
11 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Processor-in-the-loop architecture design and experimental validation for an autonomous racing vehicle / Tramacere, E.;
Luciani, S.; Feraco, S.; Bonfitto, A.; Amati, N.. - In: APPLIED SCIENCES. - ISSN 2076-3417. - 11:16(2021), p. 7225.
[10.3390/app11167225]

Original

Processor-in-the-loop architecture design and experimental validation for an autonomous racing vehicle

Publisher:

Published
DOI:10.3390/app11167225

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2918512 since: 2021-08-25T10:19:07Z

MDPI AG

applied
sciences

Article

Processor-in-the-Loop Architecture Design and Experimental
Validation for an Autonomous Racing Vehicle

Eugenio Tramacere , Sara Luciani, Stefano Feraco * , Angelo Bonfitto and Nicola Amati

����������
�������

Citation: Tramacere, E.; Luciani, S.;

Feraco, S.; Bonfitto, A.; Amati, N.

Processor-in-the-Loop Architecture

Design and Experimental Validation

for an Autonomous Racing Vehicle.

Appl. Sci. 2021, 11, 7225. https://

doi.org/10.3390/app11167225

Academic Editor: Yosoon Choi

Received: 14 July 2021

Accepted: 3 August 2021

Published: 5 August 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Mechanical and Aerospace Engineering, Politecnico di Torino, 10129 Torino, Italy;
eugenio.tramacere@polito.it (E.T.); sara.luciani@polito.it (S.L.); angelo.bonfitto@polito.it (A.B.);
nicola.amati@polito.it (N.A.)
* Correspondence: stefano.feraco@polito.it; Tel.: +39-011-090-6239

Abstract: Self-driving vehicles have experienced an increase in research interest in the last decades.
Nevertheless, fully autonomous vehicles are still far from being a common means of transport. This
paper presents the design and experimental validation of a processor-in-the-loop (PIL) architecture
for an autonomous sports car. The considered vehicle is an all-wheel drive full-electric single-seater
prototype. The retained PIL architecture includes all the modules required for autonomous driving
at system level: environment perception, trajectory planning, and control. Specifically, the perception
pipeline exploits obstacle detection algorithms based on Artificial Intelligence (AI), and the trajectory
planning is based on a modified Rapidly-exploring Random Tree (RRT) algorithm based on Dubins
curves, while the vehicle is controlled via a Model Predictive Control (MPC) strategy. The considered
PIL layout is implemented firstly using a low-cost card-sized computer for fast code verification
purposes. Furthermore, the proposed PIL architecture is compared in terms of performance to an
alternative PIL using high-performance real-time target computing machine. Both PIL architectures
exploit User Datagram Protocol (UDP) protocol to properly communicate with a personal computer.
The latter PIL architecture is validated in real-time using experimental data. Moreover, they are
also validated with respect to the general autonomous pipeline that runs in parallel on the personal
computer during numerical simulation.

Keywords: autonomous racing vehicle; processor-in-the-loop; control; model predictive control;
trajectory planning; RRT algorithm; perception; automated driving

1. Introduction

In recent years, huge research efforts have been dedicated to autonomous systems and
self-driving ground vehicles, thus motivating the expectations of buying fully autonomous
commercial cars within few decades, as reported in [1,2]. Autonomous driving is expected
to drastically reduce car accidents and traffic, while robustly improving passenger comfort,
as well as enhancing the capabilities of last-mile logistics and car sharing [3]. However,
the development of autonomous systems is a complex multidisciplinary problem that
must take into account social, economic, and technical issues for the next generation of
vehicles [4–6]. Indeed, most of the current commercial cars can only experience Level
1 or 2 in the SAE J3106 Levels of Driving Automation scale. Therefore, there is still a
wide research field to investigate, particularly related to the software developments and
extensibility of further autonomous features.

To this end, racing competitions, such as Roborace [7], DARPA Grand Challenge [8],
and Urban Challenge [9], have a pivotal role in the research and development of Level 4 and
5 automated vehicles. In fact, during the abovementioned competitions, self-driving cars
race in a controlled and structured driving scenario, with little risk for human drivers and
pedestrians, thus being a perfect environment for research of fully autonomous software
pipelines and novel hardware solutions. In this framework, the present research work

Appl. Sci. 2021, 11, 7225. https://doi.org/10.3390/app11167225 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0001-7234-5567
https://orcid.org/0000-0003-4788-1098
https://orcid.org/0000-0002-7563-6308
https://doi.org/10.3390/app11167225
https://doi.org/10.3390/app11167225
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11167225
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11167225?type=check_update&version=1

Appl. Sci. 2021, 11, 7225 2 of 22

involves an all-wheel drive full-electric racing prototype participating at Formula Student
Driverless (FSD) competitions.

A self-driving vehicle includes different modules devoted to specific functions, which
are deeply interconnected in order to build the whole autonomous system. The main
modules are environment perception, trajectory planning, and control, as reported in [10].
The perception module is responsible for the creation of an accurate representation of the
environment around the vehicle at current status. Usually, the perception pipeline exploits
the enhanced capability of artificial intelligence in combination with a plethora of sensors,
such as multiple cameras, RADARs, and LiDARs, to guarantee sufficient redundancy
and robustness [11,12]. Then, the trajectory planning module exploits the information
computed from perception algorithms in order to define a proper and feasible trajectory that
the vehicle has to follow. Different trajectory planning algorithms have been investigated
in the recent literature [13,14], and efficient solutions for the retained racing prototype
have been identified in the application of the Probabilistic Road Map (PRM) algorithm [15]
and the RRT algorithms [16]. Finally, the control module is responsible for an accurate
trajectory-following operation, while minimizing the tracking errors and maximizing
the vehicle’s longitudinal speed, especially in the case of racing vehicles. To this end,
a vast variety of control methods have been discussed in the literature for autonomous
driving [13,17–19]. The retained PIL architecture embeds a MPC control strategy, as it is
effective for the investigated application in prior research [16]. Moreover, the proposed
trajectory planning method is based on a modified RRT algorithm based on Dubins curves,
that exploits environment information from a vision-based perception pipeline.

PIL architecture is commonly used in different disciplines to test and validate the
performance of a controlled system, as reported in [20–22]. The PIL approach allows
verifying the actual control software running in a dedicated processor which controls a
virtual model of the retained plant, as written in [21]. Therefore, PIL-based validation
methods are used in different fields of study.

A PIL design and experimental validation is proposed in [23] for a MPC strategy
devoted to Unmanned Aerial Vehicles (UAVs). The PIL architecture is also used for fast
prototyping of power electronics circuits in [24]. Furthermore, the PIL layout is used to
validate a hybrid fuzzy-RRT algorithm for indoor unmanned robots [25]. Although many
applications involving autonomous ground vehicles exploit a hardware-in-the-loop (HIL)
configuration, as in [26,27], the PIL approach is widely used for the validation of different
control strategies and algorithms for automated driving. In detail, a software architecture
for dynamic path planning of an autonomous racecar at the limits of handling is presented
in [28] with a PIL configuration, and a focus on software implementation of the same
application is illustrated in [29]. Moreover, a PIL architecture for prototyping purposes
of urban motion planning and control is discussed in [30]. However, to the best of the
authors’ knowledge, a study on the design and implementation of a PIL architecture for
the experimental validation of trajectory planning and control algorithms for a full-electric
autonomous racing prototype is still missing in the literature.

Considering the reported framework about PIL applications, the main contribution
of this paper consists in the experimental validation of a PIL architecture for a fully au-
tonomous racing prototype using a high-performance real-time target computing machine
and a low-cost card-sized computer. Furthermore, the splitting of the PIL phase into
two complementary steps leads to a genuine V-cycle process for the slender and rapid
software development process for automotive industry application. From the software
point-of-view a complete and customized pipeline for the perception, planning and control
of an autonomous racing platform is proposed. Moreover, the motion planning problem is
validated with real data acquisition on-board a racing vehicle. Specifically, the autonomous
pipeline includes a trajectory planner based on a modified RRT algorithm and a control
strategy based on MPC. Both the investigated PIL layouts communicate with a properly
connected personal computer via UDP protocol. In the paper, different driving situations
are shown for the retained racing vehicle. Furthermore, the proposed PIL architecture

Appl. Sci. 2021, 11, 7225 3 of 22

is validated with respect to a model-in-the-loop (MIL) architecture that runs only on the
personal computer during numerical simulations, as discussed in [31]. In fact, MIL ar-
chitecture includes testing the modeled plant on a dedicated simulation platform only.
By contrast, PIL implementation allows to test the designed model when deployed on
a target processor, in a closed-loop simulation layout. This step helps to identify if the
investigated control algorithm can be deployed on the considered processor. In detail,
the retained real-time computing machine is a Speedgoat Baseline platform, while the
considered low-cost computer is a Raspberry Pi 4B board. The environment perception
data come from a vision-based perception pipeline that exploits a stereocamera and LiDAR
sensors which are properly mounted onto the vehicle. Specifically, the vehicle moves in a
structured racing environment and the path is defined by multiple traffic cones of different
colors, as defined in the FSD competitions.

The paper is structured as follows. Section 2 illustrates the general PIL architecture
and the main modules of the retained autonomous system. Moreover, the hardware setup
is discussed in detail and the considered computing platforms are described. Section 3
presents and discusses the obtained results on recorded experimental datasets for the MIL
architecture and both the presented PIL layouts. Furthermore, a comparison with respect
to the general autonomous pipeline that runs in parallel on the personal computer during
simulation is presented. Finally, Section 4 concludes the paper.

2. Method

This section describes the design method of the proposed PIL architecture. First,
starting from the perception pipeline installed on-board the racing vehicle, the retained
software layout is defined. In detail, the proposed software layout assesses the motion
planning task and control of the vehicle command inputs. Subsequently, the hardware setup
and the connection specifications between the considered real-time target machines and the
host personal computer are illustrated. Last, technical details of the considered computing
platforms are highlighted with the objective of defining the PIL layout implications of
both architectures.

2.1. Autonomous Vehicle Pipeline and Vehicle Setup

The considered vehicle is a fully electric all-wheel drive racing prototype with four
on-wheel electric motor coupled with a highly efficient planetary transmission system
concentrically mounted on each wheel hub. The vehicle has an integral carbon fiber chassis
built with honeycomb panels, double wishbone push-rod suspensions, and a custom
aerodynamic package. The vehicle can reach a maximum speed equal to 120 km/h with
longitudinal acceleration peaks reaching up to 1.6 g. The main specifications of the racecar
are listed in Table 1.

The vehicle senses the surrounding environment featuring a custom perception
pipeline composed of a LiDAR-based sensor with an integrated high-performance Graphic
Processing Unit (GPU) and a stereocamera. The former sensor is mounted in the middle of
the front wing of the vehicle at a height of about 0.1 m from the ground. The latter instead
is placed on the main roll hoop, above the driver’s seat. Both the sensors are interfaced
with a properly designed Robotic Operating System (ROS) environment that can handle
the measurements during vehicle’s motion and fuse them in order to provide real-time
estimation about the position and type of surrounding obstacles. Specifically, the racing
environment is structured with multiple traffic cones of different colors, as illustrated in
Figure 1.

Appl. Sci. 2021, 11, 7225 4 of 22

Table 1. Technical specifications of the racing prototype. CoG is the vehicle’s Center of gravity.

Parameter Symbol Value Unit

Mass m 190 [kg]
Moment of Inertia about z-axis Iz 95.81 [kgm2]

Vehicle wheelbase l 1.525 [m]
Overall length L 2.873 [m]

Front axle distance to CoG a 0.839 [m]
Rear axle distance to CoG b 0.686 [m]

Vehicle track width t 1.4 [m]
Overall width W 1.38 [m]
Height of CoG hCG 0.242 [m]
Wheel radius RW 0.241 [m]

Longitudinal drag area A f 2 [m2]
Longitudinal drag coefficient Cd 0.3 -

Longitudinal lift
coefficient Cl 0.1 -

Longitudinal drag pitch moment Cpm 0.1 -
Maximum power

(total vehicle) Pmax 80 [kW]

Motors peak torque Tmax 84 [Nm]
Steering transmission ratio τ 4.23 [-]
Maximum energy stored Ebp 6.29 [kWh]

Appl. Sci. 2021, 11, x FOR PEER REVIEW 4 of 22

Longitudinal drag coefficient 𝐶 0.3 -
Longitudinal lift

coefficient
𝐶 0.1 -

Longitudinal drag pitch moment 𝐶 0.1 -
Maximum power

(total vehicle)
𝑃 80 [kW]

Motors peak torque 𝑇 84 [Nm]
Steering transmission ratio 𝜏 4.23 [-]
Maximum energy stored 𝐸 6.29 [kWh]

The vehicle senses the surrounding environment featuring a custom perception pipe-
line composed of a LiDAR-based sensor with an integrated high-performance Graphic
Processing Unit (GPU) and a stereocamera. The former sensor is mounted in the middle
of the front wing of the vehicle at a height of about 0.1 m from the ground. The latter
instead is placed on the main roll hoop, above the driver’s seat. Both the sensors are inter-
faced with a properly designed Robotic Operating System (ROS) environment that can
handle the measurements during vehicle’s motion and fuse them in order to provide real-
time estimation about the position and type of surrounding obstacles. Specifically, the
racing environment is structured with multiple traffic cones of different colors, as illus-
trated in Figure 1.

Figure 1. (a) Racing vehicle in the structured environment; (b) Vehicle dimensions and perception
hardware location: 1. Velodyne VLP-16 LiDAR; 2. Stereolabs ZED stereocamera; 3. nVIDIA Jetson
Xavier high-performance computational unit with embedded GPU.

Figure 1. (a) Racing vehicle in the structured environment; (b) Vehicle dimensions and perception
hardware location: 1. Velodyne VLP-16 LiDAR; 2. Stereolabs ZED stereocamera; 3. nVIDIA Jetson
Xavier high-performance computational unit with embedded GPU.

Appl. Sci. 2021, 11, 7225 5 of 22

Information coming from the perception pipeline is then exploited for building a local
map that enables the path planning method based on a modified version of RRT algorithm
using Dubins curves.

Once the optimal path has been identified with respect to the goal position in each
sensed local map, the investigated control strategy based on MPC assesses the vehicle
dynamics control during motion. The vehicle is controlled via longitudinal acceleration
and steering angle commands that are computed with respect to the planned path, while
minimizing the tracking errors defined in terms of relative yaw angle and lateral deviation,
as defined in [16,18,19].

The proposed PIL architecture is developed by deploying the planning and control
methods into the retained real-time target platforms: a high-performance Speedgoat Base-
line platform and low-cost Raspberry Pi 4B board. Both these target machines have been
connected via UDP protocol to a host personal computer in which the retained vehicle
model is accordingly defined. Figure 2 illustrates the retained autonomous pipeline and
PIL architecture.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 5 of 22

Information coming from the perception pipeline is then exploited for building a lo-
cal map that enables the path planning method based on a modified version of RRT algo-
rithm using Dubins curves.

Once the optimal path has been identified with respect to the goal position in each
sensed local map, the investigated control strategy based on MPC assesses the vehicle
dynamics control during motion. The vehicle is controlled via longitudinal acceleration
and steering angle commands that are computed with respect to the planned path, while
minimizing the tracking errors defined in terms of relative yaw angle and lateral devia-
tion, as defined in [16,18,19].

The proposed PIL architecture is developed by deploying the planning and control
methods into the retained real-time target platforms: a high-performance Speedgoat Base-
line platform and low-cost Raspberry Pi 4B board. Both these target machines have been
connected via UDP protocol to a host personal computer in which the retained vehicle
model is accordingly defined. Figure 2 illustrates the retained autonomous pipeline and
PIL architecture.

Figure 2. Overall autonomous pipeline and PIL architecture considering either Raspberry PI model
4B or Speedgoat Real-Time Target Machine model Baseline.

2.1.1. Environment Perception
As represented in Figure 1, the proposed environment perception pipeline is per-

formed with a Velodyne VLP-16 LiDAR sensor, a Stereolabs ZED stereocamera, and a
nVIDIA Jetson Xavier high-performance computing platform. In detail, the Velodyne
VLP-16 LiDAR sensor is mounted onto the front wing of the vehicle at a fixed height equal
to 0.1 m from the ground. The Stereolabs ZED stereocamera sensor is mounted at a height
of 1.05 m from the ground and it is fixed to the vehicle’s rollbar, as represented in Figure
1. The NVIDIA Jetson Xavier high-performance computing platform is placed inside the
vehicle’s monocoque, fixed to its right side. Moreover, a proper wiring system has been
set up to correctly interface and supply the sensors to the computing platform.

The Velodyne VLP-16 LiDAR sensor provides a full 360-degree point cloud of the
surrounding environment at a 10 Hz frequency to obtain an accurate real-time data

Figure 2. Overall autonomous pipeline and PIL architecture considering either Raspberry PI model
4B or Speedgoat Real-Time Target Machine model Baseline.

2.1.1. Environment Perception

As represented in Figure 1, the proposed environment perception pipeline is per-
formed with a Velodyne VLP-16 LiDAR sensor, a Stereolabs ZED stereocamera, and a
nVIDIA Jetson Xavier high-performance computing platform. In detail, the Velodyne
VLP-16 LiDAR sensor is mounted onto the front wing of the vehicle at a fixed height equal
to 0.1 m from the ground. The Stereolabs ZED stereocamera sensor is mounted at a height
of 1.05 m from the ground and it is fixed to the vehicle’s rollbar, as represented in Figure 1.
The NVIDIA Jetson Xavier high-performance computing platform is placed inside the
vehicle’s monocoque, fixed to its right side. Moreover, a proper wiring system has been set
up to correctly interface and supply the sensors to the computing platform.

The Velodyne VLP-16 LiDAR sensor provides a full 360-degree point cloud of the
surrounding environment at a 10 Hz frequency to obtain an accurate real-time data recon-
struction recorded by 16 light channels. It ranges up to 100 m with 30◦ vertical field-of-view

Appl. Sci. 2021, 11, 7225 6 of 22

(FOV) and an angular resolution up to 0.1◦ in the horizontal plane [32]. The LiDAR sensor
is connected to the computing platform with embedded GPUs through an Ethernet connec-
tion. Specifically, the computing platform creates a ROS network, which allows to process
the information streaming from the LIDAR-based sensor.

The Stereolabs ZED stereocamera is connected via 3.0 USB port to the computing
platform. The considered stereocamera features stereo 2 K cameras with dual 4 MP RGB
sensors. It is used as it is capable of accurately recording dense depth map information
using triangulation from the geometric model of non-distorted rectified cameras up to 10 m
in front of the vehicle [33]. To this end, left and right video frames are intrinsically syn-
chronized and streamed so that several configuration parameters—resolution, brightness,
contrast, and saturation—can be tuned properly [33]. Specifically, the camera is used in the
high-definition 1080 mode (HD1080) at 30 Frame Per Second (FPS).

The NVIDIA Jetson AGX Xavier is an embedded Linux high-performance computing
platform with embedded GPUs with 32 TOPS of peak computational power in less than
50 W of needed power. The retained high-performance computing platform enables
intelligent vehicles with end-to-end autonomous capabilities as it is based on the most
complex System-on-Chip (SoC) ever created up to 2018, thus enabling any complete
artificial intelligence software stack [34].

The driving environment is properly structured with traffic cones according to the
rules listed in [35] for the purpose of FSD competitions. In fact, each traffic cone has a
height equal to 0.325 m and a square base, with a side length equal to 0.228 m. The cones
of the right lane boundary are yellow with a black stripe, while the right lane boundary is
built with blue cones with a white stripe. Bigger orange cones indicate the starting and the
ending points of the track.

In this driving scenario, the LiDAR sensor records point clouds at a frequency equal to
10 Hz consisting of thousands of 3D point cloud during motion. Each point cloud contains
the distance of each point in the 3D space along with the intensity of the reflected light
in that point. Then, the raw point cloud is filtered by removing all the points out of the
region-of-interest (ROI). Furthermore, a ground plane filtering segmentation algorithm is
then applied to the raw point cloud in the considered ROI. This operation is performed in
order to remove all the points belonging to the ground which can badly affect the proposed
object detection method. Therefore, a clustering algorithm is applied to the filtered point
cloud, then the distance to the detected obstacles is finally estimated.

In a similar way, the stereocamera-based perception algorithm is designed to detect
cones and extract the color features from the detected obstacles, namely, blue, yellow, and
orange cones. The distance with respect to the sensor is then computed by matching the
detected bounding boxes representing the obstacles with the recorded depth map from the
retained stereocamera. This algorithm is redundant to the LiDAR-based one. Nevertheless,
it performs a peculiar task as it estimates not only the position of the detected obstacles,
but also the color of the detected cones up to a 10 m distance from the sensor. In detail, the
camera-based algorithm exploits a Single-Shot Detector (SSD) algorithm that is based on
the Convolutional Neural Network (CNN) MobileNet v1.

As a result of the implemented perception algorithms, a local map containing the
information about the obstacles in front of the vehicle is created at a 10 Hz frequency,
that enables further trajectory planning and control methods. Specifically, the information
about obstacles includes position about the obstacles in the x-y plane and a color tag.

2.1.2. Path Planning

The trajectory planning algorithm generates the feasible poses that the vehicle has
to follow acting on the acceleration/deceleration and steering commands which are com-
puted by the designed MPC controller. Thus, the objective of the designed path planning
algorithm is to find a collision-free motion between the start and goal positions of the
vehicle in a structured environment. The environment where the vehicle moves is defined
by the perception stage.

Appl. Sci. 2021, 11, 7225 7 of 22

The vehicle explores the environment using a real-time local trajectory planner, based
on a modified RRT algorithm for non-holonomic car-like mobile robots, using Dubins curves.
The algorithm takes into account kinematic and dynamic constraints of the vehicle, as defined
in [36], in addition to the pure geometric problem of obstacle avoidance, and allows to search
non-convex high-dimensional spaces by randomly building a space-filling tree [37]. The RRT
algorithm is based on the incremental construction of a search tree that attempts to rapidly
and uniformly explore obstacle-free segment in the configuration space. Once a search tree
is successfully created, a simple search operation among the branches of the tree can result
in collision-free path between any two points in vehicle environment. Due to differential
constraints of non-holonomic car-like mobile robots, the set of potential configurations that a
vehicle can reach from a certain state is reduced and Dubins curves are selected for building
the branches in the search tree instead of the straight lines, as it is discussed in [23].

The initial position of the vehicle is always retained in the origin of the frame at the
considered sampling time. The detected cones on the two-dimensional map are used to
discretize the space within which the vehicle is moving through the Delaunay Triangulation
algorithm [38], i.e., an iterative search technique based on the assumption that one and
only one circumference passes through three non-aligned points. Considering the obstacles
detected by the perception pipeline, a circumference passing by them is computed for
each random triplet of points. As a result of the iterative process that is repeated until all
possible combinations of points are investigated during Delaunay Triangulation, the final
goal is selected among the potential goal points, considering the farthest point with respect
to the vehicle initial position. Afterwards, the search tree is built and updated each time
new vehicle state is available. The minimum turning radius is set on the basis of the vehicle
steering specification, as the maximum front steering angle that is equal to δmax = π

6 rad
during turns, and it is equal to π

18 rad when the vehicle is accelerating. The implemented
RRT algorithm exploits Dubins curves to connect two consecutive vertices, as the shortest
path is expressed as a combination of no more than three primitive curves. In this research
work, three different types of primitive curves are considered. The S primitive drives the
car straight ahead, while the L and R primitives turn as sharply as possible to the left and
right, respectively. As discussed in [39], ten combinations of primitive curves are possible,
but only six primitives can be optimal, and they are properly named Dubins curves. The
possible combinations are listed below:{

LαRβLγ, RαLβRγ, LαSdLγ, LαSdRγ, RαSdLγ, RαSdRγ

}
(1)

where α, β, and γ denote the total amount of accumulated rotation and α, γ ∈ [0, 2π),
β ∈ (π, 2π), d is the distance travelled along the straight segment, 0 ≤ d ≤ 10 m.
A robust theoretical background about Dubins segments can be found in [39]. Finally,
the cumulative length Λ of the path is given by the sum of the length of its constituent
segments. In the proposed algorithm, the shortest path is chosen, i.e., the one with the
lowest Λ. Furthermore, the planned path must be feasible and collision-free, thus the paths
which hit obstacles are discarded. The investigated trajectory planning method is thus able
to compute a feasible trajectory that is consistent with the performance of an autonomous
steering actuator, as discussed in [40]. Afterwards, the speed profile can be associated to
the selected path based on the limitations imposed by the vehicle dynamics. Therefore,
during turns, the speed is limited by the maximum lateral acceleration

.
Uy,max that is equal

to 2 g. In the same way, the reference speed profile is constrained by the longitudinal speed
and acceleration on a straight path. The upper bound of the longitudinal speed Umax is
30 m/s, according to the vehicle’s maximum speed. The vehicle longitudinal acceleration
peaks can reach up to 1.6 g. Moreover, as the vehicle should not go in reverse, the lower
bound is imposed equal to 0 m/s. Under these assumptions, the minimum value of the
velocity Umin is computed as follows:

Umin =

√
.

Uy,max

κ
(2)

Appl. Sci. 2021, 11, 7225 8 of 22

where κ is the curvature of the computed path. Given the coordinates (x, y) of each sample
of the path, κ is geometrically computed as follows:

κ =

∣∣ .
x

..
y− ..

x
.
y
∣∣(.

x2
+

.
y2
) 3

2
(3)

2.1.3. Vehicle Modeling

This section describes the released vehicle and tire models that are used for trajectory
planning algorithm test and validation purposes. Several mathematical models have been
investigated in the recent literature with different levels of complexity and accuracy based
on the research context [41]. In this paper, the vehicle is modeled using the 3-DOF rigid
vehicle model (single track) for both lateral and longitudinal dynamics as depicted in
Figure 3.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 22

𝑈 = 𝑈 ,𝜅 (2)

where 𝜅 is the curvature of the computed path. Given the coordinates (𝑥, 𝑦) of each sam-
ple of the path, 𝜅 is geometrically computed as follows: 𝜅 = |𝑥𝑦 − 𝑥𝑦|(𝑥 + 𝑦) (3)

2.1.3. Vehicle Modeling
This section describes the released vehicle and tire models that are used for trajectory

planning algorithm test and validation purposes. Several mathematical models have been
investigated in the recent literature with different levels of complexity and accuracy based
on the research context [41]. In this paper, the vehicle is modeled using the 3-DOF rigid
vehicle model (single track) for both lateral and longitudinal dynamics as depicted in Fig-
ure 3.

Figure 3. 3-DOF rigid vehicle model single track.

The equations of motion are written in terms of errors with respect to the reference
poses generated by the Local Path Planner to properly define the controller variables. To
this extent, the kinematic motion of the vehicle, at velocity 𝑈 , can be described with the
cross-track error 𝑒 of the front axle guiding wheels, and the angle of those wheels with
respect to the nearest segment of the trajectory to be tracked 𝑒 , as reported in Figure 4.

Figure 4. Definition of the controlled variables 𝑒 and 𝑒 with respect to the reference trajectory.

Figure 3. 3-DOF rigid vehicle model single track.

The equations of motion are written in terms of errors with respect to the reference
poses generated by the Local Path Planner to properly define the controller variables. To
this extent, the kinematic motion of the vehicle, at velocity Ux, can be described with the
cross-track error e1 of the front axle guiding wheels, and the angle of those wheels with
respect to the nearest segment of the trajectory to be tracked e2, as reported in Figure 4.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 8 of 22

𝑈 = 𝑈 ,𝜅 (2)

where 𝜅 is the curvature of the computed path. Given the coordinates (𝑥, 𝑦) of each sam-
ple of the path, 𝜅 is geometrically computed as follows: 𝜅 = |𝑥𝑦 − 𝑥𝑦|(𝑥 + 𝑦) (3)

2.1.3. Vehicle Modeling
This section describes the released vehicle and tire models that are used for trajectory

planning algorithm test and validation purposes. Several mathematical models have been
investigated in the recent literature with different levels of complexity and accuracy based
on the research context [41]. In this paper, the vehicle is modeled using the 3-DOF rigid
vehicle model (single track) for both lateral and longitudinal dynamics as depicted in Fig-
ure 3.

Figure 3. 3-DOF rigid vehicle model single track.

The equations of motion are written in terms of errors with respect to the reference
poses generated by the Local Path Planner to properly define the controller variables. To
this extent, the kinematic motion of the vehicle, at velocity 𝑈 , can be described with the
cross-track error 𝑒 of the front axle guiding wheels, and the angle of those wheels with
respect to the nearest segment of the trajectory to be tracked 𝑒 , as reported in Figure 4.

Figure 4. Definition of the controlled variables 𝑒 and 𝑒 with respect to the reference trajectory. Figure 4. Definition of the controlled variables e1 and e2 with respect to the reference trajectory.

Appl. Sci. 2021, 11, 7225 9 of 22

In case of forward driving motion and steering system acting only on vehicle front
guiding wheels, the derivative of the cross-track error

.
e1 and relative yaw angle e2 can be

defined as follows:
.
e1 = Uy + Ux · e2 (4)

e2 = ψ− δ (5)

where Uy is the lateral velcity in the vehicle-fixed reference frame, ψ is the heading angle
of the vehicle with respect to the closest trajectory segment, and δ is the angle of the front
wheels with respect to the vehicle. The steering is mechanically limited to |δ| < δmax and
δmax = π/6 rad. The derivative of the heading angle is

.
ψ = r−Ux ·

sin(δ)
a + b

(6)

where a and b are the distance from the center of gravity (CoG) to the front and rear wheels,
respectively.

The vehicle model takes in consideration also the nonlinear dynamic motion contribu-
tion coming from the effect of the tire slip and the steering servomotor that actuates the
steering system mechanism. The front and rear tires are modeled such that each provides a
force Fy f and Fyr, perpendicular to the rolling direction of the tire, and proportional to the
side slip angle α. Assuming negligible vehicle track, the lateral forces at the front and rear
wheels are entirely due to the contribution coming from the tires:

Fy f ≈ −2Cα f α f (7)

Fyr ≈ −2Cαrαr (8)

where Cα f and Cαr refers to the lateral stiffness of the front and rear tires, respectively. Then,
the front and rear tire side slip angles can be defined as

α f = tan−1 Uy + r · a
Ux

+ δ (9)

αr = tan−1 Uy − r · b
Ux

(10)

with vehicle-fixed longitudinal and lateral velocities Ux and Uy. In the end, the equations
of motion can be written as

m
(.

Ux − r · Uy

)
= Fxr + Fx f cosδ− Fy f sinδ (11)(.

Uy + r · Ux

)
= Fyr + Fy f sinδ− Fy f cosδ (12)

Iz
.
r = aFx f sinδ + aFy f cosδ− bFyr (13)

where Fx f and Fxr are the components of the force provided by the front and rear tires in
their direction of rolling.

Thus, the equation of motion (11)–(13) are rewritten in terms of the cross-track error
e1 and relative yaw angle e2. The state space equation of the obtained model state space
model is defined in Equation (14).

..
Ux.
Ux.
Uy.
r
.
e1.
e2

=

− 1
τ 0 0 0 0 0

1 0 0 0 0 0

0 0 − 2Cα f + 2Cαr
mUx

−Ux −
2Cα f l f−2Cαr lr

mUx
0 0

0 0 − 2Cα f l f−2Cαr lr
IzUx

−
2Cα f l2

f + 2Cαr l2
r

IzUx
0 0

0 0 1 0 0 Ux
0 −κ 0 1 0 0

.
Ux
Ux
Uy
r
e1
e2

+

1
τ 0
0 0

0
2Cα f

m

0
2l f Cα f

Iz
0 0
0 0

[.

Ux
δ

]
(14)

Appl. Sci. 2021, 11, 7225 10 of 22

In addition, the state space model presented in Equation (14) is also used as reference
model for the control strategy presented in the following section.

2.1.4. Control

The vehicle control computes the front wheel steering angle and throttle/brake com-
mand to track the reference trajectory. Similar to the work presented in [18,42], a MPC
strategy is applied to compute the acceleration/deceleration and front wheel steering angle
commands for the racing vehicle. Two different MPC controllers are used to achieve the
lateral and longitudinal vehicle dynamics, respectively.

The MPC dealing with the lateral vehicle dynamics applies an internal vehicle model
defined by the state space representation in Equation (14) to predict the future behavior of
the controlled system on the prediction horizon Tp. The MPC takes as input the crosstrack
error e1 and the relative yaw angle e2 defined in (4) and (5).

Then, it solves an open-loop optimal control problem to determine the optimal com-
mands, that is defined as [u(k), . . . , u(k + Tc − 1)], where Tc is the control horizon. There-
fore, only the first input of the optimal control sequence is applied to the system, and the
prediction horizon is shifted one step forward to repeat the prediction and optimization
procedure on the new available vehicle states. The optimization problem to be solved at
each time step is

min
u

J =
Ny

∑
j=1

Tp

∑
i=1
‖yj(k + i|k) − yj,re f (k + i|k)‖Qy

+
Nu

∑
j=1

Tc−1

∑
i=0
‖uj(k + i|k) − uj(k + i− 1|k)‖Ru

(15)

subject to

x(k + j + 1|k) = Ax(k + j|k) + Buu(k + j|k) + Bdv(k + j|k) (16)

x(k|k) = x(k) (17)

y(k + j|k) = Cx(k + j|k) (18)

|u(k + j|k)| ≤ ulimit (19)

where u is the control command, yj(k + i
∣∣k) is the predicted value of the j-th output plant at

the i-th prediction horizon step, and yj,re f (k + i
∣∣∣k) is the reference value for the j-th output

plant at the i-th prediction horizon step. The weighted norms of vector y = [y1, y2, y3]
and u = [u1, u2] are equal to

‖yj(k + i|k) − yj,re f (k + i|k)‖Qy
= y(k + i|k)TQyy(k + i|k) (20)

‖uj(k + i|k) − uj(k + i− 1|k)‖Ru
= uj(k + i|k)T Ruuj(k + i− 1|k) (21)

Qy = diag([Q11, Q22, Q33]) and Ru = diag([R11, R22]) are the design matrices chosen
according to the desired performance trade off.

The optimization problem is formulated to minimize the sum of the weighted norms
of the control input variables and the error between the predicted output vector y and the
reference output vector yre f which are computed as

y = [Ux e1 e2] (22)

yre f =
[
Ure f 0 0

]
(23)

while the operational constraints to which the optimization problem is subject are∣∣∣ .
Ux

∣∣∣ ≤ amax (24)

|δ| ≤ δmax (25)

Appl. Sci. 2021, 11, 7225 11 of 22

2.2. Hardware Implementation and PIL Architecture

Novel vehicle functions verification and features validation hold increasingly crit-
ical importance in the development of on-board vehicle software–hardware platforms.
Generally, software implementation of ADAS or Autonomous Driving functions require a
development process aimed at improving the overall quality of the software, increasing
the development efficiency, and eliminating systematic software bugs. To this extent, the
V-cycle process represents the adequate software development process widely used in
automotive industry field applications, as represented in Figure 5. The typical V-cycle
process insists on a top-down approach for what concerns the designing phase and a
bottom-up approach for the validation one. Performing the descending phase of the cy-
cle, the process ensures that the high-level system requirements are respected. On the
contrary, the ascending stages avoids costly system-level testing before the functional
components have been demonstrated [43]. This section will focus on the descending stages
of the V-cycle development process, treating up the embedded software generation for the
retained real-time target machines.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 11 of 22

2.2. Hardware Implementation and PIL Architecture
Novel vehicle functions verification and features validation hold increasingly critical

importance in the development of on-board vehicle software–hardware platforms. Gen-
erally, software implementation of ADAS or Autonomous Driving functions require a de-
velopment process aimed at improving the overall quality of the software, increasing the
development efficiency, and eliminating systematic software bugs. To this extent, the V-
cycle process represents the adequate software development process widely used in au-
tomotive industry field applications, as represented in Figure 5. The typical V-cycle pro-
cess insists on a top-down approach for what concerns the designing phase and a bottom-
up approach for the validation one. Performing the descending phase of the cycle, the
process ensures that the high-level system requirements are respected. On the contrary,
the ascending stages avoids costly system-level testing before the functional components
have been demonstrated [43]. This section will focus on the descending stages of the V-
cycle development process, treating up the embedded software generation for the re-
tained real-time target machines.

Figure 5. V-cycle process for software development.

Algorithms are implemented in the MATLAB/Simulink environment which deploys
a model-based design approach that automatically generates embedded software for the
target machine. Moreover, the retained MATLAB/Simulink environment is used to create
different test case scenarios and verify results for different testing simulation procedures
such as model-in-the-loop (MIL) and processor-in-the-loop (PIL).

In this work, MIL contains all the subsystems (perception, motion planning, and con-
trol, and vehicle model) needed to perform the simulation. Conversely, the retained PIL
setup splits these components into two groups: a first set running on the target computer
with a compiled application, containing the motion planning and control, and another set,
i.e., the vehicle model only, running on the host PC. The command input for the vehicle
model plant on the host PC, i.e., the steering angle at the wheels and the acceleration com-
mand, are sent via UDP, along with the fed-back information of the vehicle state running
on the real-time target machine. UDP is a packet-based protocol that uses an Ethernet
board as physical layer. This protocol is advantageous for real-time application because
has smaller delay than TCP connection as it does not retransmit lost packets. To this ex-
tent, UDP Send and Receive blocks are set in the MATLAB/Simulink environment to in-
terface with the motion planner and controller (target side), as well as the vehicle plant
model (host side). Furthermore, simulation pacing option is set to obtain near-real-time
simulation also on model running on development computer, thus forcing the

Figure 5. V-cycle process for software development.

Algorithms are implemented in the MATLAB/Simulink environment which deploys
a model-based design approach that automatically generates embedded software for the
target machine. Moreover, the retained MATLAB/Simulink environment is used to create
different test case scenarios and verify results for different testing simulation procedures
such as model-in-the-loop (MIL) and processor-in-the-loop (PIL).

In this work, MIL contains all the subsystems (perception, motion planning, and
control, and vehicle model) needed to perform the simulation. Conversely, the retained PIL
setup splits these components into two groups: a first set running on the target computer
with a compiled application, containing the motion planning and control, and another set,
i.e., the vehicle model only, running on the host PC. The command input for the vehicle
model plant on the host PC, i.e., the steering angle at the wheels and the acceleration
command, are sent via UDP, along with the fed-back information of the vehicle state
running on the real-time target machine. UDP is a packet-based protocol that uses an
Ethernet board as physical layer. This protocol is advantageous for real-time application
because has smaller delay than TCP connection as it does not retransmit lost packets. To
this extent, UDP Send and Receive blocks are set in the MATLAB/Simulink environment
to interface with the motion planner and controller (target side), as well as the vehicle
plant model (host side). Furthermore, simulation pacing option is set to obtain near-
real-time simulation also on model running on development computer, thus forcing the

Appl. Sci. 2021, 11, 7225 12 of 22

synchronization between the plant model running on the development computer and the
controller flashed onto the target device. The setup of the PIL test using the Speedgoat
Real Time target machine is shown in Figure 6, while the PIL test setup exploiting the
functionality of Raspberry Pi 4B board is represented in Figure 7.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 22

synchronization between the plant model running on the development computer and the
controller flashed onto the target device. The setup of the PIL test using the Speedgoat
Real Time target machine is shown in Figure 6, while the PIL test setup exploiting the
functionality of Raspberry Pi 4B board is represented in Figure 7.

Figure 6. PIL test architecture setup, exploiting UDP/IP connection between host PC and real-time
target hardware: (1) Speedgoat Baseline Real-Time target machine; (2) target PC monitor; (3) host
PC.

Figure 7. PIL test architecture setup, exploiting UDP/IP connection between host PC and target
hardware: (1) Raspberry Pi 4B board; (2) host PC.

In the preliminary phase of the performed software implementation, it was decided
to deploy the embedded software on a low-cost platform, i.e., the Raspberry Pi 4B board
with hardware specification shown in Table 2. Raspberry Pi is a small-sized, general-pur-
pose computing device that is capable of running any ARM-compatible operating system.
By having an open-source environment, Linux facilitates the application of the Raspberry
Pi in the development of embedded control devices. In addition, its integration with
MATLAB/Simulink environment facilitates the application building and deployment onto
the aforementioned platform. However, the Linux operating system is not designed to
work with real-time applications and predictive processing [44] unless the RT-Preempt
patch is installed on the Raspberry Pi, thus creating a para-virtualized design which al-
lows to use a micro-kernel running in parallel to the standard Linux kernel [45]. To this
extent, at this introductory stage, the objective of the work was to evaluate the feasibility
of implementing the Motion Planning and Motion Control custom algorithms using low-
cost equipment without considering real time constraints, but effectively assessing the
overall algorithm efficiency, comparing I/O signals in MIL/PIL configurations. On aver-
age, the processor worked for 50% of its total computing power with a maximum RAM
memory allocation of about 10%. In accordance with the signals’ setup that the aforemen-
tioned platform exchanges with the host PC, the numeric data type of each signal has been

Figure 6. PIL test architecture setup, exploiting UDP/IP connection between host PC and real-time
target hardware: (1) Speedgoat Baseline Real-Time target machine; (2) target PC monitor; (3) host PC.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 12 of 22

synchronization between the plant model running on the development computer and the
controller flashed onto the target device. The setup of the PIL test using the Speedgoat
Real Time target machine is shown in Figure 6, while the PIL test setup exploiting the
functionality of Raspberry Pi 4B board is represented in Figure 7.

Figure 6. PIL test architecture setup, exploiting UDP/IP connection between host PC and real-time
target hardware: (1) Speedgoat Baseline Real-Time target machine; (2) target PC monitor; (3) host
PC.

Figure 7. PIL test architecture setup, exploiting UDP/IP connection between host PC and target
hardware: (1) Raspberry Pi 4B board; (2) host PC.

In the preliminary phase of the performed software implementation, it was decided
to deploy the embedded software on a low-cost platform, i.e., the Raspberry Pi 4B board
with hardware specification shown in Table 2. Raspberry Pi is a small-sized, general-pur-
pose computing device that is capable of running any ARM-compatible operating system.
By having an open-source environment, Linux facilitates the application of the Raspberry
Pi in the development of embedded control devices. In addition, its integration with
MATLAB/Simulink environment facilitates the application building and deployment onto
the aforementioned platform. However, the Linux operating system is not designed to
work with real-time applications and predictive processing [44] unless the RT-Preempt
patch is installed on the Raspberry Pi, thus creating a para-virtualized design which al-
lows to use a micro-kernel running in parallel to the standard Linux kernel [45]. To this
extent, at this introductory stage, the objective of the work was to evaluate the feasibility
of implementing the Motion Planning and Motion Control custom algorithms using low-
cost equipment without considering real time constraints, but effectively assessing the
overall algorithm efficiency, comparing I/O signals in MIL/PIL configurations. On aver-
age, the processor worked for 50% of its total computing power with a maximum RAM
memory allocation of about 10%. In accordance with the signals’ setup that the aforemen-
tioned platform exchanges with the host PC, the numeric data type of each signal has been

Figure 7. PIL test architecture setup, exploiting UDP/IP connection between host PC and target
hardware: (1) Raspberry Pi 4B board; (2) host PC.

In the preliminary phase of the performed software implementation, it was decided to
deploy the embedded software on a low-cost platform, i.e., the Raspberry Pi 4B board with
hardware specification shown in Table 2. Raspberry Pi is a small-sized, general-purpose
computing device that is capable of running any ARM-compatible operating system. By
having an open-source environment, Linux facilitates the application of the Raspberry
Pi in the development of embedded control devices. In addition, its integration with
MATLAB/Simulink environment facilitates the application building and deployment onto
the aforementioned platform. However, the Linux operating system is not designed to work
with real-time applications and predictive processing [44] unless the RT-Preempt patch is
installed on the Raspberry Pi, thus creating a para-virtualized design which allows to use a
micro-kernel running in parallel to the standard Linux kernel [45]. To this extent, at this
introductory stage, the objective of the work was to evaluate the feasibility of implementing
the Motion Planning and Motion Control custom algorithms using low-cost equipment
without considering real time constraints, but effectively assessing the overall algorithm
efficiency, comparing I/O signals in MIL/PIL configurations. On average, the processor
worked for 50% of its total computing power with a maximum RAM memory allocation
of about 10%. In accordance with the signals’ setup that the aforementioned platform
exchanges with the host PC, the numeric data type of each signal has been chosen in order

Appl. Sci. 2021, 11, 7225 13 of 22

to give a sufficient precision for each computational tasks required by the application
flashed on the board.

Table 2. Hardware specification of the Raspberry Pi 4B board and Speedgoat Baseline real-time
target machine.

Raspberry Pi 4B Speedgoat Baseline

CPU Broadcom BCM2711 quad-core
Cortex-A72 64-bit SoC @ 1.5 GHz Intel Celeron 2 GHz 4 cores

Memory 4 GB LPDDR4 4 GB DDR3
EEE 802.11b/g/n/ac wireless 1 × USB 3.0 and 2 × USB 2.0

Network Bluetooth 5.0 Gigabit Ethernet 2 (Intel I210)
Gigabit Ethernet

I/O USB, 40-pin GPIO header 4 ×mPCIe
OS Debian, Raspberry Pi OS Simulink Real-Time™

Power 5 V DC via USB-C connector 8–36 VDC Input Range

Subsequently, the PIL architecture has been configured for the Speedgoat Baseline
real-time target machine with hardware specification shown in Table 2. Thus, the model
containing the motion planning and motion control running on the Speedgoat machine
was validated considering real-time constraints. Motion planning takes a relatively large
computational time to generate the search tree expansion and select the path with the
shortest distance to the goal position. On the other hand, the motion control must be
executed in fast time loops to obtain state feedback, more precise actuator control and
trajectory tracking. To this extent, in our implementation, motion planning component
is configured to run every 50 ms, while motion controller runs at higher sample rate, i.e.,
10 ms, the same sample rate defined for MIL architecture. On average the Motion Planner
is executed with a Target Execution Time (TET) of 0.043 s while the Motion Control every
0.008 s.

3. Results

Three test cases for MIL and PIL architectures are illustrated during different maneu-
vers. The validation dataset has been recorded during a real acquisition stage performed
on-board the racing vehicle instrumented with LiDAR and stereocamera sensors and a
high-performance computing platform with embedded GPU. The perception pipeline
acquires the structured environment with a frequency of 10 Hz. The whole validation
dataset includes several maneuvers performed by the vehicle in the racing environment
that was properly structured with traffic cones according to the rules listed in [35].

3.1. Driving Scenarios and Environment Perception

In Figures 8–10, the planned trajectory is represented by a red solid line, while the
search tree is represented by a dashed black line. The initial vehicle position is labeled
with a red asterisk and the goal position is indicated by a red triangle. The detected cones
are represented with black dots. In the first maneuver, the self-driving vehicle travels a
straight road portion with a reference longitudinal speed of 22.2 m/s, while in the second
and third one the autonomous racing vehicle travels a left/right constant radius turn of
50 m with a reference longitudinal speed set at 13.8 m/s.

Appl. Sci. 2021, 11, 7225 14 of 22
Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 22

Figure 8. Generated path (solid, red) and search tree expansion (dashed, black) for a straight road
portion, with obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red tri-
angle).

Figure 9. Generated path (solid, red) and search tree expansion (dashed, black) for a left turn, with
obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red triangle).

Figure 10. Generated path (solid, red) and search tree expansion (dashed, black) for a right turn,
with obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red triangle).

Figure 8. Generated path (solid, red) and search tree expansion (dashed, black) for a straight
road portion, with obstacles (black, dots), starting vehicle position (red asterisk) and goal point
(red triangle).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 22

Figure 8. Generated path (solid, red) and search tree expansion (dashed, black) for a straight road
portion, with obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red tri-
angle).

Figure 9. Generated path (solid, red) and search tree expansion (dashed, black) for a left turn, with
obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red triangle).

Figure 10. Generated path (solid, red) and search tree expansion (dashed, black) for a right turn,
with obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red triangle).

Figure 9. Generated path (solid, red) and search tree expansion (dashed, black) for a left turn, with
obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red triangle).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 14 of 22

Figure 8. Generated path (solid, red) and search tree expansion (dashed, black) for a straight road
portion, with obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red tri-
angle).

Figure 9. Generated path (solid, red) and search tree expansion (dashed, black) for a left turn, with
obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red triangle).

Figure 10. Generated path (solid, red) and search tree expansion (dashed, black) for a right turn,
with obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red triangle).
Figure 10. Generated path (solid, red) and search tree expansion (dashed, black) for a right turn, with
obstacles (black, dots), starting vehicle position (red asterisk) and goal point (red triangle).

Appl. Sci. 2021, 11, 7225 15 of 22

The vehicle main states are reported in Figures 11–13 for the maneuvers performed
in Figures 8–10, respectively. In Figures 11–13, the front wheel steering angle δ and the
longitudinal acceleration ax commands are shown in subfigures a and b. Subfigure c
illustrates the reference longitudinal speed Vre f (red dashed line) with respect to the actual
vehicle speed Vx (black solid line). The lateral velocity Vy is shown in subfigure d, while
the cross-track error e1 (black line) and the angle e2 (blue line) are shown in subfigure e for
each maneuver.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 22

The vehicle main states are reported in Figures 11–13 for the maneuvers performed
in Figures 8–10, respectively. In Figures 11–13, the front wheel steering angle 𝛿 and the
longitudinal acceleration 𝑎 commands are shown in subfigures a and b. Subfigure c il-
lustrates the reference longitudinal speed 𝑉 (red dashed line) with respect to the actual
vehicle speed 𝑉 (black solid line). The lateral velocity 𝑉 is shown in subfigure d, while
the cross-track error 𝑒 (black line) and the angle 𝑒 (blue line) are shown in subfigure e
for each maneuver.

Figure 11. Results obtained for the straight road portion in MIL configuration (see Figure 8). Meas-
ured vehicle states: (a) Front wheels steering angle 𝛿; (b) Longitudinal acceleration 𝑎 ; (c) Longitu-
dinal speed reference 𝑉 (red, dashed) vs. Actual longitudinal speed 𝑉 (black, solid); (d) Lateral
speed 𝑉 ; (e) Cross track 𝑒 (black, solid) and Relative yaw angle 𝑒 (blue, solid).

Figure 12. Results obtained during the left turn maneuver in MIL configuration (see Figure 9). Meas-
ured vehicle states: (a) Front wheels steering angle 𝛿 ; (b) Longitudinal acceleration 𝑎 ; (c)

Figure 11. Results obtained for the straight road portion in MIL configuration (see Figure 8). Mea-
sured vehicle states: (a) Front wheels steering angle δ; (b) Longitudinal acceleration ax; (c) Longitu-
dinal speed reference Vre f (red, dashed) vs. Actual longitudinal speed Vx (black, solid); (d) Lateral
speed Vy; (e) Cross track e1 (black, solid) and Relative yaw angle e2 (blue, solid).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 15 of 22

The vehicle main states are reported in Figures 11–13 for the maneuvers performed
in Figures 8–10, respectively. In Figures 11–13, the front wheel steering angle 𝛿 and the
longitudinal acceleration 𝑎 commands are shown in subfigures a and b. Subfigure c il-
lustrates the reference longitudinal speed 𝑉 (red dashed line) with respect to the actual
vehicle speed 𝑉 (black solid line). The lateral velocity 𝑉 is shown in subfigure d, while
the cross-track error 𝑒 (black line) and the angle 𝑒 (blue line) are shown in subfigure e
for each maneuver.

Figure 11. Results obtained for the straight road portion in MIL configuration (see Figure 8). Meas-
ured vehicle states: (a) Front wheels steering angle 𝛿; (b) Longitudinal acceleration 𝑎 ; (c) Longitu-
dinal speed reference 𝑉 (red, dashed) vs. Actual longitudinal speed 𝑉 (black, solid); (d) Lateral
speed 𝑉 ; (e) Cross track 𝑒 (black, solid) and Relative yaw angle 𝑒 (blue, solid).

Figure 12. Results obtained during the left turn maneuver in MIL configuration (see Figure 9). Meas-
ured vehicle states: (a) Front wheels steering angle 𝛿 ; (b) Longitudinal acceleration 𝑎 ; (c)
Figure 12. Results obtained during the left turn maneuver in MIL configuration (see Figure 9).
Measured vehicle states: (a) Front wheels steering angle δ; (b) Longitudinal acceleration ax; (c) Longi-
tudinal speed reference Vre f (red, dashed) vs. Actual longitudinal speed Vx (black, solid); (d) Lateral
speed Vy; (e) Cross track e1 (black, solid) and Relative yaw angle e2 (blue, solid).

Appl. Sci. 2021, 11, 7225 16 of 22

Appl. Sci. 2021, 11, x FOR PEER REVIEW 16 of 22

Longitudinal speed reference 𝑉 (red, dashed) vs. Actual longitudinal speed 𝑉 (black, solid); (d)
Lateral speed 𝑉 ; (e) Cross track 𝑒 (black, solid) and Relative yaw angle 𝑒 (blue, solid).

Figure 13. Results obtained during the right turn maneuver in MIL configuration (see Figure 10).
Measured vehicle states: (a) Front wheels steering angle 𝛿; (b) Longitudinal acceleration 𝑎 ; (c)
Longitudinal speed reference 𝑉 (red, dashed) vs. Actual longitudinal speed 𝑉 (black, solid); (d)
Lateral speed 𝑉 ; (e) Cross track 𝑒 (black, solid) and Relative yaw angle 𝑒 (blue, solid).

Figure 8 represents a frame sensed on a straight road portion. As shown in Figure 11,
the vehicle follows accurately the speed profile. The front wheel steering angle remains
steady at 0 rad (Figure 11a). The longitudinal acceleration has a maximum peak value of
9.5 m/s (Figure 11b), while the longitudinal velocity rapidly reaches its steady-state
value of 22.2 m/s (Figure 11c). Lateral velocity (Figure 11d) and the cross-track error 𝑒
and the angle 𝑒 remain null for all the simulation time (Figure 11e).

Figure 9 represents the frame sensed during a left turn maneuver. The final goal is
located almost on the centerline of the track defined by the cones. As shown in Figure 12,
the vehicle follows accurately the speed profile (Figure 12c) and the longitudinal acceler-
ation reaches about 8 m/s (Figure 12b). The front wheel steering angle 𝛿 increases up
to 0.2 rad and then decreases till stabilizing in steady-state condition at 0.02 rad (Figure
12a). The cross-track error 𝑒 and the relative yaw angle 𝑒 oscillate in the first phase of
the maneuver and then stabilize to null values (Figure 12e).

Figure 10 represents the frame sensed during a right turn maneuver. The final goal
is located almost on the midpoint of the line generated by the two rows of cones, approx-
imately 15 m far from the vehicle local position. As shown in Figure 13, the vehicle fol-
lows accurately the speed profile and the longitudinal acceleration reaches up to 8 m/s
while the longitudinal velocity increases from 0 up to 13.8 m/s, as illustrated in Figure
11b,c, respectively. The front wheels steering angle 𝛿 decreases up to −0.04 rad and then
remains almost constant at −0.02 rad (Figure 13a). The cross-track error 𝑒 and the rela-
tive yaw angle 𝑒 are always within ± 0.1 m. (Figure 13e).

In all the considered maneuvers, the vehicle follows the planned trajectory and re-
spects the feasibility constraints imposed by the actuators, in terms of maximum front
wheel steering angle, and vehicle dynamics, while maximizing its longitudinal speed.

Figure 13. Results obtained during the right turn maneuver in MIL configuration (see Figure 10).
Measured vehicle states: (a) Front wheels steering angle δ; (b) Longitudinal acceleration ax; (c) Longi-
tudinal speed reference Vre f (red, dashed) vs. Actual longitudinal speed Vx (black, solid); (d) Lateral
speed Vy; (e) Cross track e1 (black, solid) and Relative yaw angle e2 (blue, solid).

Figure 8 represents a frame sensed on a straight road portion. As shown in Figure 11,
the vehicle follows accurately the speed profile. The front wheel steering angle remains
steady at 0 rad (Figure 11a). The longitudinal acceleration has a maximum peak value of
9.5 m/s2 (Figure 11b), while the longitudinal velocity rapidly reaches its steady-state value
of 22.2 m/s (Figure 11c). Lateral velocity (Figure 11d) and the cross-track error e1 and the
angle e2 remain null for all the simulation time (Figure 11e).

Figure 9 represents the frame sensed during a left turn maneuver. The final goal is
located almost on the centerline of the track defined by the cones. As shown in Figure 12, the
vehicle follows accurately the speed profile (Figure 12c) and the longitudinal acceleration
reaches about 8 m/s2 (Figure 12b). The front wheel steering angle δ increases up to 0.2 rad
and then decreases till stabilizing in steady-state condition at 0.02 rad (Figure 12a). The
cross-track error e1 and the relative yaw angle e2 oscillate in the first phase of the maneuver
and then stabilize to null values (Figure 12e).

Figure 10 represents the frame sensed during a right turn maneuver. The final goal is
located almost on the midpoint of the line generated by the two rows of cones, approxi-
mately 15 m far from the vehicle local position. As shown in Figure 13, the vehicle follows
accurately the speed profile and the longitudinal acceleration reaches up to 8 m/s2 while
the longitudinal velocity increases from 0 up to 13.8 m/s, as illustrated in Figure 11b,c,
respectively. The front wheels steering angle δ decreases up to −0.04 rad and then remains
almost constant at −0.02 rad (Figure 13a). The cross-track error e1 and the relative yaw
angle e2 are always within ± 0.1 m (Figure 13e).

In all the considered maneuvers, the vehicle follows the planned trajectory and re-
spects the feasibility constraints imposed by the actuators, in terms of maximum front
wheel steering angle, and vehicle dynamics, while maximizing its longitudinal speed.

Appl. Sci. 2021, 11, 7225 17 of 22

3.2. Processor-in-the-Loop and Simulations Comparison

In this section, a comparative analysis of the obtained results using PIL architectures
with respect to the MIL one is discussed. Vehicle main states extracted from the PIL
architecture with the Raspberry Pi 4B board and Speedgoat real-time target machine are
compared and validated employing the same real acquisition dataset. This dataset includes
the maneuvers illustrated in the previous section.

The vehicle main states are reported in Figures 14–16 for the maneuvers performed
in Figures 8–10, respectively. In Figures 14–16, the front wheel steering angle δ extracted
from PIL architecture with the Raspberry Pi 4B board (magenta, solid) and Speedgoat
real-time target machine (black, solid) is compared with respect to the MIL configuration
output (black, dashed) in subfigure a. The longitudinal acceleration ax command from
MIL architecture (black, dashed) is shown in subfigure b along with the acceleration
command resulting from both PIL architectures, Raspberry Pi 4B board (magenta, solid)
and Speedgoat real-time target machine (black, solid), respectively. Subfigure c illustrates
the reference longitudinal speed Vre f (black, dashed) with respect to the actual vehicle
speed in PIL configurations Vx. The lateral velocity Vy is shown in subfigure d, while the
crosstrack error e1 (black, solid for Speedgoat real-tim target machine and black, dotted for
Raspberry Pi 4B board) and the angle e2 (blue, solid for Speedgoat real-time target machine
and blue, dotted for Raspberry Pi 4B board) are shown in subfigure e, for each maneuver
comparing MIL/PIL architectures.

Appl. Sci. 2021, 11, x FOR PEER REVIEW 17 of 22

3.2. Processor-In-The-Loop and Simulations Comparison
In this section, a comparative analysis of the obtained results using PIL architectures

with respect to the MIL one is discussed. Vehicle main states extracted from the PIL archi-
tecture with the Raspberry Pi 4B board and Speedgoat real-time target machine are com-
pared and validated employing the same real acquisition dataset. This dataset includes
the maneuvers illustrated in the previous section.

The vehicle main states are reported in Figures 14–16 for the maneuvers performed
in Figures 8–10, respectively. In Figures 14–16, the front wheel steering angle 𝛿 extracted
from PIL architecture with the Raspberry Pi 4B board (magenta, solid) and Speedgoat real-
time target machine (black, solid) is compared with respect to the MIL configuration out-
put (black, dashed) in subfigure a. The longitudinal acceleration 𝑎 command from MIL
architecture (black, dashed) is shown in subfigure b along with the acceleration command
resulting from both PIL architectures, Raspberry Pi 4B board (magenta, solid) and Speedg-
oat real-time target machine (black, solid), respectively. Subfigure c illustrates the refer-
ence longitudinal speed 𝑉 (black, dashed) with respect to the actual vehicle speed in
PIL configurations 𝑉 . The lateral velocity 𝑉 is shown in subfigure d, while the cross-
track error 𝑒 (black, solid for Speedgoat real-tim target machine and black, dotted for
Raspberry Pi 4B board) and the angle 𝑒 (blue, solid for Speedgoat real-time target ma-
chine and blue, dotted for Raspberry Pi 4B board) are shown in subfigure e, for each ma-
neuver comparing MIL/PIL architectures.

Figure 14. Results obtained during the straight road portion in PIL configuration (see Figure 8).
Measured vehicle states for Speedgoat (black) and for Raspberry Pi 4B (magenta): (a) Front wheels
steering angle 𝛿; (b) Longitudinal acceleration 𝑎 ; (c) Longitudinal speed reference 𝑉 (black,
dashed) vs. Actual longitudinal speed 𝑉 ; (d) Lateral speed 𝑉 ; (e) Cross track 𝑒 for Speedgoat
(black, solid) and Raspberry Pi 4B (black, dotted) and Relative yaw angle 𝑒 for Speedgoat (blue,
solid) and Raspberry Pi 4B (blue, dotted).

Figure 14. Results obtained during the straight road portion in PIL configuration (see Figure 8).
Measured vehicle states for Speedgoat (black) and for Raspberry Pi 4B (magenta): (a) Front wheels
steering angle δ; (b) Longitudinal acceleration ax; (c) Longitudinal speed reference Vre f (black,
dashed) vs. Actual longitudinal speed Vx; (d) Lateral speed Vy; (e) Cross track e1 for Speedgoat
(black, solid) and Raspberry Pi 4B (black, dotted) and Relative yaw angle e2 for Speedgoat (blue,
solid) and Raspberry Pi 4B (blue, dotted).

Appl. Sci. 2021, 11, 7225 18 of 22Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 22

Figure 15. Results obtained during the left turn maneuver in PIL configuration (see Figure 9). Meas-
ured vehicle states for Speedgoat (black) and for Raspberry Pi 4B (magenta): (a) Front wheels steer-
ing angle 𝛿; (b) Longitudinal acceleration 𝑎 ; (c) Longitudinal speed reference 𝑉 (black, dashed)
vs. Actual longitudinal speed 𝑉 ; (d) Lateral speed 𝑉 ; (e) Cross track 𝑒 for Speedgoat (black,
solid) and Raspberry Pi 4B (black, dotted) and Relative yaw angle 𝑒 for Speedgoat (blue, solid)
and Raspberry Pi 4B (blue, dotted).

Figure 16. Results obtained during the right turn maneuver in PIL configuration (see Figure 10).
Measured vehicle states for Speedgoat (black) and for Raspberry Pi 4B (magenta): (a) Front wheels
steering angle 𝛿; (b) Longitudinal acceleration 𝑎 ; (c) Longitudinal speed reference 𝑉 (black,

Figure 15. Results obtained during the left turn maneuver in PIL configuration (see Figure 9).
Measured vehicle states for Speedgoat (black) and for Raspberry Pi 4B (magenta): (a) Front wheels
steering angle δ; (b) Longitudinal acceleration ax; (c) Longitudinal speed reference Vre f (black,
dashed) vs. Actual longitudinal speed Vx; (d) Lateral speed Vy; (e) Cross track e1 for Speedgoat
(black, solid) and Raspberry Pi 4B (black, dotted) and Relative yaw angle e2 for Speedgoat (blue,
solid) and Raspberry Pi 4B (blue, dotted).

Appl. Sci. 2021, 11, x FOR PEER REVIEW 18 of 22

Figure 15. Results obtained during the left turn maneuver in PIL configuration (see Figure 9). Meas-
ured vehicle states for Speedgoat (black) and for Raspberry Pi 4B (magenta): (a) Front wheels steer-
ing angle 𝛿; (b) Longitudinal acceleration 𝑎 ; (c) Longitudinal speed reference 𝑉 (black, dashed)
vs. Actual longitudinal speed 𝑉 ; (d) Lateral speed 𝑉 ; (e) Cross track 𝑒 for Speedgoat (black,
solid) and Raspberry Pi 4B (black, dotted) and Relative yaw angle 𝑒 for Speedgoat (blue, solid)
and Raspberry Pi 4B (blue, dotted).

Figure 16. Results obtained during the right turn maneuver in PIL configuration (see Figure 10).
Measured vehicle states for Speedgoat (black) and for Raspberry Pi 4B (magenta): (a) Front wheels
steering angle 𝛿; (b) Longitudinal acceleration 𝑎 ; (c) Longitudinal speed reference 𝑉 (black,

Figure 16. Results obtained during the right turn maneuver in PIL configuration (see Figure 10).
Measured vehicle states for Speedgoat (black) and for Raspberry Pi 4B (magenta): (a) Front wheels
steering angle δ; (b) Longitudinal acceleration ax; (c) Longitudinal speed reference Vre f (black,
dashed) vs. Actual longitudinal speed Vx; (d) Lateral speed Vy; (e) Cross track e1 for Speedgoat
(black, solid) and Raspberry Pi 4B (black, dotted) and Relative yaw angle e2 for Speedgoat (blue,
Figure 4. B (blue, dotted).

Appl. Sci. 2021, 11, 7225 19 of 22

Considering the comparison between MIL and PIL configurations, the vehicle states
and the control variables are comparable, thus proving the consistency of the proposed
PIL architecture.

In Table 3, Root Mean Square Error (RMSE) and the Mean Absolute Error (MAE) for
the controlled variables calculated in both PIL configurations, ax and δ, are reported. The
performances of both PIL layout are also reported in terms of driving Scenarios performed
by the retained self-driving vehicle. The RMSE and the MAE are defined as

RMSE =

√√√√ n

∑
i=1

(ei)
2

n
(26)

MAE =
∑n

i=1|ei|
n

(27)

where ei represents the difference between the observed controlled variable in PIL configu-
ration and the reference one obtained in MIL configuration, while n represents the number
of observations.

Table 3. RMSE and MAE values for the controlled variables ax and δ in both PIL architectures.

Raspberry Speedgoat

Straight Left
Turn

Right
Turn Straight Left

Turn
Right
Turn

ax
RMSE 0.76 1.08 0.91 0.546 0.861 0.593
MAE 0.49 0.58 0.56 0.28 0.43 0.35

δ
RMSE 1.70 × 10−5 0.03 0.08 1.67 × 10−5 0.02 0.003
MAE 7.26 × 10−6 0.02 0.06 6.89 × 10−6 0.09 0.002

4. Conclusions

In this work, an experimental software development process for rapid prototyping
of AD features in the automotive field is presented. Exploiting the functionalities of
two different embedded systems—Raspberry Pi 4B board and Speedgoat Baseline real-
time target machine, a trajectory planning method for an autonomous racing vehicle
was implemented, developing two PIL complementary architectures. The investigated
trajectory planning method proposed a custom realization of the RRT algorithm with
Dubins curves able to compute a feasible trajectory, considering a 3-DOF linear bicycle
vehicle model. The autonomous racing vehicle dynamics is controlled with a MPC that
computes the front wheel steering angle δ and longitudinal acceleration commands ax in
feedback loop with respect to the vehicle plant.

The method was first tested in MIL configuration in a properly structured driving
environment, that features multiple traffic cones representing non-crossable obstacles. The
consistency of the planned trajectory was evaluated during different maneuvers, and it was
also evaluated in terms of feasibility of the command signals with respect to the steering
and acceleration actuators used in the retained vehicle.

Subsequently, the PIL architecture is defined by splitting the components of the model
in two groups: a first set running on the target computer with a compiled application,
containing the motion planning and control, and another set, i.e., the vehicle model only,
running on the host PC. Signals exchanged between target hardware and host PC are sent
via UDP protocol. The first PIL architecture was built using the Raspberry Pi 4B board with
the objective of testing the software efficiency and signals calculation precision. Afterwards,
the PIL architecture was switched to the Speedgoat Baseline real-time target machine
in order to consider the real-time constraints and control average TET. Subsequently, a
quantitative analysis has been performed between MIL and PIL architectures to further
prove the consistency of the two investigated layouts.

Appl. Sci. 2021, 11, 7225 20 of 22

The PIL procedures demonstrate that the proposed architectures provide relevant
results within the framework of V-cycle development process, ensuring that new function-
alities of self-driving vehicle can be rapidly deployed, tested, and validated on generic-
purpose platforms. This approach considerably decreases the time to proceed towards the
hardware-in-the-loop (HIL) stage. A further extensive experimental validation phase is
needed before generalization of the approach to any automotive systems.

Author Contributions: Conceptualization, E.T., S.L., S.F. and A.B.; methodology, E.T., S.L. and
S.F.; software, E.T., S.L. and S.F.; validation, E.T., S.L. and S.F.; investigation, E.T., S.L. and S.F.;
writing—original draft preparation, E.T., S.L. and S.F.; writing—review and editing, E.T., S.L. and
S.F.; visualization, E.T., S.L. and S.F.; supervision, A.B. and N.A.; project administration, A.B. and
N.A. All authors have read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not available.

Informed Consent Statement: Not available.

Data Availability Statement: Data available on request due to restrictions.

Acknowledgments: This work was developed in the framework of the activities of the Interdepart-
mental Center for Automotive Research and Sustainable mobility (CARS) at Politecnico di Torino
(www.cars.polito.it, accessed on 3 August 2021).

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Chan, C.Y. Advancements, prospects, and impacts of automated driving systems. Int. J. Transp. Sci. Technol. 2017, 6, 208–216.

[CrossRef]
2. Silberg, G.; Manassa, M.; Everhart, K.; Subramanian, D.; Corley, M.; Fraser, H.; Sinha, V. Self-driving cars: Are we ready? Kpmg

Llp 2013, 1–36.
3. Litman, T. Autonomous Vehicle Implementation Predictions; Victoria Transport Policy Institute: Victoria, CB, Canada, 2017; p. 28.
4. Ryan, M. The future of transportation: Ethical, legal, social and economic impacts of self-driving vehicles in the year 2025. Sci.

Eng. Ethics 2020, 26, 1185–1208. [CrossRef] [PubMed]
5. Raposo, M.A.; Grosso, M.; Mourtzouchou, A.; Krause, J.; Duboz, A.; Ciuffo, B. Economic implications of a connected and

automated mobility in Europe. Res. Transp. Econ. 2021, 101072. [CrossRef]
6. Bagloee, S.A.; Tavana, M.; Asadi, M.; Oliver, T. Autonomous vehicles: Challenges, opportunities, and future implications for

transportation policies. J. Mod. Transp. 2016, 24, 284–303. [CrossRef]
7. Rieber, J.M.; Wehlan, H.; Allgower, F. The ROBORACE contest. IEEE Control Syst. Mag. 2004, 24, 57–60.
8. Thrun, S.; Montemerlo, M.; Dahlkamp, H.; Stavens, D.; Aron, A.; Diebel, J.; Fong, P.; Gale, J.; Halpenny, M.; Hoffmann, G.; et al.

Stanley: The robot that won the DARPA Grand Challenge. J. Field Robot. 2006, 23, 661–692. [CrossRef]
9. Buehler, M.; Iagnemma, K.; Singh, S. (Eds.) The DARPA Urban Challenge: Autonomous Vehicles in City Traffic; Springer:

Berlin/Heidelberg, Germany, 2009; Volume 56.
10. Pendleton, S.D.; Andersen, H.; Du, X.; Shen, X.; Meghjani, M.; Eng, Y.H.; Rus, D.; Ang, M.H. Perception, planning, control, and

coordination for autonomous vehicles. Machines 2017, 5, 6. [CrossRef]
11. Kocić, J.; Jovičić, N.; Drndarević, V. Sensors and sensor fusion in autonomous vehicles. In Proceedings of the 26th Telecommuni-

cations Forum (TELFOR), Belgrade, Serbia, 20–21 November 2018; pp. 420–425.
12. Feraco, S.; Bonfitto, A.; Amati, N.; Tonoli, A. A LIDAR-Based Clustering Technique for Obstacles and Lane Boundaries Detection

in Assisted and Autonomous Driving. In Proceedings of the ASME 2020 International Design Engineering Technical Conferences
and Computers and Information in Engineering Conference, St. Louis, MO, USA, 16–19 August 2020.

13. Katrakazas, C.; Quddus, M.; Chen, W.H.; Deka, L. Real-time motion planning methods for autonomous on-road driving:
State-of-the-art and future research directions. Transp. Res. Part C Emerg. Technol. 2015, 60, 416–442. [CrossRef]

14. Schwarting, W.; Alonso-Mora, J.; Rus, D. Planning and decision-making for autonomous vehicles. Annu. Rev. Control Robot.
Auton. Syst. 2018, 1, 187–210. [CrossRef]

15. Feraco, S.; Bonfitto, A.; Khan, I.; Amati, N.; Tonoli, A. Optimal Trajectory Generation Using an Improved Probabilistic Road
Map Algorithm for Autonomous Driving. In Proceedings of the International Design Engineering Technical Conferences and
Computers and Information in Engineering Conference, Online Conference, 17–19 August 2020; Volume 83938, p. V004T04A006.

16. Feraco, S.; Luciani, S.; Bonfitto, A.; Amati, N.; Tonoli, A. A local trajectory planning and control method for autonomous vehicles
based on the RRT algorithm. In Proceedings of the 2020 AEIT International Conference of Electrical and Electronic Technologies
for Automotive (AEIT AUTOMOTIVE), Online Conference, 18–20 November 2020; pp. 1–6.

www.cars.polito.it
http://doi.org/10.1016/j.ijtst.2017.07.008
http://doi.org/10.1007/s11948-019-00130-2
http://www.ncbi.nlm.nih.gov/pubmed/31482471
http://doi.org/10.1016/j.retrec.2021.101072
http://doi.org/10.1007/s40534-016-0117-3
http://doi.org/10.1002/rob.20147
http://doi.org/10.3390/machines5010006
http://doi.org/10.1016/j.trc.2015.09.011
http://doi.org/10.1146/annurev-control-060117-105157

Appl. Sci. 2021, 11, 7225 21 of 22

17. Yurtsever, E.; Lambert, J.; Carballo, A.; Takeda, K. A survey of autonomous driving: Common practices and emerging technologies.
IEEE Access 2020, 8, 58443–58469. [CrossRef]

18. Khan, I.; Feraco, S.; Bonfitto, A.; Amati, N. A Model Predictive Control Strategy for Lateral and Longitudinal Dynamics in
Autonomous Driving. In Proceedings of the ASME 2020 International Design Engineering Technical Conferences and Computers
and Information in Engineering Conference, St. Louis, MO, USA, 16–19 August 2020.

19. Feraco, S.; Bonfitto, A.; Amati, N.; Tonoli, A. Combined lane keeping and longitudinal speed control for autonomous driving.
In Proceedings of the ASME 2019 International Design Engineering Technical Conferences and Computers and Information in
Engineering Conference, Anaheim, CA, USA, 18–21 August 2019.

20. Mina, J.; Flores, Z.; López, E.; Pérez, A.; Calleja, J.H. Processor-in-the-loop and hardware-in-the-loop simulation of electric systems
based in FPGA. In Proceedings of the 13th International Conference on Power Electronics (CIEP), Mexico Guanajuato, Mexico,
20–23 June 2016; pp. 172–177.

21. Hu, M.; Zeng, G.; Yao, H.; Tang, Y. Processor-in-the-loop demonstration of coordination control algorithms for distributed
spacecraft. In Proceedings of the 2010 IEEE International Conference on Information and Automation, Harbin, China, 20–23 June
2010; pp. 1008–1011.

22. Francis, G.; Burgos, R.; Rodriguez, P.; Wang, F.; Boroyevich, D.; Liu, R.; Monti, A. Virtual prototyping of universal control
architecture systems by means of processor in the loop technology. In Proceedings of the APEC 07-Twenty-Second Annual IEEE
Applied Power Electronics Conference and Exposition, Anaheim, CA, USA, 25 February–1 March 2007; pp. 21–27.

23. Mammarella, M.; Capello, E.; Park, H.; Guglieri, G.; Romano, M. Tube-based robust model predictive control for spacecraft
proximity operations in the presence of persistent disturbance. Aerosp. Sci. Technol. 2018, 77, 585–594. [CrossRef]

24. Vardhan, H.; Akin, B.; Jin, H. A low-cost, high-fidelity processor-in-the loop platform: For rapid prototyping of power electronics
circuits and motor drives. IEEE Power Electron. Mag. 2016, 3, 18–28. [CrossRef]

25. Taheri, E.; Ferdowsi, M.H.; Danesh, M. Fuzzy greedy RRT path planning algorithm in a complex configuration space. Int. J.
Control Autom. Syst. 2018, 16, 3026–3035. [CrossRef]

26. Deng, W.; Lee, Y.H.; Zhao, A. Hardware-in-the-loop simulation for autonomous driving. In Proceedings of the 2008 34th Annual
Conference of IEEE Industrial Electronics, Orlando, FL, USA, 10–13 November 2008; pp. 1742–1747.

27. Brogle, C.; Zhang, C.; Lim, K.L.; Bräunl, T. Hardware-in-the-loop autonomous driving simulation without real-time constraints.
IEEE Trans. Intell. Veh. 2019, 4, 375–384. [CrossRef]

28. Betz, J.; Wischnewski, A.; Heilmeier, A.; Nobis, F.; Hermansdorfer, L.; Stahl, T.; Herrmann, T.; Lienkamp, M. A software
architecture for the dynamic path planning of an autonomous racecar at the limits of handling. In Proceedings of the 2019 IEEE
International Conference on Connected Vehicles and Expo (ICCVE), Graz, Austria, 4–8 November 2019; pp. 1–8.

29. Betz, J.; Wischnewski, A.; Heilmeier, A.; Nobis, F.; Stahl, T.; Hermansdorfer, L.; Lienkamp, M. A software architecture for an
autonomous racecar. In Proceedings of the 2019 IEEE 89th Vehicular Technology Conference (VTC2019-Spring), Kuala Lumpur,
Malaysia, 28 April–1 May 2019; pp. 1–6.

30. Sun, Y.; Goila, A.; Demir, D.; Tapli, T. Urban Pilot Motion Planning and Control Deployment Via Real-Time Multi-Core Multi-
Thread Prototyping (No. 2020-01-0125). In SAE Technical Paper; 2020. Available online: https://www.sae.org/publications/
technical-papers/content/2020-01-0125/ (accessed on 14 July 2021).

31. Srinivas, N.; Panditi, N.; Schmidt, S.; Garrelfs, R. MIL/SIL/PIL Approach A new paradigm in Model Based Development. J.
Syst. Softw. 2014. Available online: https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/
automotive/files/in-expo-2014/mil-sil-pil-a-new-paradigm-in-model-based-development.pdf (accessed on 14 July 2021).

32. Glennie, C.L.; Kusari, A.; Facchin, A. Calibration and Stability Analysis of the VLP-16 Laser Scanner. ISPRS Annals of Photogram-
metry. Remote Sens. Spat. Inf. Sci. 2016, 9. Available online: https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/
XL-3-W4/55/2016/isprs-archives-XL-3-W4-55-2016.pdf (accessed on 14 July 2021).

33. Ortiz, L.E.; Cabrera, E.V.; Gonçalves, L.M. Depth data error modeling of the ZED 3D vision sensor from stereolabs. ELCVIA
Electron. Lett. Comput. Vis. Image Anal. 2018, 17, 0001-15. [CrossRef]

34. Ditty, M.; Karandikar, A.; Reed, D. Nvidia’s xavier SoC. In Proceedings of the Hot Chips: A Symposium on High Performance
Chips, Cupertino, CA, USA, 19–21 August 2018.

35. Formula Student Germany. FSG Competition Handbook 2019; 2019. Available online: https://www.formulastudent.de/fileadmin/
user_upload/all/2019/rules/FSG19_Competition_Handbook_v1.0.pdf (accessed on 14 July 2021).

36. Živojević, D.; Velagić, J. Path planning for mobile robot using Dubins-curve based RRT algorithm with differential constraints. In
Proceedings of the 2019 International Symposium ELMAR, Zadar, Croatia, 23–25 September 2019; pp. 139–142.

37. LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; 1998. Available online: http://lavalle.pl/papers/Lav9
8c.pdf (accessed on 14 July 2021).

38. Delaunay, B. Sur la sphere vide, Otdelenie Matematicheskii i Estestvennyka Nauk 7. Izv. Akad. Nauk SSSR 1934, 1–2, 793–800.
39. Dubins, L.E. On curves of minimal length with a constraint on average curvature, and with prescribed initial and terminal

positions and tangents. Am. J. Math. 1957, 79, 497–516. [CrossRef]
40. Manca, R.; Circosta, S.; Khan, I.; Feraco, S.; Luciani, S.; Amati, N.; Bonfitto, A.; Galluzzi, R. Performance Assessment of an Electric

Power Steering System for Driverless Formula Student Vehicles. In Actuators; Multidisciplinary Digital Publishing Institute: 2021;
Volume 10, p. 165. Available online: https://www.mdpi.com/2076-0825/10/7/165 (accessed on 14 July 2021).

http://doi.org/10.1109/ACCESS.2020.2983149
http://doi.org/10.1016/j.ast.2018.04.009
http://doi.org/10.1109/MPEL.2016.2550239
http://doi.org/10.1007/s12555-018-0037-6
http://doi.org/10.1109/TIV.2019.2919457
https://www.sae.org/publications/technical-papers/content/2020-01-0125/
https://www.sae.org/publications/technical-papers/content/2020-01-0125/
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2014/mil-sil-pil-a-new-paradigm-in-model-based-development.pdf
https://www.mathworks.com/content/dam/mathworks/mathworks-dot-com/solutions/automotive/files/in-expo-2014/mil-sil-pil-a-new-paradigm-in-model-based-development.pdf
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-3-W4/55/2016/isprs-archives-XL-3-W4-55-2016.pdf
https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XL-3-W4/55/2016/isprs-archives-XL-3-W4-55-2016.pdf
http://doi.org/10.5565/rev/elcvia.1084
https://www.formulastudent.de/fileadmin/user_upload/all/2019/rules/FSG19_Competition_Handbook_v1.0.pdf
https://www.formulastudent.de/fileadmin/user_upload/all/2019/rules/FSG19_Competition_Handbook_v1.0.pdf
http://lavalle.pl/papers/Lav98c.pdf
http://lavalle.pl/papers/Lav98c.pdf
http://doi.org/10.2307/2372560
https://www.mdpi.com/2076-0825/10/7/165

Appl. Sci. 2021, 11, 7225 22 of 22

41. Li, L.; Wang, F.; Zhou, Q. Integrated longitudinal and lateral tire/road friction modeling and monitoring for vehicle motion
control. IEEE Trans. Intell. Transp. Syst. 2016, 7, 1–19. [CrossRef]

42. Luciani, S.; Bonfitto, A.; Amati, N.; Tonoli, A. Model predictive control for comfort optimization in assisted and driverless
vehicles. Adv. Mech. Eng. 2020, 12, 1687814020974532. [CrossRef]

43. Hill, D.; de Beeck, J.O.; Baja, M.; Djemili, I.; Reuther, P.; Sutra, I. Use of V-Cycle Methodology to Develop Mechatronic Fuel System
Functions No. 2017-01-1614. In SAE Technical Paper; 2017. Available online: https://www.sae.org/publications/technical-papers/
content/2017-01-1614/ (accessed on 14 July 2021).

44. Yaghmour, K. Building Embedded Linux Systems; O’Reilly Media, Inc.: Sebastopol, CA, USA, 2009.
45. Carvalho, A.; Machado, C.; Moraes, F. Raspberry Pi Performance Analysis in Real-Time Applications with the RT-Preempt Patch.

In Proceedings of the 2019 Latin American Robotics Symposium (LARS), 2019 Brazilian Symposium on Robotics (SBR) and 2019
Workshop on Robotics in Education (WRE), Rio Grande, RS, Brazil, 22–26 October 2019; pp. 162–167.

http://doi.org/10.1109/TITS.2005.858624
http://doi.org/10.1177/1687814020974532
https://www.sae.org/publications/technical-papers/content/2017-01-1614/
https://www.sae.org/publications/technical-papers/content/2017-01-1614/

	Introduction
	Method
	Autonomous Vehicle Pipeline and Vehicle Setup
	Environment Perception
	Path Planning
	Vehicle Modeling
	Control

	Hardware Implementation and PIL Architecture

	Results
	Driving Scenarios and Environment Perception
	Processor-in-the-Loop and Simulations Comparison

	Conclusions
	References

