsolvers for arbitrary complexfloaters
must rely on a meshed representation of Sw(t), which
becomes the computational bottleneck, a faster analytical
representation, already available for axisymmetric floaters
(Giorgi 2019), can be readily obtained also for prismatic
floaters, as discussed hereafter.

2.1 Body-fixed frame andmapping

The free surface elevation and the pressure field are defined,
according to the linear potential flow, in an inertial world-
fixed frame of reference, with the origin at the still water
level. Therefore, in order to evaluate the action of the pressure
field onto the instantaneous wetted surface, it is necessary
to displace and rotate the whole floater in the world frame.
However, an alternative approach is to consider a body-fixed
frame and rotate the wave and pressure fields around it. The
great advantage of the body-fixed approach is to preserve all
geometric parameters invariant during the simulation; such a
simplification is paid with a more complex pressure and free
surface formulation, which has to bemapped from theworld-
frame to the body-frame. In (Giorgi and Ringwood 2018b)
it is shown that the body-fixed formulation exhibits the best
compromise in terms of both simplicity and computational
time.

The body-fixed frame
(
x̂, ŷ, ẑ

)
is defined such that it is

coincidingwith theworld-framewhen thefloater is at rest, i.e.
right-handed, with the origin at the still water level, x̂ parallel
and concordant with the positive direction of wave propaga-
tion, and ẑ upwards. Hereafter, every quantity decomposed
in the body-fixed directions is shown with a ˆ above.

The mapping function from the world- to the body-frame
is based on the displacement of the floater, here assumed
planar (just one rotation), due to the unidirectional wave. Let
us define the pure rotation matrix (Rθ ) as

Rθ =
⎡

⎣
cos θ 0 sin θ

0 1 0
− sin θ 0 cos θ

⎤

⎦ (7)

The rotation matrix Rθ , if directly applied, generates a
rotation around the origin. Conversely, it should be applied
in order to induce a rotation around the reference point rR .
Therefore, notionally starting at rest, i.e. when the two frames
are coincident, the following steps are taken: a translation is
applied to have the origin at the reference point; then the rota-
tion is applied; then a translation opposite to thefirst one takes
the origin back; finally the linear displacement is applied.

All such operations can be executed via a single composite
homogeneous transformation by expanding the dimension of
coordinate vector and using the following mapping matrix:

R =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

Rθ Δ

0 0 0 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

(8)

where Δ = (
x + ŷR, x + ŷR, z + ẑ R

)′ − Rθ

(
x̂R, ŷR, ẑ R

)′.
It follows that the transformation between frames is given

by the following:

⎛

⎜⎜
⎝

x
y
z
1

⎞

⎟⎟
⎠ = R

⎛

⎜⎜
⎝

x̂
ŷ
ẑ
1

⎞

⎟⎟
⎠ ;

⎛

⎜⎜
⎝

x̂
ŷ
ẑ
1

⎞

⎟⎟
⎠ = R−1

⎛

⎜⎜
⎝

x
y
z
1

⎞

⎟⎟
⎠ (9)

2.2 Geometry formulation

In the body-fixed frame, a generic point r̂ belonging to the
external surface of a prismatic body invariant in the ŷ direc-
tion can be mapped by a change of coordinates R3 �→ R

2 as
as follows:

r̂ :

⎧
⎪⎨

⎪⎩

x̂ = γx (α)

ŷ = ŷ

ẑ = γz(α)

, α ∈ [α1, α2] ∧ ŷ ∈ [
ŷ1, ŷ2

]
(10)

where γx and γz are generic parametric curves, and α is the
sweep parameter. Typically, but not necessarily, α goes from
0 to 1 as the directional curve moves from one to the other
end. The parametric formulation enables the use of arbitrary
complex shapes. A degenerate case is when γx (α) = α,
equivalent to ẑ = γz(α), which has the intrinsic limiting
constraint of one-to-one relationship between ẑ and x̂ .

According to the formulation in (10), hereafter avoiding
to report the explicit dependence on α for simplicity, the
consequent directional vectors are as follows:

êα = ∂ r̂
∂α

=
⎛

⎝
γ ′
x
0
γ ′
z

⎞

⎠ ; êŷ = ∂ r̂
∂ ŷ

=
⎛

⎝
0
1
0

⎞

⎠ (11)

that can be used to compute the Jabobian (J ), the normal
unity vector (n̂), and the (

(
r̂ − r̂R

) × n̂) product as follows:

J = ‖êx̂ × êŷ‖ =
√

γ ′2
x + γ ′2

z (12a)
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n̂ = êx̂ × êŷ
‖êx̂ × êŷ‖ = 1

√
γ ′2
x + γ ′2

z

⎛

⎝
−γ ′

z
0
γ ′
x

⎞

⎠ (12b)

(
r̂ − r̂R

) × n̂ = 1
√

γ ′2
x + γ ′2

z

⎛

⎝
γ ′
x

(
ŷ − ŷR

)

−γ ′
x (γx − x̂R) − γ ′

z(γz − ẑ R)

γ ′
z

(
ŷ − ŷR

)

⎞

⎠

(12c)

Note that the denominator of the multiplying coefficient
of both n̂ and (r̂ × n̂) is exactly the Jacobian, which will
simplify the analytical formulation of the NLFK integrals
hereafter.

2.3 Integral formulation

Pressure integrals are computed in the body-fixed frame
in order to take advantage of the invariant geometry for-
mulation, and consequently mapped onto the world-frame:
fp = Rθ f̂p, while τ p = τ̂ p, due to the planar motion.

Due to the change of coordinates in (10), the pressure
integrals in (6) become as follows:

f̂p(t) =
α2∫

α1

ŷ2∫

ŷ1

pu(x̂, ŷ, ẑ, t) ‖êα

× êŷ‖
êx̂ × êŷ

‖êx̂ × êŷ‖ dα d ŷ

=W

α2∫

α1

pu (γx (α), γz(α), t)

⎛

⎝
−γ ′

z
0
γ ′
x

⎞

⎠ dα (13a)

τ̂ p(t) =
α2∫

α1

ŷ2∫

ŷ1

pu(x̂, ŷ, ẑ, t) ‖êα × êŷ‖

((
r̂ − r̂R

) × êx̂ × êŷ
‖êx̂ × êŷ‖

)
dα d ŷ

=
α2∫

α1

ŷ2∫

ŷ1

pu(γx (α), ŷ, γz(α), t)

⎛

⎝
γ ′
x

(
ŷ − ŷR

)

−γ ′
x (γx − x̂R) − γ ′

z(γz − ẑ R)

γ ′
z

(
ŷ − ŷR

)

⎞

⎠ dα d ŷ

=W

α2∫

α1

pu (γx (α), γz(α), t)

×
⎛

⎝
0

−γ ′
x

(
γx − x̂R

) − γ ′
z

(
γz − ẑ R

)

0

⎞

⎠ dx̂

(13b)

whereW is the width of the floater (along the y-direction).
Note that (13b) simplifies because the incoming wave is uni-
directional (pu invariant with ŷ) and the geometry, moving
in the plane, is prismatic along ŷ; therefore, the components
of the torque in roll and yaw directions integrate to zero.

The last required step is to compute the instantaneous
intersection between the floater and the free surface eleva-
tion (η(x, t)), namely the bounds α1 and α2 of the sweep
parameter range. Since the integral formulation is in the
body-frame, while the free surface is in the world-frame and
depends on the world-frame coordinates, appropriate map-
ping is required. Let us define the instantaneous free surface
in the x − z world-frame frame as follows:

Γ =

⎛

⎜⎜
⎝

x
0

η(x)
1

⎞

⎟⎟
⎠ (14)

The mapped free surface elevation, in homogeneous coor-
dinates, is defined as Γ̂ = R−1Γ . However, in order
to compute the intersection, the explicit dependence on
x should be substituted with the respective α, i.e x =
(1, 0, 0, 0) R (γx (α), 0, γz(α), 1)′. Taking the third (z) com-
ponent, it follows that

η̂(α) = (0, 0, 1, 0) R−1

⎛

⎜⎜
⎝

(1, 0, 0, 0) R (γx (α), 0, γz(α), 1)′
0

η((1, 0, 0, 0) R (γx (α), 0, γz(α), 1)′)
1

⎞

⎟⎟
⎠

(15)

The intersection is finally found numerically as the zero
of I (α) = η̂(α) − γz(α).

3 Case study

Prismatic wave energy converters typically exploit the pitch-
ing motion response to extract power, either directly or
indirectly. Direct extraction requires a power take-off (PTO)
mechanism directly acting on the pitch motion, either via
a fixed/semi-fixed reference (sea-floor or external structure
such as a breakwater or a floatingmulti-purpose platform), or
via amulti-bodyfloating system (such as a hinge-raft device).
Indirect extraction is based upon inertial coupling to transfer
part of the incoming energy from hydrodynamically-excited
DoFs (pitch) to internal (dry) DoFs. A few examples of indi-
rect extraction from pitching motion are the ISWEC (Sirigu
et al. 2018), the PeWEC(Sirigu et al. 2020c),WELLO(Wello
2020), and SEAREV (Clément et al. 2005).

For sake of generality, direct extraction is first and mainly
analysed in this paper, in order to investigate the direct effect
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of NLFK on power production performance. However, also
indirect extraction is considered, since the inertial coupling
is likely to attenuate the impact of hydrodynamic nonlin-
earities, due to the fact that energy is transferred to a DoF
not in contact with the waves. Moreover, inertial coupling
acts as a stabilizer of the pitching motion, potentially further
decreasing the significance of hydrodynamic nonlinearity.
Therefore, the hull of an inertially activated WEC is consid-
ered, first in a direct-extraction configuration, in Sect. 3.1,
then in an indirect-extraction configuration, in Sect. 3.2.

3.1 Heave–pitch device: direct pitch extraction

The floater is inspired at the Inertial Sea Wave Energy Con-
verter (ISWEC), whose geometry is shown in Fig. 1. The
cross-sectional area of the prismatic floater is defined by three
tangent circumferences. However, in order to define a single
curve (instead of a piece-wise composition of three curves),
a Bezier curve has been fitted to the profile. Bezier curves
are generic parametric curves and a flexible tool to represent
complex geometries (Garcia-Teruel et al. 2020).

Note that, in principle, the floater shown in Fig. 1 could
sink part of the deck under the water. Such instances could be
represented geometrically, simply considering the equation
of the line joining bowand stern upper limits. Such conditions
are taken into account in the static analysis of the submerged
portion of the floater for different displacements (Sect. 4.1).
However, the formulation of the dynamic pressure from the
undisturbed pressure field would be hardly applicable to
waves climbing above the deck, so that its integration on the
deck surface would be inaccurate. Moreover, normal work-
ing operations should avoid such green-water effects, which
fall under survivability conditions. Note that green-water
effects canbemeaningfully describedonlyby fully-nonlinear
approaches such as CFD (Computational Fluid Dynamics)
(Rosetti et al. 2019) or SPH (Smoothed-Particle Hydrody-
namics) (Le Touzé et al. 2010). Therefore, both for simplicity
and because the NLFK model should be used in the power-
production region and not under extreme conditions, the total
pressure is integrated over the bottom portion of the hull only
when response to incoming waves is considered, even if the
deck becomes partially submerged.

Although unidirectional waves provide a 3-DoF planar
excitation (surge, heave, and pitch), a simpler 2-DoF (heave
and pitch) is used. In fact, in order to clearly highlight nonlin-
ear effects, a fully-uncoupled model under linear conditions
is preferred, so that any coupling found in the nonlinear
model is due to NLFK forces. Therefore, surge is neglected,
since it is linearly coupled with pitch. Moreover, NLFK in
surge would generate mean drift forces that would make the
distinction between different nonlinear effect more cumber-
some. Similarly, for a clear inference of causality, onlyNLFK
effects are included, hence the effect of mooring stiffness

(Paduano et al. 2020) and viscous drag has been linearized
(Fontana et al. 2020). However, note that, depending on the
device geometry, working principle and mooring configura-
tion, surge and drift forces may have a significant impact
on the device behaviour and performance. Nevertheless, for
the particular case of the ISWEC-like device, it is found that
the surge DoF has a negligible impact on power production
(Sirigu et al. 2020b).

The linear equation of motion about the center of grav-
ity, including linear uncoupled viscous drag (Bv) and linear
uncoupled mooring stiffness (Km), written in the frequency
domain for compactness, follows:

[
−ω2 (M + A(ω)) + jω (Bv + B(ω) + BPT O)

+ (Kh + Km + KPT O)] ξ2
= Fd + FFKd (16)

where ξ2 is the 2×1 state vector, composed of heave (z)
and pitch (θ ),M the diagonal inertia matrix, A(ω) and B(ω)

the diagonal frequency-dependent added mass and radia-
tion damping, Kh the diagonal linear hydrostatic stiffness,
Fd and FFKd are the diffraction and linear dynamic FK
forces, and BPT O and KPT O the diagonal PTO damping
and stiffness. Note that the linear hydrodynamic curves are
computed just once for a given mean wetted surface of a
floater; the computation is performed in frequency domain
using a linear Boundary Element Method (BEM) software,
such as Nemoh (Babarit and Delhommeau 2015) or WAMIT
(WAMIT 2019). It is assumed that only the pitching motion
is used to extract energy, so that the PTOmatrices are defined
as follows:

BPT O = 12

[
0

BPT O

]
, KPT O = 12

[
0

KPT O

]
(17)

where 12 is the 2×2 identity matrix.
TheNLFK version of (16) alternatively computesFFKd −

Khξ2 in a nonlinear way, namely through equations (13).
Finally, note that both linear and nonlinear equations of

motion are solved in the time domain through a constant time
step Runge–Kutta integration scheme, substituting the radi-
ation frequency domain components by their time-domain
state-space approximation, identified via the FOAMM tool-
box (Faedo et al. 2018; Peña-Sanchez et al. 2019).

3.2 Heave–pitch-gyro device: indirect pitch
extraction

The actual ISWEC-like device, shown in Fig. 2, exploits the
inertial coupling between the floater and a spinning flywheel
sealed inside the hull (Sirigu et al. 2020a), with the major
advantage of no moving parts in contact with salty water.
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Fig. 1 Cross-sectional area of
the prismatic floater of the
ISWEC-like device, symmetric
about the vertical z-axis, defined
by a small circumference for the
bow (and symmetric stern)
sections (radius R(1)) and center
C (1)), tangent with the keel
circumference (radius R(2)) and
center C (2)), determining the
deck length (L), draft (D), and
height (H ). Each circumference
is defined between the
boundaries [x1, x2]

Fig. 2 Representation of a possible structural layout of the ISWEC-
like device, with two counter-rotating spinning flywheels enclosed in
a sealed hull. As the wave propagates in the x direction, the floater
moves in heave (z) and pitch (θ). Through the gyroscopic coupling, the
pitching motion induces the inner gyroscopic unit to oscillate around
the precession axis (ε)

Therefore, energy is extracted from the oscillation of the
gyroscopic unit (ε). The state vector is expanded to 3 DoFs:
ξ3 = (z, θ, ε)T , with the (linearized) gyroscopic effect pro-
viding the coupling between the θ and ε:

Fcoupling = ng J f φ̇ f

⎛

⎝
0
ε̇

−θ̇ ,

⎞

⎠ (18)

where ng is the number of gyroscopic units (here 2, with
counter-spinning flywheels), J f the axial inertia of the fly-
wheel, and φ̇ f the rotational speed of the flywheel. For a
comprehensive description of the gyroscopic effect and the
resulting mechanical coupling between the flywheel and the
hull, please refer to (Battezzato et al. 2015). Three control
variables are available as follows: φ̇ f , BPT O , and KPT O ,
now acting only on ε:

BPT O = 13

⎡

⎣
0
0

BPT O

⎤

⎦ , KPT O = 13

⎡

⎣
0
0

KPT O ,

⎤

⎦ (19)

where 13 is the 3×3 identity matrix.
Finally, (16) is further expanded to include the inertia and

a linear stiffness of the gyroscopic unit around the ε axis
(Bonfanti et al. 2018).
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4 Results

This section progressively investigates theNLFKmodel, first
considering the consistency of supporting hypothesis and
the correctness of the numerical implementation, then isolat-
ing specific nonlinear effects under simplified scenarios, and
finally evaluating the impact of nonlinearities in response to
incoming waves, considering first a simple uncontrolled and
unconstrained case, and then applying constrained reactive
control. In particular, Sect. 4.1 focuses on the hydrodynam-
ics of the floater, Sect. 4.2 studies the response to incoming
waves of aWEC extracting energy directly from the pitching
motion (as discussed in Sect. 3.1), while Sect. 4.3 considers
the same floater with an internal PTO excited through inertial
coupling (as discussed in Sect. 3.2).

4.1 Results: Floater hydrodynamics

The correctness of the mathematical formulation and the
numerical implementation can be probed by considering
the dynamic FK forces under linear conditions, which can
be evaluated in two independent ways, and compared. On
the one hand, linear boundary element software, such as
NEMOH (Babarit and Delhommeau 2015), return, by def-
inition, linear hydrodynamic data, which refer to the mean
wetted surface and flat free surface elevation. On the other
hand, the NLFK approach can be used under significantly
linear conditions (zero displacement and very small η, wave
height of 1cm) to obtain equivalent results. Figure 3 shows
amplitude and phase of such frequency-dependent dynamic
FK force, with perfect agreement between linear (LFK) and
nonlinear (NLFK) computation. Furthermore, the diffraction
force is also shown, which is the complementary part of
the dynamic FK force to build up the total excitation force,
according to linear potential flow theory. In the regions of
operational wave periods (Tw > 5.5s) of this WEC, and
especially in the working DoF (pitch), the diffraction com-
ponent is considerably smaller than the Froude–Krylov part,
which is a promising hint for the effectiveness of the NLFK
approach.

The impact of static Froude–Krylov force, or restoring
force, is considered in a pitch free decay in Fig. 4, which
clearly show a coupling effect with heave. As extensively
discussed in Sect. 3.1, the linearmodel is fully-uncoupled but
for NLFK force, which is hence the cause of the coupling.
Although small in amplitude, the heave response shows a
pronounced nonlinear behaviour, with a main low frequency
response (equal to the pitch natural frequency, about 5.5 s),
and a higher frequency component creating doubling peaks,
especially evident for larger initial displacements. This can
be explained by analysing the variation of submerged volume
with respect to the equilibrium (ΔV , positive if the volume

increases) for different heave and pitch displacements, shown
in Fig. 5.

Vertical equilibrium, hence zero heave displacement, is
ensured when ΔV is zero, along the dashed black line in
Fig. 5; if also θ is zero, the static equilibrium is reached
(black dot in Fig. 5). With reference to the free decay in
Fig. 4, Fig. 5 shows that, for both positive and negative pitch-
ing angles, the submerged volume increases, so that a positive
heave is required to restore the equilibrium. In particular, the
initial pitch of 12◦ generates a ΔV of 61m3, correspond-
ing to a required displacement of 0.16m; this is consistent
with the maximum displacement in Fig. 4, which is slightly
smaller since pitch is concurrently decaying. However, as
pitch becomes negative and increases in absolute value, there
is a consequent increase in submerged volume, hence heave
starts to increase again, generating a second peak before pitch
completes a full period motion.

The map in Fig. 5, generated for given displacements in
calm water, also highlights a change in convexity of the iso-
lines, marked by the red dotted lines, which correspond to
the instances when the deck of the floater peaks under water:
as the floater sinks, the maximum allowable pitching angle
before the deck sinks under water decreases. Such conditions
are to be avoided during normal operation.

A final overview of nonlinearities in the static FK force
can be achieved by comparing several free decay tests from
different initial conditions, normalized by maximum dis-
placement, as shown in Fig. 6. By definition, a linear model
would produce normalized time series perfectly overlapping;
conversely, any difference is ascribable to nonlinear effects,
the more important the larger the displacement.

While pitch is remarkably linear in the range of initial dis-
placements of±12◦, the heave response is both nonlinear and
asymmetric, with normalized amplitude of motion decreas-
ing as the initial condition goes from negative to positive
values; when the initial condition is very small, the normal-
ized curves overlap (as to be expected). The asymmetry is
also evident in the half-natural period: although the first half
is shorter for negative z0, the full natural period is longer for
the positive z0. This means that the half-cycle from nega-
tive to positive is faster than the half-cycle from positive to
negative displacements, which is consistent with the asym-
metric rate of change of the submerged volume. In particular,
the rate of change of the submerged volume is monotone for
monotone displacement, due to the convex shape of the hull,
and not symmetric with respect to the still water level.

Finally, a further tool to investigate the actual impact of
nonlinearities is the prescribed-displacement test, as sug-
gested in (Wang et al. 2019), i.e. to impose a displacement
(computed with the linear model) to the floater and compute
forceswith differentmethods, namely linear andnonlinear. In
thisway it is easier to compare the effects of different inherent
structure of force calculations, since the same displacement
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Fig. 3 Amplitude (top) and
phase (bottom) of the
Froude-Krylov and diffraction
components of the excitation
force in heave (left) and pitch
(right). The Froude–Krylov
force is computed using linear
potential flow theory (LFK) and
nonlinear Froude–Krylov force
computation (NLFK) under
linear conditions (zero
displacement and wave height of
1cm), showing perfect
agreement
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Fig. 4 Heave and pitch
responses for a pitch free-decay
test from θ of 12◦, according to
the NLFK model
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Fig. 5 Variation of the
submerged volume (positive if
increasing) for different heave
and pitch displacements in calm
water. The black dot is the
equilibrium position, the black
dashed line is the vertical
equilibrium for zero submerged
volume variation, and the red
dotted lines show when the deck
sinks under water

Fig. 6 Normalized free decay
tests, in heave (left) and pitch
(right)
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Fig. 7 Prescribed-displacement
test, computed via linear model
(LFK), and used to compute
either LFK or NLFK forces
(sum of static and dynamic
parts), in heave (bottom-left)
and pitch (bottom-right). The
incoming wave (η, at the top
graphs) has period of 6.5 s and
height of 3m
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Fig. 8 Snapshot of the prescribed-motion test of Fig. 7, at t = 321s,
with instantaneous free surface elevation in blue thick solid line. The
crossed-circle marker shows the position of the centre of gravity. The
rest position (linear assumption) is shown in blue thin solid line, with
wetted surface with respect to the still water level (linear assumption) in
dashed green line, and consequent centre of buoyancy in empty square
marker. The green solid line shows the instantaneous position of the
displaced floater, with consequent instantaneous (nonlinear) wetted
surface in dashed line, enclosing the instantaneous submerged volume
(shaded area), with consequent centre of buoyancy (full square marker).
The red dots show the boundaries of the three circular sections, as shown
in Fig. 1

is considered; conversely, in a dynamic response to incom-
ing waves, different forces generate different displacements,
making effects mutually indiscernible. Therefore, consider-
ing the free (no PTO) response, computed with the linear
model, to an incoming regular wave, with wave period (Tw)
of 6.5 s and wave height (Hw) of 3m, Fig. 7 shows the total
(static and dynamic) FK force, according to the LFK and
NLFK models.

A compelling graphical representation of the difference
between linear and nonlinear approaches is provided in
Fig. 8, showing a snapshot of the prescribed motion test
of Fig. 7. On the one hand, the linear approach considers
the mean wetted surface (intersection of floater at rest with
the still water level), regardless of the actual position of the
hull or the incoming wave; on the other hand, the NLFK
approach analytically computes the instantaneouswetted sur-

face and submerged volume of the hull with respect to the
instantaneous relative position between floater and free sur-
face elevation, remarkably different from mean values, with
consequent different centre of buoyancy and hydrodynamic
forces.

The difference between η and z gives a notional estimate
of the variations of the wetted surface. In Fig. 7, NLFK in
heave is above LFK for all t , i.e. with a magnitude smaller
for negative values and larger for positive values. While LFK
is a perfect sum of two sinusoids (one is −Kh¸2, the other
is FFKd ), NLFK convexity differs from the simple sinusoid
function. In particular, in the region where z − η is posi-
tive, forces are smaller and with a lower curvature. This is
explained by the fact that when z − η > 0, the hull is less
submerged than in equilibrium; moreover, due to the curva-
ture of the hull, the rate of change of the wetted surface is
higher closer to the flat deck, which is reached when z − η

is positive.
Since the importance of nonlinear effects depends on the

relative motion between the hull and the free surface, a more
systematic analysis of prescribed displacement test results
is shown in Fig. 9 with a complete map of the difference
between LFK and NLFK forces (ΔFFK ), using an error
metric defined as the root mean square (rms) of ΔFFK , nor-
malized by the maximum (equal to the amplitude) of the
LFK force. The absolute value is used to avoid partial errors
to cancel out, since NLFK is always on one side of LFK,
as shown in Fig. 7. Figure 9 presents errors up to 35% for
heave, up to 18% for pitch, localized in the region of Tw

between 5s and 8s, which is where the pitch resonance lays.
Clearly, such errors increase with increasing Hw. However,
it is worth remarking that, although meaningful, such differ-
ences are obtained for prescribed displacement. Section 4.2
considers real coupled simulations, where the displacement
depends on the forces, and vice versa.

Note that, hereafter, from the complete grid of regular
waves analysed, and from all colourmaps in forthcoming fig-
ures, waves with excessive steepness (over 6%) are excluded.
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Fig. 9 Map of the normalized
root mean square (rms) of the
absolute value of the difference
between linear and nonlinear FK
forces in heave (left) and pitch
(right) for the
prescribed-displacement test

Fig. 10 Amplitude (top) and
phase (bottom) of the response
amplitude operator (RAO) in
heave (left) and pitch (right) for
the heave–pitch device,
according to frequency domain
data (FD) and computed via
time domain (TD) simulations,
using the linear model (LFK)
and nonlinear model (NLFK)
under linear wave conditions
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4.2 Results: Response of the heave–pitch device

A second-order Runge–Kutta time progressing scheme is
adopted to solve both linear and nonlinear models, using
75 time steps per wave period, simulating 50 wave peri-
ods and applying a smoothing sigma ramp to the first two
wave periods. In order to verify the correctness of the time-
domain implementation and the accuracy of the state space
approximation of the radiation forces, the response ampli-
tude operator (RAO) in heave and pitch is computed under
linear conditions (very small wave height), both with lin-
ear and nonlinear time domain models, and compared with
independent frequency domain calculation. Figure 10 shows
good agreement in both amplitude and phase.

Since the major perk of the NLFK approach herein pro-
posed is the low computational burden, a representative wave
is used for evaluating the computational time, i.e. a wave
at the pitch resonant frequency: Tw of 6 s and Hw of 2m.
Calculations are performed on a single core of a standard
laptop, with processor Intel(R) Core (TM) i7-7500U CPU
@ 2.70GHz and 8GB RAM. In the NLFK model, a slightly
non-zero initial condition is provided ([0.001m, 0.001 rad])
in order to favour convergence of the numerical integra-
tion (Giorgi et al. 2020b). Finally, 300s of simulation with
3750 time steps requires just 1.4 s, which is 0.45% real-time
computation and about 0.3ms per time step. Therefore, the
simulation time is about two orders of magnitude faster than

real-time, hence 3 to 4 orders of magnitude faster than state-
of-the-art mesh-based approaches.

4.2.1 Unconstrained uncontrolled conditions

The response of a free floaterwithout the action of an external
controllermodifying its dynamic, alsowithout energy extrac-
tion, is first analysed. Figure 11 shows the mean (left) and
amplitude (right) of heave (top) and pitch (bottom) response,
obtained according to the NLFKmodel. Amajor evidence of
nonlinear response is the non-zero mean obtained for zero-
mean excitation, present mainly in the range of Tw between
5s and 7s, which is the area where the floater is pitching the
most, suggesting that pitch is the main cause of nonlinearity.
The non-zero mean in heave is due to the nonlinear restor-
ing force and is consistent with the free-decay and volume
variations discussed in Sect. 4.1; the non-zero mean in pitch
is likely due to a combination of second-order effects of the
dynamic FK force and nonlinear couplingwith heave. In fact,
in the nonlinear range of Tw, a clear coupling with heave is
evident, which presents a local drop from the otherwise Tw-
independent response.

Further insight on the importance of nonlinearities is
achievable by comparison of the predicted amplitude with
the LFK and NLFK models, shown in Fig. 12. In the fig-
ures on the left (LFK), the typical linear proportionality with
Hw can be remarked, with a trend with respect to Tw fully
consistent with the linear RAO, shown in Fig. 10. The heave
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Fig. 11 Mean (left) and
amplitude (right) of heave (top)
and pitch (bottom) for the
heave–pitch device, according to
the NLFK model under
unconstrained and uncontrolled
conditions

nonlinear response follows a similar trend and with over-
all similar amplitudes of the linear response, apart from the
drop in the region of large pitch response, where nonlinear
coupling appears. The pitch nonlinear response has a higher
peak, which moves to larger Tw as Hw (and the nonlinearity)
increases. However, the free response seems overall more
narrow-banded.

While the analysis of the free response is valuable, it is
just preparatory for the investigation of the controlled condi-
tions. In fact, the energy-maximising control, which should
always be implemented in real applications yearning for eco-
nomic viability, substantially modifies the dynamic response
of the system and exaggerates the motion, hence potentially
escalating the importance of nonlinear effects.

4.2.2 Controlled conditions

This section purports to highlight how dangerous can be to
rely on a linear model when an energy-maximising con-
trol strategy is implemented, returning absurd unphysical
results when the states are unconstrained, and suboptimal
control parameterswhen the states are constrained. Since reg-
ular waves are considered, the simplest constant-coefficients
reactive control is applied, namelywith a PTO torque defined
by a stiffness term (KPT O ) and damping term (BPT O ).
In the unconstrained case, such coefficients are optimally
defined by the linear complex-conjugate control (CCC)
(Falnes 2002). The left side of Fig. 13 shows the resulting
pitch amplitude (top) and mean power extracted (P , bottom)
according to the unconstrained CCC, clearly unrealistic with
peak pitching angles up to 600◦. Note that the CCC changes

the dynamics of the device in order to extract as much energy
as possible, so that the gradient of the power curve naturally
follows the direction of increase of energy content in the
incoming wave (proportional to TwH2

w).
A common measure to limit unrealistic response is to

include a constraint on one or more states of the system,
the peak pitching angle in this case, and perform a numeri-
cal constrained optimization. The right side of Fig. 13 shows
the resulting pitching angle, which saturates at the prescribed
constraint (θmax of 60◦), and the consequent mean extracted
power, which is inherently much lower than in the linear
unconstrained CCC. In fact, note that the peak of the power
map shifted to lower periods, at the lower boundary of the
θmax plateau, where the constraint is naturally respected.

Constraint violation is prevented bymodifying the control
parameters when the pitching angle would exceed the given
boundary. Figure 14 shows that KPT O remains substantially
the same in unconstrained and constrained cases. In fact,
KPT O modifies the natural period in order to bring the system
into resonance (it is consistently zero at the natural period,
negative at larger periods, positive at smaller periods); since
the model is linear, the natural period is insensitive to Hw, so
that the KPT O map is Hw-invariant. Similarly, also BPT O

is insensitive to Hw in the unconstrained CCC. Conversely,
the constrained optimization increases BPT O to damp out
excessive pitching angles. However, since the unconstrained
model is so unrealistic, the required BPT O to verify the
constraint must increase significantly, hence being overes-
timated. Therefore, using the control parameters in Fig. 14
in a higher-fidelity model or eventually in a real physical
device deployed in sea is likely to be greatly suboptimal.
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Fig. 12 Amplitude of heave
(top) and pitch (bottom) for the
heave–pitch device, according to
the LFK model (left) and NLFK
model (right), under
unconstrained and uncontrolled
conditions

Fig. 13 Maps of pitching angle
(top) and mean power extracted
(bottom) for the heave–pitch
device, using an unconstrained
linear complex conjugate
control (left) and a constrained
numerical optimization (right),
according to the linear model.
The control coefficients are
shown in Fig. 14

It is evident that a more realistic numerical model is
required, returning physically plausible results already when
an unconstrained control is implemented, so that the results
of the constrained optimization can be accepted with higher
confidence. Figure 15 shows the resulting pitching angles
and mean power extracted according to the NLFK model.
On the one hand, note that already in the unconstrained case
the pitching angles remain way below the prescribed con-
straint, with a peak pitching angle of about 30◦. On the other
hand, since the linear CCC is optimal for a linear model, it is
suboptimal for a nonlinear model; in fact, P increases in the
constrained optimization. Furthermore, since the peak pitch-
ing angle is much lower than θmax , the constrained optimum
is also the global (unconstrained) optimum.

The pair of control parameters for the NLFK model are
mapped in Fig. 15. On the one hand, the KPT O in the
constrained optimization show some dependence on Hw , cer-
tifying some change in the pitch resonance frequency due to
nonlinear effects under controlled conditions. On the other
hand, the optimal BPT O shows great differences from the
CCC BPT O , especially at longer Tw.

It is important to highlight that the optimal control param-
eters, especially BPT O , are substantially different according
to the LFK model and NLFK model, as shown in Fig. 14
and Fig. 16, respectively. Accordingly, the optimal predicted
pitching response and power production assessment are sig-
nificantly different if a linear or nonlinear model is used, as
shown in Fig. 17. In particular, note that the linear model
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Fig. 14 Maps of PTO stiffness
(top) and PTO damping
(bottom) for the heave–pitch
device, using an unconstrained
linear complex conjugate
control (left) and a constrained
numerical optimization (right),
according to the linear model.
The resulting pitching angle and
mean power extracted are shown
in Fig. 13

Fig. 15 Maps of pitching angle
(top) and mean power extracted
(bottom) for the heave–pitch
device, using an unconstrained
linear complex conjugate
control (left) and a constrained
numerical optimization (right),
according to the NLFK model.
The control coefficients are
shown in Fig. 16

Fig. 16 Maps of PTO stiffness
(top) and PTO damping
(bottom) for the heave–pitch
device, using an unconstrained
linear complex conjugate
control (left) and a constrained
numerical optimization (right),
according to the NLFK model.
The resulting pitching angle and
mean power extracted are shown
in Fig. 15
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Fig. 17 Maps of pitching angle
(top) and mean power extracted
(bottom) for the heave–pitch
device, using the unconstrained
linear complex conjugate
control, according to the LFK
model (left) and the NLFK
model (right)

overestimates the power production for the majority of wave
conditions.

4.3 Results: Response of the heave–pitch-gyro
device

In this section, the indirect energy extraction is considered,
presented in Sect. 3.2, operated by means of a spinning fly-
wheel sealed inside an enclosed hull, which transfers energy
from the pitching DoF to the precession DoF (ε) by means
of the gyroscopic effect. It is expected an overall decrease of
the importance of the hydrodynamic nonlinearity, quantified
in this section, since part of the energy is channelled away
from wetted DoF into a dry DoF.

A constrained numerical optimization is used to deter-
mine the control parameters, limiting the maximum pitching
angle (as in Sect. 4.2) and the maximum precession angle
(εmax = 85◦), avoiding overturning of the gyroscopic unit.
The objective function is the gross extracted power, since
no power loss term is included in the model. Consequently,
the flywheel speed φ̇ f , despite being one potential control
variable, is kept fixed, since the higher the φ̇ f the higher
the inertial coupling (beneficial for power extraction) but the
higher the power losses (Sirigu et al. 2020a), which are not
modelled in this case study. Therefore, as in Sect. 4.2, only
KPT O and BPT O are tuned. No constraint on the maximum
PTO torque is included, in order to provide the controller
with due freedom to operate, and making the analysis of the
impact of nonlinearities easier.

Figure 18 shows the resulting heave and pitch response,
according to the LFK model (optimized using the LFK
model) and the NLFK model (optimized using the NLFK
model). The heave response and nonlinear coupling is simi-
lar to the 2-DoF case, shown in Fig. 12. However, the linear
pitch response does not saturate to the provided constraint, as

in the direct pitch extraction, shown in Fig. 17, since energy
is transferred from the pitching to the precession angle by
means of the inertial coupling. The only remarkable differ-
ence between LFK and NLFK is the shift of the peak of the
pitch response to larger Tw as Hw increases.

Figure 19 shows the resulting precession angle and mean
produced power, according to the LFK model (optimized
using the LFKmodel) and theNLFKmodel (optimized using
the NLFK model). In the LFK, ε always reaches the con-
straints: this is because the linear hydrodynamics reached
unreasonable pitch response in the case of the device without
gyroscope; therefore, there is abundant excitation in pitch,
which is optimally transferred by the control parameters in
order to maximize power while not violating the constraint
on ε. Conversely, in the NLFKmodel there are regions where
constraints are not reached, showing the influence of hydro-
dynamic nonlinearity. Furthermore, in such regions, control
parameters are such to optimize the power in absolute terms,
since no constraints are naturally violated. Finally, while
the peak power in the LFK model is at the same period, it
shifts to larger periods for larger waves in the NLFK model,
which is consistent with the nonlinear behaviour found in
the gyroscope-free case in Fig. 12. Moreover, in the NLFK
model there is more power extracted between 6s and 7s,
while less between 5s and 6s.

The optimized control parameters, used in Fig. 19, are
shown in Fig. 20. As expected, in the linear model the KPT O

is mainly insensitive to Hw, while BPT O is in charge of lim-
iting ε in order not to violate εmax . On the other hand, the
NLFK model shows clear nonlinear behaviour in the varia-
tions of KPT O that accommodate variations of the resonance
period. The BPT O has the role of respecting the constraints
on ε and to maximise the power (where the constraints are
not reached). Overall, since there are different control maps
between LFK and NLFKmodels, although not as much as in
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Fig. 18 Heave (z, top) and
pitching angle (θ , bottom) for
the heave–pitch-gyro device,
according to the linear model
(left) and nonlinear model
(right), under constrained
optimal conditions

Fig. 19 Precession angle (ε,
top) and mean extracted power
(P , bottom) for the
heave–pitch-gyro device,
according to the linear model
(left) and nonlinear model
(right), under constrained
optimal conditions

Sect. 4.2, it can be asserted that nonlinearities are still impor-
tant for modifying the system dynamics and, ultimately for
power extraction. Therefore, it is essential to use nonlinear
models as a base for energy-maximising control strategies.

5 Conclusions

All wave energy converters should implement an energy-
maximising control strategy to enhance power extraction,
essential contribution towards reaching economic viability.
However, especially under controlled conditions, the accu-
racy of the mathematical model has major consequences on
the design, control, and operation of the device. In fact, while
linear models are often sufficiently accurate under uncon-
trolled conditions, nonlinearities become important when the
control exaggerates the motion of the floater, so that lin-
ear models become unreliable and potentially unrealistic.

Although the usual practice of applying constraints on the
states of the system may seem enough to obtain plausible
results, they still inherit the structural inaccuracies of the lin-
ear model, potentially leading to misleading and suboptimal
results.

Therefore, it is especially important that the optimization
of the control parameters is based upon reliable nonlinear
models, so that the control strategy is effective when applied
on the real system. However, such models must be com-
putationally quick enough to run in iterative optimization
algorithms. This paper proposes and implements a computa-
tionally performing nonlinear Froude–Krylov approach for
prismatic floating platforms, which is 4 orders of magnitude
faster than generic state-of-the-art mesh-based approaches.
Thanks to about 0.5ms per force evaluation on a standard
laptop, computation in about 1% of real-time is achieved,
which is compatible with numerical optimization.
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Fig. 20 PTO stiffness (KPT O ,
top) and PTO damping (BPT O ,
bottom) for the
heave–pitch-gyro device,
optimized according to the
linear model (left) and nonlinear
model (right), under constrained
optimal conditions

In the case study analysed, nonlinear behaviour is found
in non-zero mean free-decay, asymmetric response, and non-
linear coupling between heave and pitch degrees of freedom.
Furthermore, the dynamic excitation takes into account the
actual instantaneous wetted surface, while being constant in
a linear approach, with major impact on the unconstrained
controlled response and on the optimized control parameters
of the constrained controlled response.

In general, since nonlinearities are device-dependent, the
proposed nonlinear computation approach can be an effec-
tive tool for investigating and understanding the nonlinear
behaviour of a floater, since it is at the same time straightfor-
ward to implement and computationally efficient.

Acknowledgements This researchwas fundedby theEuropeanResearch
Executive Agency (REA) under the European Unions Horizon 2020
research and innovation programme under Grant Agreement No.
832140.

Funding Open access funding provided by Politecnico di Torino within
the CRUI-CARE Agreement.

Declarations

Conflict of interest The authors declare that they have no conflict of
interest.

Open Access This article is licensed under a Creative Commons
Attribution 4.0 International License, which permits use, sharing, adap-
tation, distribution and reproduction in any medium or format, as
long as you give appropriate credit to the original author(s) and the
source, provide a link to the Creative Commons licence, and indi-
cate if changes were made. The images or other third party material
in this article are included in the article’s Creative Commons licence,
unless indicated otherwise in a credit line to the material. If material
is not included in the article’s Creative Commons licence and your
intended use is not permitted by statutory regulation or exceeds the
permitted use, youwill need to obtain permission directly from the copy-

right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

References

Babarit A, Delhommeau G (2015) Theoretical and numerical
aspects of the open source BEM solver NEMOH. In: Pro-
ceedings of the 11th European Wave and Tidal Energy
Conference (September 2015), pp 1–12. https://doi.org/hal-
01198800, http://130.66.47.2/redmine/attachments/download/
235/EWTEC2015BabaritDelhommeau.pdf%0A, https://lheea.
ec-nantes.fr/logiciels-et-brevets/nemoh-presentation-192863.
kjsp

Battezzato A, Bracco G, Giorcelli E, Mattiazzo G (2015) Perfor-
mance assessment of a 2 DOF gyroscopic wave energy converter.
J Theor Appl Mech (Poland) 53(1):195–207. https://doi.org/10.
15632/jtam-pl.53.1.195

Bonfanti M, Bracco G, Dafnakis P, Giorcelli E, Passione B, Pozzi N,
Sirigu S,MattiazzoG (2018) Application of a passive control tech-
nique to the ISWEC: experimental tests on a 1:8 test rig. NAV Int
Conf Ship Shipping Res 221499:60–70. https://doi.org/10.3233/
978-1-61499-870-9-60

Bracco G, Casassa M, Giorcelli E, Giorgi G, Martini M, Mattiazzo G,
PassioneB,RafferoM,VissioG (2014)Application of sub-optimal
control techniques to a gyroscopic Wave Energy Converter. In:
Renewable energies offshore, pp 265–269, Lisbon, Portugal

Chandrasekaran S, Sricharan V (2020) Numerical analysis of a new
multi-body floating wave energy converter with a linear power
take-off system. Renew Energy 159:250–271. https://doi.org/10.
1016/j.renene.2020.06.007

Clément AH, Ferrant P (1988) Nonlinear water waves: IUTAM Sym-
posium, Tokyo Japan, August 25–28, 1987. Superharmonic waves
generated by the large amplitude heaving motion of a submerged
body. Springer, Berlin, Heidelberg

Clément AH, Babarit A, Gilloteaux JC, Josset C, Duclos G (2005) The
SEAREV wave energy converter. In: Proceedings of the 6th Wave
and Tidal Energy Conference. Glasgow

Davidson J, Costello R (2020) Efficient nonlinear hydrodynamic mod-
els for wave energy converter design—a scoping study, pp 1–65.
https://doi.org/10.3390/jmse8010035

123

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://doi.org/hal-01198800
https://doi.org/hal-01198800
http://130.66.47.2/redmine/attachments/download/235/EWTEC2015BabaritDelhommeau.pdf%0A
http://130.66.47.2/redmine/attachments/download/235/EWTEC2015BabaritDelhommeau.pdf%0A
https://lheea.ec-nantes.fr/logiciels-et-brevets/nemoh-presentation-192863.kjsp
https://lheea.ec-nantes.fr/logiciels-et-brevets/nemoh-presentation-192863.kjsp
https://lheea.ec-nantes.fr/logiciels-et-brevets/nemoh-presentation-192863.kjsp
https://doi.org/10.15632/jtam-pl.53.1.195
https://doi.org/10.15632/jtam-pl.53.1.195
https://doi.org/10.3233/978-1-61499-870-9-60
https://doi.org/10.3233/978-1-61499-870-9-60
https://doi.org/10.1016/j.renene.2020.06.007
https://doi.org/10.1016/j.renene.2020.06.007
https://doi.org/10.3390/jmse8010035


Journal of Ocean Engineering and Marine Energy

Faedo N, Peña-Sanchez Y, Ringwood JV (2018) Finite-order hydro-
dynamic model determination for wave energy applications using
moment-matching. Ocean Eng 163:251–263

Faedo N, Dores Piuma FJ, Giorgi G, Ringwood JV (2020) Nonlinear
model reduction for wave energy systems: a moment-matching-
based approach. Nonlinear Dyn. https://doi.org/10.1007/s11071-
020-06028-0

Faedo N, Scarciotti G, Astolfi A, Ringwood JV (2020) Nonlinear
energy-maximising optimal control of wave energy systems:
a moment-based approach. IEEE Trans Control Syst Technol
(Under review)

Falnes J (2002) OceanWaves andOscillating Systems. Cambridge Uni-
versity Press, Cambridge

Fontana M, Casalone P, Sirigu SA, Giorgi G (2020) Viscous damp-
ing identification for a wave energy converter using CFD-URANS
simulations. J Mar Sci Eng 8(355):1–26. https://doi.org/10.3390/
jmse8050355

Garcia-Teruel A, DuPont B, Forehand DI (2020) Hull geometry optimi-
sation of wave energy converters: on the choice of the optimisation
algorithm and the geometry definition. Appl Energy 280:115952.
https://doi.org/10.1016/j.apenergy.2020.115952

Gilloteaux JC (2007)Mouvements de grande amplitude d’un corps flot-
tant en fluide parfait. Application á la recuperation de l’energie des
vagues. Ph.D. thesis, Ecole Centrale de Nantes-ECN

Gilloteaux JC, Babarit A, Ducrozet G, Durand M, Clément AH (2007)
A non-linear potential model to predict large-amplitudes-motions:
Application to the searev wave energy converter. In: Proceedings
of the International Conference on OffshoreMechanics and Arctic
Engineering—OMAE,vol 4, pp934–940. https://doi.org/10.1115/
OMAE2007-29308

Giorgi G (2019) Nonlinear Froude–Krylov Matlab demonstration tool-
box. https://doi.org/10.5281/zenodo.4682671

Giorgi G, Ringwood JV, (2018) Analytical formulation of non-
linear Froude-Krylov forces for surging-heaving-pitching point
absorbers. In: ASME 37th International Conference on Ocean.
Offshore and Arctic Engineering. Madrid

Giorgi G, Ringwood JV (2018) Analytical representation of nonlin-
ear Froude–Krylov forces for 3-DoF point absorbing wave energy
devices. Ocean Eng 164(2018):749–759. https://doi.org/10.1016/
j.oceaneng.2018.07.020

Giorgi G, Ringwood JV (2018) Articulating parametric resonance for
an OWC spar buoy in regular and irregular waves. J Ocean Eng
Mar Energy 4(4):311–322. https://doi.org/10.1007/s40722-018-
0124-z

Giorgi G, Ringwood JV (2018) Relevance of pressure field accuracy
for nonlinear Froude–Krylov force calculations for wave energy
devices. J Ocean Eng Mar Energy 4(1):57–71. https://doi.org/10.
1007/s40722-017-0107-5

Giorgi G, Davidson J, Habib G, Bracco G,Mattiazzo G, Kalmár-nagy T
(2020) Nonlinear dynamic and kinematic model of a Spar-Buoy:
parametric resonance and yaw numerical instability. JMar Sci Eng
8(504):1–17. https://doi.org/10.3390/jmse8070504

Giorgi G, Gomes RP, Henriques JC, Gato LM, Bracco G, Mattiazzo
G (2020) Detecting parametric resonance in a floating oscillating
water column device for wave energy conversion: Numerical sim-
ulations and validation with physical model tests. Appl Energy.
https://doi.org/10.1016/j.apenergy.2020.115421

Giorgi G, Gomes RPF, Bracco G,Mattiazzo G (2020) Numerical inves-
tigation of parametric resonance due to hydrodynamic coupling in
a realistic wave energy converter. Nonlinear Dyn. https://doi.org/
10.1007/s11071-020-05739-8

Giorgi G, Gomes RPF, Bracco G, Mattiazzo G (2020) The effect of
mooring line parameters in inducing parametric resonance on the
Spar–buoy oscillating water column wave energy converter. J Mar
Sci Eng 8(1):1–20. https://doi.org/10.3390/JMSE8010029

Guerinel M, Zurkinden AS, Alves M, Sarmento A (2013) Validation
of a partially nonlinear time domain model using instantaneous
Froude–Krylov and hydrostatic forces. In: Proceedings of the 10th
EuropeanWave and Tidal Energy Conference, Technical Commit-
tee of the European Wave and Tidal Energy Conference. Aalborg

Heras P, Thomas S, KramerM, Kofoed JP (2019) Numerical and exper-
imental modelling of a wave energy converter pitching in close
proximity to a fixed structure. J Mar Sci Eng 7(7):1–27. https://
doi.org/10.3390/jmse7070218

Jang HK, KimMH (2019) Mathieu instability of Arctic Spar by nonlin-
ear time-domain simulations. Ocean Eng 176:31–45. https://doi.
org/10.1016/j.oceaneng.2019.02.029

JangHK,KimMH (2020) Effects of nonlinear FK (Froude-Krylov) and
hydrostatic restoring forces on arctic-spar motions in waves. Int
J Naval Archit Ocean Eng 12:297–313. https://doi.org/10.1016/j.
ijnaoe.2020.01.002

KurniawanA, ZhangX (2018)Application of a negative stiffnessmech-
anism on pitching wave energy devices. In: Proceedings of the 5th
Offshore Energy and Storage Symposium (February 2019)

Lawson M, Yu YH, Nelessen A, Ruehl K, Michelen C (2014) Imple-
menting Nonlinear Buoyancy and Excitation Forces in the WEC-
SimWave Energy ConverterModeling Tool. In: 33rd International
Conference onOcean.AmericanSociety ofMechanicalEngineers,
Offshore and Arctic Engineering, San Francisco

Le Touzé D, Marsh A, Oger G, Guilcher PM, Khaddaj-Mallat C,
Alessandrini B, Ferrant P (2010) SPH simulation of green water
and ship flooding scenarios. J Hydrodyn 22:231–236. https://doi.
org/10.1016/S1001-6058(09)60199-2 (no longer published by
Elsevier)

Letournel L, Ferrant P, Babarit A, Ducrozet G, Harris JC, Benoit
M, Dombre E (2014) Comparison of fully nonlinear and weakly
nonlinear potential flow solvers for the study of wave energy con-
verters undergoing large amplitudemotions. In: Proceedings of the
ASME, 33rd International Conference on Ocean. American Soci-
ety of Mechanical Engineers, Offshore and Arctic Engineering,
San Francisco

Ma Y, Ai S, Yang L, Zhang A, Liu S, Zhou B (2020) Hydrodynamic
performance of a pitching float wave energy converter. Energies.
https://doi.org/10.3390/en13071801

Marcollo H, Gumley J, Sincock P, Boustead N, Eassom A, Beck G,
Potts AE (2017) A new class of wave energy converter - The
floating pendulum dynamic vibration absorber. In: Proceedings of
the International Conference on Offshore Mechanics and Arctic
Engineering—OMAE, vol 10, pp 1–12. https://doi.org/10.1115/
OMAE2017-62220

Merigaud A, Gilloteaux Jc (2012) A non linear extension for linear
doundary element methods in wave energy device modellind. In:
ASME 2012 31st International Conference on Ocean, Offshore
and Arctic Engineering, pp 1–7

Nemos GmbH (2020) The NEMOS wave energy converter. https://
www.nemos.org/waveenergy

Newman J (1977) Marine hydrodynamics. MIT Press, Cambridge
Paduano B, Giorgi G, Gomes RPF, Pasta E, Henriques JCC, Gato

LMC, Mattiazzo G (2020) Experimental validation and compari-
son of numerical models for the mooring system of a floating wave
energy converter. J Mar Sci Eng 8(8):565. https://doi.org/10.3390/
jmse8080565

Peña-Sanchez Y, Faedo N, PenalbaM, Giorgi G, Merigaud A,Windt C,
Garc D,Wang L, Ringwood JV (2019) Finite-order hydrodynamic
approximation bymoment-matching ( FOAMM) toolbox for wave
energy applications. In: 13th European Wave and Tidal Energy
Conference

Penalba M, Giorgi G, Ringwood JV (2017) Mathematical modelling of
wave energy converters: a review of nonlinear approaches. Renew
Sustain Energy Rev 78:1188–1207. https://doi.org/10.1016/j.rser.
2016.11.137

123

https://doi.org/10.1007/s11071-020-06028-0
https://doi.org/10.1007/s11071-020-06028-0
https://doi.org/10.3390/jmse8050355
https://doi.org/10.3390/jmse8050355
https://doi.org/10.1016/j.apenergy.2020.115952
https://doi.org/10.1115/OMAE2007-29308
https://doi.org/10.1115/OMAE2007-29308
https://doi.org/10.5281/zenodo.4682671
https://doi.org/10.1016/j.oceaneng.2018.07.020
https://doi.org/10.1016/j.oceaneng.2018.07.020
https://doi.org/10.1007/s40722-018-0124-z
https://doi.org/10.1007/s40722-018-0124-z
https://doi.org/10.1007/s40722-017-0107-5
https://doi.org/10.1007/s40722-017-0107-5
https://doi.org/10.3390/jmse8070504
https://doi.org/10.1016/j.apenergy.2020.115421
https://doi.org/10.1007/s11071-020-05739-8
https://doi.org/10.1007/s11071-020-05739-8
https://doi.org/10.3390/JMSE8010029
https://doi.org/10.3390/jmse7070218
https://doi.org/10.3390/jmse7070218
https://doi.org/10.1016/j.oceaneng.2019.02.029
https://doi.org/10.1016/j.oceaneng.2019.02.029
https://doi.org/10.1016/j.ijnaoe.2020.01.002
https://doi.org/10.1016/j.ijnaoe.2020.01.002
https://doi.org/10.1016/S1001-6058(09)60199-2
https://doi.org/10.1016/S1001-6058(09)60199-2
https://doi.org/10.3390/en13071801
https://doi.org/10.1115/OMAE2017-62220
https://doi.org/10.1115/OMAE2017-62220
https://www.nemos.org/waveenergy
https://www.nemos.org/waveenergy
https://doi.org/10.3390/jmse8080565
https://doi.org/10.3390/jmse8080565
https://doi.org/10.1016/j.rser.2016.11.137
https://doi.org/10.1016/j.rser.2016.11.137


Journal of Ocean Engineering and Marine Energy

Poguluri SK, Cho IH, Bae YH (2019) A study of the hydrodynamic
performance of a pitch-typewave energy converter-rotor. Energies.
https://doi.org/10.3390/en12050842

Ransley E, Yan S, Brown S, Graham D, Musiedlak PH, Windt C, Ring-
wood J, Davidson J, Schmitt P, Wang JXH, Ma Q, Xie ZH, Giorgi
G, Hughes J, Williams A, Masters I, Lin Z, Chen H, Qian L, Ma
Z, Causon D, Mingham C, Chen Q, Ding H, Zang J, van Rij J, Yu
Y, Tom N, Li Z, Bouscasse B, Ducrozet G, Bingham H (2020) A
blind comparative study of focused wave interactions with float-
ing structures (CCP-WSI Blind Test Series 3). Int J Offshore Polar
Eng 30(1):1–10. https://doi.org/10.17736/ijope.2020.jc774

Ringwood JV (2020)Wave energy control: status andperspectives 2020.
In: IFAC World Congress, July, Berlin

Ringwood JV, Merigaud A, Faedo N, Fusco F (2018) Wave energy
control systems: robustness issues. In: Proceedinds of the IFAC
Conference on control applications in marine systems, robotics,
and vehicles

Ringwood JV, Merigaud A, Faedo N, Fusco F (2019) An analytical
and numerical sensitivity and robustness analysis of wave energy
control systems. IEEETrans Control Syst Technol. https://doi.org/
10.1109/tcst.2019.2909719

Rosetti GF, PintoML, deMello PC, Sampaio CM, Simos AN, Silva DF
(2019) CFD and experimental assessment of green water events
on an FPSO hull section in beam waves. Mar Struct 65:154–180.
https://doi.org/10.1016/j.marstruc.2018.12.004

Sirigu AS, Gallizio F, Giorgi G, Bonfanti M, Bracco G, Mattiazzo G
(2020) Numerical and experimental identification of the aerody-
namic power losses of the ISWEC. J Mar Sci Eng 8(49):1–25.
https://doi.org/10.3390/jmse8010049

Sirigu S, Bonfanti M, Dafnakis P, Bracco G, Mattiazzo G, Brizzo-
lara S (2019) Pitch Resonance Tuning Tanks: A novel technology
for more efficient wave energy harvesting. In: OCEANS 2018
MTS/IEEE Charleston, OCEAN 2018. https://doi.org/10.1109/
OCEANS.2018.8604591

Sirigu SA, Bracco G, Bonfanti M, Dafnakis P, Mattiazzo G (2018) On-
board sea state estimation method validation based on measured
floater motion. IFAC PapersOnLine 51(29):68–73. https://doi.org/
10.1016/J.IFACOL.2018.09.471

Sirigu SA, Bonfanti M, Begovic E, Bertorello C, Dafnakis P, Giorgi G,
BraccoG,MattiazzoG (2020)Experimental investigation ofmoor-
ing system on a wave energy converter in operating and extreme
wave conditions. J Mar Sci Eng 8(180):1–31. https://doi.org/10.
3390/jmse8030180

Sirigu SA, Foglietta L, Giorgi G, Bonfanti M, Cervelli G, Bracco G,
Mattiazzo G (2020) Techno-economic optimisation for a wave
energy converter via genetic algorithm. J Mar Sci Eng. https://
doi.org/10.3390/jmse8070482

Somayajula A, Falzarano J (2015) Large-amplitude time-domain sim-
ulation tool for marine and offshore motion prediction. Mar Syst
Ocean Technol. https://doi.org/10.1007/s40868-015-0002-7

Tarrant KR, Meskell C (2016) Investigation on parametrically excited
motions of point absorbers in regular waves. Ocean Eng 111:67–
81. https://doi.org/10.1016/j.oceaneng.2015.10.041

Tosdevin T, Giassi M, Thomas S, Engström J, Hann M, Isberg J, Rans-
ley E, Musiedlak PH, Simmonds D, Greaves D (2019) On the
calibration of a WEC-Sim model for heaving point absorbers. In:
Proceedings of the 13th European wave and tidal energy confer-
ence, pp 1–9

Van Rij J, Yu YH (2019) Coe RG (2018) Design load analysis for wave
energy converters. In: Proceedings of the International Confer-
ence on Offshore Mechanics and Arctic Engineering—OMAE 10.
https://doi.org/10.1115/OMAE2018-78178

Wamit I (2019) WAMIT User Manual. https://doi.org/10.1017/
CBO9781107415324.004

Wang H, Somayajula A, Falzarano J, Xie Z (2019) Development of
a blended time-domain program for predicting the motions of a
wave energy structure. J Mar Sci Eng 8(1):1. https://doi.org/10.
3390/jmse8010001

WavePowerLab (2020) WavePowerLab WEC. http://wavepowerlab.
weebly.com/blog/welcome

Wello O (2020) www.wello.eu. Accessed on 01 Jan 2020
Wendt F,NielsenK,YuYh,BinghamH,EskilssonC,KramerB,Babarit

A, Bunnik T, Costello R, Crowley S, Giorgi G, Giorgi S, Girardin
S, Greaves D (2019) Ocean energy systems wave energy mod-
eling task: modeling, verification, and validation of wave energy
converters. J Mar Sci Eng 7(379):1–22. https://doi.org/10.3390/
jmse7110379

Windt C, Davidson J, Ransley EJ, Greaves D, Jakobsen M, Kramer M,
Ringwood JV (2020) Validation of a CFD-based numerical wave
tank model for the power production assessment of the waves-
tar ocean wave energy converter. Renew Energy 146:2499–2516.
https://doi.org/10.1016/j.renene.2019.08.059

Wolgamot HA, Fitzgerald CJ (2015) Nonlinear hydrodynamic and
real fluid effects on wave energy converters. Proc Inst Mech Eng
Part A J Power Energy 229(7):772–794. https://doi.org/10.1177/
0957650915570351

Wu J, Yao Y, Li W, Zhou L, Göteman M (2017) Optimizing the per-
formance of solo Duck wave energy converter in tide. Energies
10(3):1–18. https://doi.org/10.3390/en10030289

Publisher’s Note Springer Nature remains neutral with regard to juris-
dictional claims in published maps and institutional affiliations.

123

https://doi.org/10.3390/en12050842
https://doi.org/10.17736/ijope.2020.jc774
https://doi.org/10.1109/tcst.2019.2909719
https://doi.org/10.1109/tcst.2019.2909719
https://doi.org/10.1016/j.marstruc.2018.12.004
https://doi.org/10.3390/jmse8010049
https://doi.org/10.1109/OCEANS.2018.8604591
https://doi.org/10.1109/OCEANS.2018.8604591
https://doi.org/10.1016/J.IFACOL.2018.09.471
https://doi.org/10.1016/J.IFACOL.2018.09.471
https://doi.org/10.3390/jmse8030180
https://doi.org/10.3390/jmse8030180
https://doi.org/10.3390/jmse8070482
https://doi.org/10.3390/jmse8070482
https://doi.org/10.1007/s40868-015-0002-7
https://doi.org/10.1016/j.oceaneng.2015.10.041
https://doi.org/10.1115/OMAE2018-78178
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.1017/CBO9781107415324.004
https://doi.org/10.3390/jmse8010001
https://doi.org/10.3390/jmse8010001
http://wavepowerlab.weebly.com/blog/welcome
http://wavepowerlab.weebly.com/blog/welcome
www.wello.eu
https://doi.org/10.3390/jmse7110379
https://doi.org/10.3390/jmse7110379
https://doi.org/10.1016/j.renene.2019.08.059
https://doi.org/10.1177/0957650915570351
https://doi.org/10.1177/0957650915570351
https://doi.org/10.3390/en10030289

	Fast nonlinear Froude–Krylov force calculation for prismatic floating platforms: a wave energy conversion application case
	Abstract
	1 Introduction
	2 Nonlinear Froude–Krylov force formulation
	2.1 Body-fixed frame and mapping
	2.2 Geometry formulation
	2.3 Integral formulation

	3 Case study
	3.1 Heave–pitch device: direct pitch extraction
	3.2 Heave–pitch-gyro device: indirect pitch extraction

	4 Results
	4.1 Results: Floater hydrodynamics
	4.2 Results: Response of the heave–pitch device
	4.2.1 Unconstrained uncontrolled conditions
	4.2.2 Controlled conditions

	4.3 Results: Response of the heave–pitch-gyro device

	5 Conclusions
	Acknowledgements
	References




