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Influence of fibre misalignments on buckling performance
of variable stiffness composites using layerwise models

and random fields

A. Pagani*, A. R. Sanchez-Majano

Mul 2 Team
Department of Mechanical and Aerospace Engineering, Politecnico di Torino

Corso Duca degli Abruzzi 24, 10129 Torino, Italy.

Abstract: Additive manufacturing brought to the emergence of a new class of fibre-reinforced
materials; namely, the Variable Angle Tow (VAT) composites. Automated fibre placement
machines allow the fibres to be relaxed along curvilinear paths within the lamina. In theory,
the designer can conceive VAT structures with unexplored capabilities and tailor materials
with optimized stiffness-to-weight ratios. In practise, steering brittle fibres, generally made
of glass or carbon, is not trivial and highly affected from the printer signature. This pa-
per wants to explore the effect of fibre misalignment on the buckling response of laminated
VAT composites. For doing so, we use the Carrera Unified Formulation (CUF), which allows
to develop layerwise models with unprecedented accuracy in a straightforward and systematic
manner. Variation patterns are generated at the layer scale by means of random fields through
a Monte Carlo analysis. The stochastic variation (defects) is propagated through the scales
and correlated with the global buckling response of VAT panels. The results show that layer-
wise models outperform equivalent single layer theories, since the former are able to foresee
eventual switching between buckling modes, and thus making them fundamental in uncertainty
analysis.

Keywords: Variable angle tow composites, Defect sensitivity, Uncertainty analysis, Car-
rera unified formulation.

1 Introduction

Composite materials are greatly known for their ability to change the stiffness and strength
properties by opportunely designing the laminate layup sequence. The capability of retrieving
the better performing stack of a laminate that is a constituent of a certain structural com-
ponent subjected to specified loads is commonly known as tailoring. For instance, a classic
tailoring problem is to determine the layup sequence of a laminated composite panel with
specified boundary conditions, geometrical properties and applied loads that maximizes the
buckling performance whilst preserving the load-carrying capability without failures [1].

*Corresponding author. E-mail: alfonso.pagani@polito.it
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Traditionally, that kind of tailoring is done by keeping the fibre orientation constant within
each layer throughout a structural component. Nevertheless, straight-fibre composites (i.e.,
constant stiffness composites) cannot address efficiently optimisation problems when the ac-
tual internal stress distribution is non-uniform (hence leading to non-uniform resultants, Nx,
Ny and Nxy) within the component. A classic example of component configuration with highly
non-uniform stress distribution is the panel with a hole. In such a case, if each layer is limited
to a single orientation over the whole component, the designer will be incapable to fully take
advantage of the directional material properties offered by advanced composites, ever since
the design will be driven by the location that presents the most critical stress state. A compre-
hensive study on this topic was conducted by Biggers [2, 3], where tailoring was achieved by
redistributing the layers with specified orientations across the planform of rectangular plates
to create beneficial stiffening patterns against compression and shear buckling.

Many studies by Banichuk [4, 5], Pedersen [6, 7] and Duvaut [8] concerned spatial varia-
tion of fibre orientation within the domain of a composite panel to improve some structural
performance. However, the feasibility or practicality of actual fabrication of the resulting
designs were not taken into account. It was in the works by Olmedo and Gürdal [9, 10, 11]
when an effort to integrate realistic fabrication techniques into the design of laminates with
curvilinear fibre layers was achieved. The proposed fibre path was intended to be used with
state of the art manufacturing techniques for composite laminates, such as automated fibre
placement (AFP) that allow the fibres to be steered and vary the fibre orientation angle within
the layer as a function of the position throughout the structure. Stiffness properties, such as
longitudinal and transverse moduli, depend on the local fibre orientation angle. Consequently,
a curvilinear fibre path will present variable stiffness properties conversely to a traditional
straight-fibre layer that shows constant stiffness properties within the plane.

In the aforementioned works, certain manufacturing constraints, such as the minimum
turning radius, which determines the maximum amount of steering that is possible with an
AFP machine, were not considered. Therefore, not all the solutions obtained could be manu-
factured exploiting the capabilities of AFP machine. Additionally, due to the manufacturing
features inherent to AFP, laminates are not exempt from flaws; certain defects such as gaps,
overlaps and fibre misalignments often appear in the final structure, and hence affecting the
structural performance as demonstrated by Blom et al. [12], where the influence of tow-drop
areas on the strength and stiffness of VAT plates was characterised. Moreover, works by
Fayazbakhsh et al. [13] and Nik et al. [14] showed that a complete gap strategy leads to lower
buckling and in-plane stiffness whereas complete overlap strategy outperforms the defect-free
structure in such terms. Additionally, Wu et al. [15] conducted buckling analyses which
showed for two tow-steered shells that VAT composites may offer great potential for reducing
the detrimental impact of geometric imperfections on structural performance.

In this paper, VAT plates are modelled using Carrera Unified Formulation (CUF), which
allows to develop structural models with scalable accuracy in a straightforward and systematic
manner, as proven in works by Carrera [16], Carrera and Giunta [17], Carrera et al. [18, 19].
CUF has been recently extended to the study of VAT laminates. For instance, Demasi [20, 21]
employed equivalent single layer, zig-zag and layerwise theories for the through-the-thickness
discretization of the displacement variables to perform static analyses and showed the versa-
tility of CUF against commercial software. On the other hand, Viglietti et al. [22] introduced
1D models, where the cross-section behaviour was described using equivalent single layer and
layerwise expansions, in order to perform free vibration analyses of VAT structures. Those
works demonstrated that layerwise models provide the most accurate solutions in comparison
with 3D models, while presenting a strong reduction in the number of degrees of freedom.
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Figure 1: Comparison of stacking sequences between classical straight-fibre and VAT laminates.

Another advantage of layerwise formulation is that they are able to model the meso-scale
behaviour of composite laminates, thus fabrication flaws such as printing defects can be taken
into account.

In this context, uncertainty analysis employing Monte Carlo simulations and CUF-based
layerwise models of VAT laminates subjected to meso-scale fibre misalignments defects are
carried out. The printing defects are modelled by stochastic fields, where a certain mis-
alignment spatial distribution and standard deviation are assumed. The field of stochastic
variations has been fruitfully studied, yielding a plethora of methods for the study of stochas-
tic structural mechanics as depicted in the review by Schüeller [23]. One of these techniques
is the Stochastic Finite Element method which is an extension of the classical determinis-
tic Finite Element approach to the stochastic framework, i.e. to the solution of static and
dynamic problems with stochastic mechanical, geometric and/or loading properties [24]. Un-
certainty analysis has been demonstrated to be a significant aspect of the design process, as
showed by Mukherjee et al. [25], after using Tsai-Wu failure envelopes as a constraint in
the minimum weight design of a composite laminate. Particularly, in this research we use a
methodology similar to the demonstrated by Scarth et al. [26], who employed random fields
to model the variability of the mechanical properties of the materials used in an aircraft wing
to characterise its free vibration response.

The manuscript is organized as follows: Section 2 describes the constitutive behaviour of
VAT composite laminates. In Section 3, CUF-based theories of structures based on equiva-
lent single layer (ESL) and layerwise (LW) strategies are discussed along with an opportune
finite element solution. Then, Section 4 describes how the random field that represents the
fibre misalignments is generated. Finally, Section 5 presents the outcomes of the carried out
simulations combined with the statistical treatment of the critical buckling loads and modes.

2 Variable Stiffness Composites

Unlike classical composites where fibres relax along a fixed direction at each lamina, thus
yielding a constant stiffness per ply, in variable angle tow composites the fibres are allowed
to vary along a curvilinear pattern within each lamina, see Fig. 1, and therefore providing
a variable stiffness in the plane. In this work, the fibre orientation θ is defined following
the notation described in previous works by Gürdal [11], where the fibre path presents a
rotation of an angle φ with regard to a certain reference direction placed at an arbitrary
point A as shown in Fig. 2. The fibre orientation angle at this point is T0 and varies along
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Figure 2: Reference path definition of a variable angle orientation layer.

a direction x′ oriented by angle φ from the original coordinate axis x. The fibre orientation
is assumed to reach a value T1 at a characteristic distance d from the reference point. By
introducing this rotation angle, the fibre orientation path θ(x, y) can be expressed as θ(x′),
where x′ = x cosφ + y sinφ. With a linear variation of the fibre orientation angle between
points A and B, the equation of the fibre orientation along this reference path takes the form:

θ(x′) = φ+ T0 +
(T1 − T0)

d
|x′| (1)

In classic straight-fibre laminates, each lamina is defined by a single angle. Note that for
VAT laminates employing a linear variation there are three angles and a characteristic length.
Although, the representation of a single curvilinear ply might be [φ < T0, T1 >], because the
characteristic distance is assumed to be associated to a geometric property. In the literature
related to VAT laminates, d commonly equals a/2 or b/2 respectively when φ = 0◦ or φ = 90◦,
where a is the width and b is the length of the plate.

Independently of the fibre orientation angle, the three-dimensional constitutive behaviour
of a composite ply made of linear elastic material can be expressed with the generalised Hooke
law. In the material reference system, it reads:

σ = Cε (2)

In Eq. (2), σ and ε are the stress and strain vectors expressed in the Voigt notation. Further-
more, C is the material stiffness matrix, which is symmetric and contains nine independent
terms in the case of orthotropic material. When a VAT lamina is considered, the fibre ori-
entation is a function of the plane coordinates, i.e. θ(x, y). As a consequence, in a generic
Cartesian reference system, the Hooke law will read:

σ = C̃(x, y)ε (3)

where
C̃(x, y) = T(x, y)C (T(x, y))T (4)

The apex ”T” denoted transposition. The rotation matrix T (and consequently C̃) is constant
within the ply in the case of classical laminates, whereas it changes point-wise in VATs. This
matrix is not reported here for the sake of brevity, but it can be found in many reference
texts, see for example [27].
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3 Layerwise models of VAT panels

3.1 Carrera unified formulation

In this paper, VAT composites structures are modelled using refined 1D CUF models, which
have been demonstrated to provide accurate results for any geometry and material anisotropy,
see [28]. In the CUF framework, the generic 3D displacement field can be expressed as an
arbitrary expansion of the 1D generalised unknowns which lay along the y-axis, i.e:

u(x, y, z) = Fτ (x, z)uτ (y) τ = 1, 2, ...,M (5)

in which uτ (y) is the vector of the general displacements, M is the number of the expansion
terms and Fτ (x, z) is an arbitrary cross-section expansion depending on x and z. Note that
different classes of 1D structural theories can be implemented by opportunely choosing the
Fτ (x, z) functions. In this manuscript, the so-called Taylor Expansion (TE) and Lagrange Ex-
pansion (LE) CUF-based 1D models are adopted. For different classes of structural theories,
interested readers are referred to [29, 30, 31].

3.1.1 Taylor expansions

TE models make use of 2D polynomials of the type xizj as Fτ (x, z). It is important to
underline that the kinematic fields of many classical beam theories (e.g., Euler-Bernouilli and
Timoshenko) can be defined as particular cases of the first order TE model (TE1), which
reads:

ux = ux1 + xux2 + zux3
uy = uy1 + xuy2 + zuy3
uz = uz1 + xuz2 + zuz3

(6)

Higher-order models can be obtained by adding terms to the displacement field of Eq. (6) in
a hierarchical manner [32].

3.1.2 Lagrange expansions

In the case of LE, Lagrange polynomials are used as generic functions above the cross-section.
Thus, the cross-section is divided into a certain number of local expansion sub-domains, whose
polynomial degree depends on the sort of Lagrange expansion employed. Three-node linear
L3, four-node bilinear L4, nine-node quadratic L9 and sixteen-node L16 polynomials can be
used, for example, to formulate refined beam theories (see Carrera and Petrolo [33]). As an
example, the interpolation functions of a L9 expansion set are defined as:

Fτ = 1
4
(r2 + rrτ )(s

2 + ssτ ) if τ = 1, 3, 5, 7
Fτ = 1

2
s2τ (s

2 − ssτ )(1− r2) + 1
2
r2τ (r

2 − rrτ )(1− s2) if τ = 2, 4, 6, 8
Fτ = (1− r2)(1− s2) if τ = 9

(7)

where r and s range from -1 to +1, and rτ and sτ represent the locations of the roots.
Therefore, the kinematic field of the single-L9 beam theory can be expressed as:

ux = F1ux1 + F2ux2 + F3ux3 + F4ux4 + F5ux5 + F6ux6 + F7ux7 + F8ux8 + F9ux9
uy = F1uy1 + F2uy2 + F3uy3 + F4uy4 + F5uy5 + F6uy6 + F7uy7 + F8uy8 + F9uy9
uz = F1uz1 + F2uz2 + F3uz3 + F4uz4 + F5uz5 + F6uz6 + F7uz7 + F8uz8 + F9uz9

(8)
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Refined beam models can be obtained by adopting higher order Lagrange polynomials or
by using a combination of Lagrange polynomials on multi-domain cross-section. Further infor-
mation on LE models can be found in [29, 30]. Note that LE models employ pure displacement
unknowns. This aspect makes LE particularly advantageous in the implementation of lay-
erwise models, because interlaminar displacements continuity can be satisfied automatically,
see Section 3.1.4.

3.1.3 Finite element approximation

Various numerical methods can be used along with CUF to solve 1D to 3D problems. The
finite element (FE) formulation has been selected in the present work due to its advantages
in the study of arbitrary geometries and boundary conditions. The generalized displacements
are in this way described as functions of the unknown nodal vector uτi and the shape functions
Ni; i.e.,

uτ (y) = Ni(y)uτi i = 1, 2, ..., Nelem (9)

where Nelem is the number of nodes per element. Different sets of polynomials can be used
to define FEs. Lagrange interpolation polynomials have been chosen in this work to generate
cubic one-dimensional elements. This expressions are not included for the sake of brevity, but
they can be found in the book by Carrera et al. [32], in which two-node (B2), three-node
(B3) and four-node (B4) elements are described. Finally, by introducing Eq. (9) into Eq. (5),
the displacement field results:

u(x, y, z) = Fτ (x, z)Ni(y)uτi τ = 1, 2, ...,M i = 1, 2, ..., Nelem (10)

The resolution of the buckling problem is realized by seeking bifurcations and limit points
in the equilibrium state:

|KT | = 0 (11)

KT is the tangent stiffness matrix of the structure. This matrix is obtained by means of the
principle of virtual displacements as follows:

δ2(Lint) =

∫
V

δ(δεTσ) dV =

∫
V

(
δ
(
δεT

)
σ + δεT δσ

)
dV (12)

where Lint is the internal strain energy and δ denotes the virtual variation. After substituting
CUF and FEM approximations (Eqs. (5) and (9)), the constitutive law (Eq. (3)), and the
geometrical relations (not reported here, but the reader can find them in [32]), Eq. (12)
adopts the following expression:

δ2(Lint) = δuTsjK
ijτs
T δuτi (13)

In the case of stable buckling problems, the above equation can be linearized to give:

δ2(Lint) ∼= δuTsj(K
ijτs
0 + Kijτs

σ )δuτi (14)

In Eq. (13), Kijτs
T is the tangent stiffness matrix written in terms of CUF 3 × 3 fundamen-

tal nucleus, see [32]. The fundamental nucleus is independent of the theory approximation
and can be expanded against Fτ approximation (τ, s = 1, ...,M) and Ni shape functions
(i, j = 1, ..., Nelem) to obtain the final stiffness matrix of any high-order model, including LW.
Now, the tangent stiffness matrix is expressed as Kijτs

T = Kijτs
0 + Kijτs

σ , where Kijτs
0 is the

fundamental nucleus of the linear stiffness matrix and Kijτs
σ is the fundamental nucleus of
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Figure 3: Assembling procedures of the stiffness matrix.

the geometric stiffness matrix. This latter contribution is strictly dependent on the internal
pre-stress state within the structure. The accuracy of the model will depend on the capability
to describe the internal stress state [34]. For the sake of brevity, the expression to calculate
the tangent matrix is not offered here, but can be found in [35]. Note that, because linear
hypothesis holds, Kσ is supposed to be proportional to λcr and Eq. (11) can be written as

|K0 + λcrKσ| = 0 (15)

which provides the critical buckling load factor λcr. Note that K0 and Kσ represent the global
assembled FE arrays.

3.1.4 Equivalent single layer vs Layerwise models

In order to analyse laminated structures, two approaches can be adopted: the equivalent single
layer approach, referred to as ESL, and the layerwise approach, referred to as LW. By using
ESL approach, the contribution of each layer of the laminate is summed when conforming
the stiffness matrix, homogenising the properties of the different layers into a single one. The
result is that the multilayer configuration is modelled as a single layer having a set of variables
assumed for the entire cross-section. Note that ESL can be implemented independently of the
class of CUF model (e.g. TE, LE). Obviously, the main disadvantage of ESL approach is its
incapableness of correctly representing some effects inherent of each layer and their interfaces.

Conversely, in LW approach the variables of each layer are considered separately and the
continuity of the displacement solutions at the interfaces between layers is assured by the
correspondence of the shared sides of the cross-section expansion domains. The differences
in the assembly procedure for ESL and LW are shown in Fig. 3. In this work, for merely
practical reasons, ESL models are obtained by means of TE, whereas LW models are obtained
by employing LE. It is worth mentioning that LW models can be obtained by means of TE,
but special consideration must be given to the interface conditions in this case (see [36, 37]).

4 Random fields of fibre misalignments

All manufacturing processes present an uncertainty related to several factors, which could lead
to different global properties for the late structure. In the case of VAT composite materials,
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some of these factors could be variations on the mechanical properties of the material, higher
or lower ply thicknesses, presence of gaps or overlaps between laminae and misalignments in
the fibre orientation.

In this paper, a misalignment sensitivity analysis is carried out exploiting stochastic fields.
Stochastic fields (denoted as θ), also known as random fields, are contained in Rn, i.e. θ ∈ Rn,
and spread a parameter in space with a distribution. Each field value is correlated with the
remaining components of the n-dimensional vector. There exist many methods which can be
used to generate random fields and can be found in the review by Spanos [38]. For this work,
Covariance Matrix Decomposition (CMD) [39] has been chosen as the employed method due
to its implementation easiness and facility to vary the correlation function and length. CMD
creates fields directly from an autocorrelation matrix by decomposing it and multiplying the
decomposed array with a random vector. The values of the stochastic field are typically
generated using a Gaussian distribution with an associated mean value, µ, and standard
deviation σ. Even though misalignments might not be in such a distribution, because of
the central limit theorem, they can be approximated as such with the assumption that the
response is the result of many independent random variables [40].

Let us consider that points belonging to the VAT ply under consideration are correlated
in space. The mathematical definition of correlation between points i and j of field θ is

ρθi,θj =
cov(θi, θj)

σiσj
=

E[(θi − µi)(θj − µj)]
σiσj

(16)

where E is the expectation operator used in probability and equals the mean value of a dis-
tribution given a infinite amount of samples. Eq. (16) allows to calculate the autocorrelation
between points, which have to be given as input in order to generate such fields. The most
common correlation functions found in the literature are based on an exponential formula
[41]. In this work, the correlation function employed to generate the fields:

ρ = exp

(
−
(

∆L

Lc

)2
)

(17)

in which Lc is the correlation length, and ∆L is the Euclidean distance between two points.
The same function was used in [26], although ∆L represented the geodesic length since curved
panels were analysed. For the sake of brevity, the mathematical proof of how CMD allows
reproducing stochastic fields is omitted in here but can be found in the work of van den Broek
et al. [42].

5 Results

5.1 Validation

In this first numerical example, a twelve layer VAT laminate plate is analysed for validation
purpose. This structure has been studied several times in the literature, see Gürdal et al.
[11] or Zhou et al. [43]. In [11], an exhaustive analysis of VAT composite plates was carried
out, by varying the different parameters involved in Eq. (1), i.e. φ, T0 and T1, and boundary
conditions. As in those works, in this report two cases will be considered.

In Case I, the orientation varies along the x axis of the plate (φ = 0◦), which is subjected
to a constant end-shortening ux(±a

2
, y) = ∓u0

2
and restrained transverse edges, see Fig. 4. For

Case II, the orientation will vary along the y axis of the plate (φ = 90◦), which is subjected to
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u0/2 u0/2

S

Figure 4: Geometrical properties of the plate along with boundary conditions. The structure presents
two end-shortening at x = ±a

2 and simply supported edges. Transverse edges (y = ± b
2) are restrained

for Case I lamination and free to deform for Case II lamination. S stands for simply supported edges.

a [m] b [m] Ply thickness [mm] E1 [GPa] E2 [GPa] G12 [GPa] ν
0.254 0.254 0.127 181 10.27 7.17 0.28

Table 1: Geometrical and material properties of the structure.

10L9 per layer

B4 Elements

Figure 5: Numerical mesh used in the analysis, consisting in 10L9 elements per layer for the cross-
section and 10B4 elements along the y-axis.
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Figure 6: Case I [0 + < 0, 50 >] fibre path. The fibre orientation angle θ [deg] is measured with
regard to the x-axis.

a constant end-shortening and free transverse edges. In both cases, all the edges are simply
supported. The geometrical and material properties of the plate are listed in Table 1. As
shown in Fig. 5, the model used in this analysis makes use of a layerwise discretization on
the VAT panel cross-section with L9 and a 1D mesh of B4 elements.

Note that, according to the proposed nomenclature from Section 2, the fibre orientations
of Cases I and II can be expressed as follows:

� Case I: [0 ± < 0, 50 >]3s

� Case II: [90 ± < 0, 75 >]3s

The first ply fibre path for each case can be appreciated in Figs. 6 and 7, for representative
purposes. In both cases, the fibre orientation angle is referred to the x-axis.

In reference [11], the axial stress resultant Nx are normalized by a factor a2/E1h
3, that is

Kcr = Nav
cr a

2/E1h
3. For Case I, the fibre orientation is only a function of the x coordinate

and the in-plane stress resultant Nx is constant everywhere and reported as the critical value
of the stress resultant. For Case II, on the other hand, the value of Nx depends on the y
coordinate. Therefore, in order to describe the critical loading in terms of the axial stress
resultant, an average of the critical load Nav

cr is defined:

Nav
cr =

1

b

∫ b
2

− b
2

Nx(a/2, y)dy (18)

In the performed buckling analyses, the critical buckling load Fcr is obtained by multiplying
the first eigenvalue of the buckling problem (λcr) by the equivalent force at the shortened
edges. Thus, the critical in-plane stress resultant Ncr is calculated by dividing the previous
load by the length of the edge, b, and then normalized in order to obtain Kcr. The values for
Fcr and Ncr from [11] were calculated backwards, that is, from Kcr to Fcr.

Before comparing the results with those available in the literature, a mesh convergence
analysis depending on the number of B4 elements along the y-axis is performed for Case II
lamination, see Fig. 8. The refined LW model adopted in this convergence analysis makes
use of a polynomial set on the cross-section of 120 L9, that is 10 L9 per layer. The effect

10



Figure 7: Case II [90 + < 0, 75 >] fibre path. The fibre orientation angle θ [deg] is measured with
regard to the x-axis.

Figure 8: Mesh convergence based on the number of B4 elements along the y-axis of the [90 ± <
0, 75 >]3s plate.
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Case DOF λcr [-] Fcr [kN] Ncr [kN/m] Kcr [-]

I
Ref [11] CLPT M = 15, N = 7 - 3.63 14.3 1.44

Present LW 51975 2.25·10−3 3.35 13.2 1.33

II
Ref [11] CLPT M = 7, N = 15 - 7.92 31.2 3.14

Present LW 51975 9.84·10−3 6.77 26.6 3.04

Table 2: Comparison between [11] and LW for Cases I and II.

(a) First buckling mode (b) Second buckling mode (c) Third buckling mode

(d) Fourth buckling mode (e) Fifth buckling mode

Figure 9: Buckling modes of the pristine Case II VAT panel subjected to end shortening and simply
supported boundary conditions.

of the theory approximation order over the discussed results is performed later in Section
5.2.2. Once the mesh is decided, a comparison between the results from [11] and the present
LW model is shown in Table 2. It should be underlined that the literature results used the
Classic Laminate Plate Theory (CLPT) along with Rayleigh-Ritz method to solve the buckling
problem. In this case, the number of degrees of freedom (DOF) from reference are presented
as the number of terms in M and N needed in the double sine series that represent the out-
of-plane displacements in the Rayleigh-Ritz method. Differences in Kcr can be appreciated
for both cases. LW models provide similar values, but slightly lower due to its capability of
providing a more accurate stresses field.

Finally, for the sake of completeness, the first five buckling modes for Case II lamination
are represented in Fig. 9.

5.2 Influence of fibre misalignment on buckling performance

5.2.1 Twelve-layer laminate

The influence of fibre misalignment on buckling performance of the Case II VAT plate is
investigated hereafter. The misalignment of the fibre path is generated by exploiting the
mathematical background depicted previously. Since a twelve layer laminate is considered,
a random field is generated for each layer. Each of these fields is obtained by means of the
same correlation matrix R, since the relative distances in the laminate plane are identical for

12



(a) Random field on a [90+ < 0, 75 >] ply. (b) Random field on a [90− < 0, 75 >] ply.

(c) Random field on a [90+ < 0, 75 >] ply. (d) Random field on a [90− < 0, 75 >] ply.

Figure 10: Example of 4 out of 12 randomly distributed fibre misalignment with zero mean and
standard deviation of σθ = 0.5◦ applied on [90 ± < 0, 75 >] plies.

each ply. Plus, one has to clarify that in this work the selected correlation length Lc depends
on the rotation angle φ in Eq. (1), and is valued equal to the length d in the mentioned
equation. Finally, a total of a thousand Monte Carlo simulations with misalignment normal
distribution of zero mean and standard deviation equal to σθ = 0.5◦ are carried out. Some
examples of misalignment random fields with zero mean and standard deviation of σθ = 0.5◦

applied to [90± < 0, 75 >] fibre paths are shown in Fig. 10.
The Probability Density Functions (PDFs) for the buckling load of the first five buckling

modes are shown in Fig. 11. It can be observed that all the buckling loads follow a Gaussian
distribution. Fig. 12 shows the Modal Assurance Criterions (MAC) matrix for the buckling
problem under consideration. MAC has been used to investigate variations in the mode shapes
under uncertainty. In order to determine statistics for the MAC, each mode shape, of each
Monte Carlo sample, is compared with each mode shape of the pristine structure using

MAC
(i)
j,k =

|φTi,jφref,k|2

(φTi,jφi,j)(φ
T
ref,kφref,k)

(19)

where MAC
(i)
j,k is the ith sample of the jth and kth column of the MAC, φi,j is the jth of the ith

sample and φref,k is the kth eigenvector of the reference. In detail, Fig. 12 shows the correlation
between mode shapes from pristine structure and VAT laminate with defects. Note that the
figure depicts both the mean MAC value and the standard deviation of each combination of
buckling modes.

Table 3 summarizes the statistical properties of the critical in-plane stress resultants. It is
worth mentioning that these statistics required manipulations exploiting the mean value and
variance properties of random variables. Intuitively, the larger σθ is, the wider the buckling
load PDF will result. From this standpoint, it is reasonable that a mode switching (e.g.,
between modes 2 and 3, or modes 4 and 5) may happen for certain values of the standard
deviation of the fibre misalignment.
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(a) PDF of Case II; first buckling load (b) PDF of Case II; second and third buckling load

(c) PDF of Case II; fourth and fifth buckling load

Figure 11: PDF of Case II buckling loads Ncr presenting fibre misalignment with standard deviation
equal to σθ = 0.5◦. Mode 1 N, Mode 2 �, Mode 3 �, Mode 4 ◦, Mode 5 •.

Figure 12: Mean MAC values and standard deviation between buckling modes of pristine VAT struc-
ture and defected one. The fibre misalignment field has a null mean value and standard deviation
equal to σθ = 0.5◦. The considered lamination is: [90 ± < 0, 75 >]3s.
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Magnitude Mean Value [kN/m] Standard Deviation [N/m]
Ncr1 30.17 30.41
Ncr2 37.25 41.14
Ncr3 38.88 36.53
Ncr4 63.50 67.46
Ncr5 66.00 75.64

Table 3: Statistical properties of Ncri for Case II using the proposed CUF-based LW model and
statistically correlated fibre misalignment with zero mean and σθ = 0.5◦.

F

P

a

b

Figure 13: Boundary conditions of the [0 ± < 45, 0 >]s plate. C stands for clamped edge, F for free
edge and P is the compression load equal to 1 N, and modelled as a distributed pressure, applied at
x = a

2 .

5.2.2 Effect of the structural modelling approximation

In this section we want to demonstrate the need of using a refined LW model able to model
the defects at the meso-scale when conducting uncertainty analysis. For doing so, we compare
the results from a low- to high-order model obtained with TE approximation and a LW model
based on CUF. The structure considered in this section consists in a four-layers balanced and
symmetric laminate whose stacking sequence can be expressed as: θ = [0 ± < 45, 0 >]s. The
geometrical and material properties are the same as in Table 1. Three expansion theories are
exploited: first order Taylor (TE1), third order Taylor (TE3) and Lagrange expansion, which
lead respectively to an ESL and LW modelling. The scope of using these expansions is to find
out if ESL theories, as those used in commercial software and classical literature, are able to
predict changes in the buckling modes under fabrication uncertainties like LW formulations.
For this analysis case, the plate is subjected to a compression load P , modelled as a distributed
pressure over the section, equivalent to 1 N at x = a

2
. Lateral edges are free, whereas one end

is clamped at x = −a
2
. These boundary conditions can be easily appreciated in Fig. 13. The

only difference between this fibre misalignment random field and the one considered in the
previous section is the standard deviation, which now values σθ = 1◦, remaining constant the
rest of the parameters.

As mentioned in section 5.1, a cross-section mesh convergence analysis is carried out along
with an expansion convergence analysis. Results are plotted in Figs. 14 and 15. In detail, Fig.
14 demonstrates the effect of the number of L9 subdomain on the VAT panel cross-section
on the buckling loadings for the adopted LW model. It is clear that the first buckling modes
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Figure 14: Convergence of the LW model against the number of ply L9 subdomains along x-axis for
the [0 ± < 45, 0 >]s plate.

Figure 15: Comparison of the different ESL theories with LW model for the [0 ± < 45, 0 >]s plate.
LW outcomes correspond to the 10L9 mesh from Fig. 14.
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Case Formulation DOF Ncr1 [kN/m] Ncr2 [kN/m] Ncr3 [kN/m] Ncr4 [kN/m] Ncr5 [kN/m]

[0 ± < 45, 0 >]s

TE 1 288 0.55 1.14 2.11 3.27 4.81
TE 3 960 0.74 0.94 1.55 1.70 2.65
LW 18144 0.73 0.88 1.22 1.58 1.75

Table 4: Ncri comparison between ESL and LW expansions for the pristine [0 ± < 45, 0 >]s plate.

(a) First buckling mode (b) Second buckling mode (c) Third buckling mode

(d) Fourth buckling mode (e) Fifth buckling mode

Figure 16: Buckling modes of the pristine [0 ± < 45, 0 >]s panel with clamped-free boundary
conditions using LW formulation.

are not affected by this parameter. In contrast, higher modes require a refined approximation
of the LW theory kinematics, as expected. In contrast, Fig. 15 shows the differences in the
buckling loads resulting from different ESL theory approximation orders, which are compared
with the reference LW results. Note that higher modes are affected by severe errors when
lower order models are used.

The resulting first five buckling loads for the pristine structure using the chosen expansions
are summarized in Table 4 and the respective buckling modes are shown in Figs. 16 to 18.
Obvious differences can be appreciated, especially those regarding the buckling modes where
TE1 is unable to predict the bending-torsional couplings, since it corresponds to a simple
Timoshenko beam model. Conversely, TE3 provides similar results for the first, second, third
and fifth modes.

Uncertainty analysis is performed through a thousand Monte Carlo simulations, which
guaranteee the correct characterization of the influence of fibre misalignments on the buckling

TE1 TE3 LW
Mean [kN/m] Std. Dev. [N/m] Mean [kN/m] Std. Dev. [N/m] Mean [kN/m] Std. Dev. [N/m]

Ncr1 0.55 4.64 0.74 4.08 0.73 5.14
Ncr2 1.14 14.35 0.94 5.03 0.88 4.96
Ncr3 2.11 23.82 1.55 8.32 1.22 7.19
Ncr4 3.27 37.76 1.70 9.01 1.58 10.68
Ncr5 4.80 54.78 2.53 60.38 1.75 9.84

Table 5: Mean value and Standard deviation of Ncri for [0 ± < 45, 0 >]s VAT plate using TE1, TE3
and LW expansions.
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(a) First buckling mode (b) Second buckling mode (c) Third buckling mode

(d) Fourth buckling mode (e) Fifth buckling mode

Figure 17: Buckling modes of the pristine [0 ± < 45, 0 >]s panel with clamped-free boundary
conditions using TE1 formulation.

(a) First buckling mode (b) Second buckling mode (c) Third buckling mode

(d) Fourth buckling mode (e) Fifth buckling mode

Figure 18: Buckling modes of the pristine [0 ± < 45, 0 >]s VAT panel with clamped-free boundary
conditions using TE3 formulation.
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(a) PDF of first buckling load (b) PDF of second and third buckling load

(c) PDF of fourth and fifth buckling load

Figure 19: PDF of buckling loads Ncri for the [0 ± < 45, 0 >]s VAT plate presenting fibre misalign-
ment with standard deviation equal to σθ = 1◦ employing TE 1, TE 3 and LW expansions. Mode 1
N, Mode 2 �, Mode 3 �, Mode 4 ◦, Mode 5 •

performance. The resulting mean values and standard deviations for the buckling loads
according to the different theories are listed in Table 5. It can be appreciated that TE3
provides accurate results for the first buckling load, yet still overestimates the remaining
buckling loads with regard to LW. However, it is remarkable the fact that TE3 and LW
standard deviations are quite similar, except for the fifth load.

PDFs of the buckling loads Ncri are displayed in Fig. 19. Note that the figure does
not present the fifth buckling load by TE3 because it does not show a normal distribution.
Nevertheless, Fig. 19c, along with MAC criterion in Fig. 20, which is given here for each
theory approximation, proves that LW is able to catch the eventual resemblances between
modes of the flawed structure and the pristine modes. Additionally, if a larger misalignment
standard deviation had been considered, a possible mode switching between the fourth and
fifth mode would have been captured.

Regarding the fifth TE3 buckling load, Fig. 20b provides that the mean value for MAC5,5

is nearly 0.2, while MAC2,5 and MAC4,5 mean values are respectively 0.6 and 0.35. PDF of
the latter are plotted in Fig.21a, while the former is displayed using a histogram for a better
visualisation in Fig. 21b. The histogram shows that nearly 23% of the samples are gathered
around MAC5,5 ≈ 1, which corresponds to Ncr5 ≈ 2.65 kN/m, whilst the remaining 77%
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(a) MAC criterion using TE1

(b) MAC criterion using TE3

(c) MAC criterion using LW

Figure 20: Mean MAC values and standard deviation between buckling modes of pristine VAT panel
and defected one employing TE1, TE3 and LW expansions. The fibre misalignment field has a null
mean and standard deviation equal to σθ = 1◦. The considered lamination is [0 ± < 45, 0 >]s.
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(a) MAC2,5 and MAC4,5 PDFs (b) MAC5,5 histogram

Figure 21: (a) PDF of MAC criterion indexes MAC2,5 and MAC4,5 and (b) MAC5,5 histogram divided
into 0.01 bins. Both the figures correspond to the TE3 expansion analysis of the [0 ± < 45, 0 >]s
VAT panel.

approximately equals 0 and its buckling load is around Ncr5 ≈ 2.50 kN/m. This means that
when fibre misalignments are taken into account TE3 not only overestimates higher buckling
loads, but also may alter the respective buckling mode.

6 Conclusion

In this work, a higher-order model based on the Carrera Unified Formulation (CUF) has
been used for the linearised buckling analysis of plates made of VAT composites with fibre
misalignments. Two balanced and symmetric plates with twelve layers widely studied in liter-
ature have been analysed for validation of the model and similar results have been obtained.
Differences between reference and those presented in this work are due to the nature of the
employed formulation. In particular, it is demonstrated that, when a layerwise (LW) formu-
lation is employed, a more accurate estimation of the buckling can be guaranteed because
pre-stress state is correctly foreseen.

Based on a LW structural model, the influence of fibre misalignments on the buckling
performances of VAT panel has been carried out by means of Monte Carlo analyses. Fibre
misalignments following a Gaussian distribution of zero mean and 0.5 degrees standard devi-
ation have been modelled by means of stochastic fields generated by exploiting the covariance
matrix decomposition method. The results have shown that the buckling loadings and modes
hold a Gaussian distribution. In particular, it is reasonable to underline that mode switching
may happen in the case of severe defects.

Particular attention has been focussed on the effect of the structural formulation in the
characterization of the uncertainty. The results have shown, indeed, that layerwise models are
strictly mandatory when sensitivity analysis versus meso-scale flaws is accounted for. As a
matter of fact, classical structural theories based on an equivalent single layer approximation
may lead to misleading results, both in the simulation of the pristine VAT structure and the
defected one.
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[11] Z. Gürdal, B.F. Tatting, and K. Wu. Variable stiffness composite panels: Effects of
stiffness variation on the in-plane and buckling response. Composites Part A: Applied
Science and Manufacturing, 39:911–922, 2008.

[12] A.W. Blom, C.S. Lopes, P.J. Kromwijk, Z. Gurdal, and P.P. Camanho. A theoretical
model to study the influence of tow-drop areas on the stiffness and strength of variable-
stiffness laminates. Journal of Composite Materials, 43(5):403–425, 2009.

[13] K. Kazem Fayazbakhsh, M.A. Nik, D. Pasini, and L. Lessard. Defect layer method to
capture effect of gaps and overlaps in variable stiffness laminates made by automated
fiber placement. Composite Structures, 97:245–251, 2013.

22



[14] M.A. Nik, K. Kazem Fayazbakhsh, D. Pasini, and L. Lessard. Optimization of vari-
able stiffness composites with embedded defects induced by automated fiber placement.
Composite Structures, 107:160–166, 2014.

[15] K. C. Wu, B. Farrokh, B. Stanford, and P. Weaver. Imperfection insensitivity analyses
of advanced composite tow-steered shells. In 57th AIAA/ASCE/AHS/ASC Structures,
Structural Dynamics, and Materials Conference, page 1498, San Diego, California, USA,
2016.

[16] E Carrera. Theories and finite elements for multilayered anisotropic, composite plates
and shells: a unified compact formulation with numerical assessment and benchmarking.
Archives of Computational Methods in Engineering, 10(3):216–296, 2003.

[17] E Carrera and G. Giunta. Refined beam theories based on carrera’s unified formulation.
International Journal of Applied Mechanics, 2(1):117–143, 2010.

[18] E Carrera, G. Giunta, P. Nali, and M. Petrolo. Refined beam elements with arbitrary
cross-section geometries. Computers and Structures, 88(5):283 – 293, 2010.

[19] E. Carrera, M. Filippi, and E. Zappino. Laminated beam analysis by polynomial, trigono-
metric, exponential and zig-zag theories. European Journal of Mechanics-A/Solids,
41:58–69, 2013.

[20] L. Demasi, G. Biagini, F. Vannucci, E. Santarpia, and R. Cavallaro. Equivalent single
layer, zig-zag, and layer wise theories for variable angle tow composites based on the
generalized unified formulation. Composite Structures, 177:54–79, 2017.

[21] L. Demasi, G. Biagini, F. Vannucci, E. Santarpia, and R. Cavallaro. Generalized unified
formulation - based bending analysis of variable angle tow panels in the presence of
hole. In 2018 AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials
Conference, Kissimmeee, Florida, USA, 2018. AIAA.

[22] A. Viglietti, E. Zappino, and E. Carrera. Analysis of variable angle tow composites
structures using variable kinematic models. Composites Part B: Engineering, 171:272–
283, 2019.
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