
10 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Application of MBSE to model Hierarchical AI Planning problems in HDDL / Rimani, Jasmine; Lesire, Charles; Lizy-
Destrez, Stéphanie; Viola, Nicole. - ELETTRONICO. - (2021). (Intervento presentato al convegno ICAPS2021 - KEPS
Symposium tenutosi a Online Conference nel August 2021).

Original

Application of MBSE to model Hierarchical AI Planning problems in HDDL

Publisher:

Published
DOI:

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2918312 since: 2021-08-22T22:38:47Z

ICAPS2021

Application of MBSE to model Hierarchical AI Planning problems in HDDL

Jasmine Rimani, Charles Lesire, Stéphanie Lizy-Destrez, Nicole Viola
Politecnico di Torino, Torino, Italy

jasmine.rimani@polito.it, nicole.viola@polito.it
ONERA/DTIS, University of Toulouse, France

Charles.Lesire@onera.fr
ISAE-SUPAERO, Toulouse, France

Stephanie.lizy-destrez@isae-supaero.fr

Abstract

The recent improvements of hierarchical AI planning open
the path to new and exciting applications in different areas
of expertise. One domain with daring and complex planning
and scheduling problems is the definition of operations for
space exploration systems. For this specific application, the
Hierarchical Definition Domain Language (HDDL) may be
the most suitable AI planning language to be adopted, seeing
its similarities to aerospace engineering functional analysis.
The work proposed in this paper contributes to filling the gap
between space operations engineers and the AI planning po-
tentialities to solve planning and scheduling problems applied
to space exploration systems. The problem and domain files
typical of HDDL and PDDL can be built up from the for-
malism of SysML, a general-purpose architecture modelling
language for System Engineering, and MBSE. The designers
would be guided through a workflow that will aid them to
simplify the translation from MBSE, or SySML, to HDDL.
The workflow presented in this paper was applied and tested
during an analogue space robotic mission, where a collabo-
rative drone and a rover explore an unknown environment.
The final aim of the method is to transfer the ”human knowl-
edge” in the planning problem and showing the capabilities of
MBSE applied to Knowledge Engineering (KE) of AI plan-
ning problems.

Introduction
There are different studies and applications on the use of
AI for complex scenarios like space missions (Chien et
al. 2000) (Muscettola et al. 1998)(Coles et al. 2019) (Chi,
Chien, and Agrawal 2020) (Gao et al. 2016). However, they
usually focus on temporal planning, constrained based plan-
ning, probabilistic planning and, for simpler scenarios, on
problem definition domain language (PDDL). Regardless of
the strengths and capabilities of Hierarchical Definition Do-
main Language (HDDL) (Höller et al. 2020), it still fails
to be used as a routine planner for complex scenarios, like
space missions. Even if many problems can be well de-
scribed using a hierarchy of tasks (Georgievski and Aiello
2014).

As evoked in (Strobel and Kirsch 2014), possible reasons
can be found in the complexity of the domain and problem

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

file redaction. The predicates, types, methods, tasks, and ac-
tions do not scale up easily as the considered problem be-
comes more and more complex. Moreover, complex prob-
lems to be analyzed by the AI planners need skilful engi-
neers to capture and pass their knowledge of the problem.
However, the complexity of a scenario can be easily han-
dled by hierarchical modelling of Model-Based System En-
gineering (MBSE) and its base architecture SysML. SysML
and MBSE are both domain-independent tools. Therefore,
their use can be extended to any analysis beyond the sub-
ject of this paper. The formalism of HDDL is quite sim-
ilar to the concept of functional analysis in system engi-
neering, (Walden et al. 2015). The ”functional layer” of
MBSE, called logical architecture, has functions that de-
scribe the behaviours of the system or systems at different
levels of granularity. Therefore, The main objective of the
MBSE-HDDL translation analyzed in this paper is to facili-
tate the transfer of information from the designer of SysML
or MBSE models to the HDDL file straightforwardly. The
aim is to describe a workflow that would make the use of
HDDL not only appealing but almost natural, starting from
the logical layer of MBSE.

In this study, two MBSE standard schemes will be used
to write the domain and problem files: the Enchanted Func-
tional Flow Block Diagram (EFFBD) and the IDEF0 (Icam
DEFinition for Function Modeling, where Icam stands for
Integrated Computer-Aided Manufacturing). The first high-
lights the succession of events when designing methods of
HDDL, and the second helps visualize the flow of the pred-
icates, inputs and outputs of actions, methods and tasks.

Vitech Genesys (Corporation 2020), have been used as a
modelling tool for the MBSE analysis. The benchmarks of
the IPC2020 (Behnke et al. 2021) for hierarchical planning
have been used as a starting point to define the predicates,
tasks, actions and method in a consistent and correct for-
malism. The case study for this paper is an analogue mis-
sion organised by Space Innovation in Switzerland called
IGLUNA1. The objective of the ISAE-SUPAERO team,
CoRoDro2, is to explore an unknown environment with a
rover and a drone (Figure 1).

The systems may act as totally independent entities with

1https://space-innovation.ch/igluna/
2http://corodro.ae-isae-supaero.fr/

Start o
f th

e

miss
ion

End of the
mission

Ro
ve

r
tim

el
in

e
Dr

on
e

tim
el

in
e Deploys

Sends data
to rover

Sends data
to CC

CC generates grid map
and send it to the rover

Runs task
planning

algorithm

Sends action
plan to the

drone

Plans its path to
the next target

Goes to
target

Takes a
photo

Sends data to CC
(whenever requested)

Goes to
target

Takes a
photo

Sends data to the rover
(whenever requested)

Maps the
environ-
nement

Mapping Planning and information exchange
Fulfilment of tasks according to the action plan: The
rover and the drone work independently. The cycle

repeats for each task.

1 2 3

4

5

6 7 9’ 10’ 11’

11109

Sta
rt

En
d

Control Center (CC)

Drone

8’

8

Plans its path to
the next target

1

2

3

4

5

6

7

8

8’

9

9’

10

10’
11

11’

Figure 1: CoRoDro Design Reference Mission (DRM). In
the first phase, the drone is in charge of mapping the envi-
ronment autonomously. While in the second phase, both sys-
tems move autonomously, exploring the environment. Both
systems should go to a target, read an arTag (Fiala 2005) and
take a picture of it.

different capabilities or co-dependent systems where the
drone extends the rover’s capabilities. The translation from
MBSE to HDDL is still manual for the domain file and par-
tially automated for the problem file of the analysed aap-
plication. The following sections will focus on illustrating
the MBSE-HDDL translation used following some exam-
ples from the case study. The conclusion will highlight the
main outcomes of this work and the future work envisioned
to automatize the overall workflow.

Related Work
To address these limitations exposed in the introduction and
help the designers transfer their knowledge and correctly
write PDDL files, different research teams analyzed and cre-
ated tools that should assist the designer in creating the do-
main and problem files of AI planners. Domain files cap-
ture system behaviour using a set of actions and predicates,
true or false sentences. Problem files indicate the goals to
be accomplished and give some information on the environ-
ment and constraints that the system under study has to deal
with. When solving a PDDL problem, or an HDDL prob-
lem, the files are parsed and analyzed to find the best plan
that answers the problem, given the goals and initial con-
ditions in the problem file. However, practical applications
have many types, objects, predicates and actions (Strobel
and Kirsch 2014). Therefore, as the project grows in size,
designers need to be assisted with tools that help them keep
track of changes and deal with the increased complexity of
domain and problem files.

Focusing on the PDDL language, different tools have
been created as to help the designer. However, most of them
focus on providing a suite to check the syntax and construc-
tions of predicates and actions. Therefore, even if relevant,
they lack a pre-design phase where the engineer designs the
problem before writing the files. Therefore tools, like PDDL
studio (Plch et al. 2012) and the PDDL-mode of Emacs edi-

tor (Singhi 2005) focus more on ensuring the correctness of
the PDDL syntax and semantic of the PDDL files. On the
other hand, myPDDL (Strobel and Kirsch 2014) provides an
intuitive IDE (Integrated Development Environment), code
template to initialize PDDL constructs and diagrams of the
domain file that show the connection between predicates,
types and actions.

An interesting work that uses SysML for designing plan-
ning problems has been proposed in (Huckaby, Vassos, and
Christensen 2013). The study applies the sequence diagram
and SysML taxonomy to the study of manufacturing robots.
However, the final planning language is still PDDL. Further-
more, the analysis is not backed up by a set of requirements,
as it is the usual standard in system engineering to maintain
traceability and justify design choices.

Among the most known tools, itSimple helps the designer
model PDDL files starting from the Unified Modeling Lan-
guage (UML) formalism (Silva and Silva 2019). In this
work, the authors based their design process on UML Use
Case diagrams, starting from the requirements definition. In
the early version of itSIMPLE, the translation between the
UML scheme and the PDDL files where manual (Vaquero et
al. 2006). In the latest versions, the process has been autom-
atized with an ad-hoc IDE integrating UML (Silva and Silva
2019). However, it is not possible to track back the changes
done in the PDDL files to the starting UML schemes (Stro-
bel and Kirsch 2014). On the other hand, the last version
of the program integrated hierarchical task network (HTN)
planning to model more complex scenarios (Silva and Silva
2019). In general, hierarchical methods permits a higher
level of abstraction. To sustain HTN planning modelling,
the itSIMPLE designer introduced Petri Nets to check the
consistency of requirements and verify the decomposition of
the plan. The latest version of itSIMPLE makes also use of
more UML schemes like class diagrams and state machines.
Therefore, introducing the complexity of hierarchy, the tool
loses in simplicity. However, the integrated IDE helps the
designer keep track of the changes, given previous knowl-
edge in UML. The objective of HTN planners is to perform
a set of tasks that can be of different levels of abstraction
(Ghallab, Nau, and Traverso 2004), not directly achieve a
goal state. To be clearer, the plan’s end objectives are found
by refining the initial tasks network (Georgievski and Aiello
2014), giving as output an executable sequence of actions.
However, even if many tasks in real life are already built-in
hierarchical structures, HTN planners need well-conceived
and well-structured domain knowledge to be used correctly
(Georgievski and Aiello 2014). Those requirements have
slowed down a more ample use of the capabilities of HTN
planners. However, there is a need to introduce hierarchies
because domain experts may want to model their domain us-
ing the natural structure of many real-world problems, that is
hierarchical (Bercher, Alford, and Höller 2019). Moreover,
HTN planners have the primary advantage in terms of speed
and scalability when applied to real-world problems in re-
spect to other AI planners (Georgievski and Aiello 2014).
What is unique of HTN planners is that they can reason
about the effects of possible actions. That capability makes
them incredibly expressive in how they describe behaviour

(Humphreys 2019). Nevertheless, HTN planning, in all its
declination, is quite suitable to be modelled through MBSE.
The objective of MBSE functional models is to be a hierar-
chical, well-defined and complete analysis of the behaviours
of whichever system under study (Walden et al. 2015).

Similarly to the itSIMPLE tool, the work presented in this
paper starts from requirements and a hierarchical planner.
However, with SysML instead of UML, it is possible to sim-
plify the number of schemes needed to frame the problem.
For example, SysML introduced the requirement scheme,
which can be directly linked to the functions to be performed
by the systems. Moreover, using EFFBDs instead of Use
Case diagrams introduces a hierarchy of tasks without the
need for a Petri net. Furthermore, using EFFBD, it is possi-
ble to check the flow of predicates and how the plan evolves
on the different levels of abstraction. The following section
will give an overview of the methodology and its application
to HDDL.

Modelling HDDL files from MBSE
Both HDDL problems and functional analysis of MBSE are
based on task decomposition. Both methods start from an
idea of what the system should do and go down to how the
system can perform the what. However, before diving into
the methodology and translation from MBSE to HDDL, a
brief introduction on the most useful concepts is needed for
the two.

HDDL modelling language
The HDDL language (Höller et al. 2020) is heavily based
on PDDL. It starts from the same concepts of types, predi-
cates and actions, and it extends them with the use of tasks
and methods in the domain file (see Listing 1 for an exam-
ple). The new entries in the domain file permit a higher level
of abstraction: tasks and methods do not have a direct ef-
fect on predicates. They assemble actions to get a structured
answer to a higher system functional need. Therefore, more
complex scenarios can be modelled. More in detail, a task
is an instance that should be accomplished. It indicate what
the system should do. Usually, a task is defined by a unique
name and some parameters that are needed to accomplish
it. The how this task should be executed is usually defined
thanks to a method. methods define how to achieve a task
given a set of ordered subtasks. If a subtask can be further
decomposed by a method, that subtask is called a compound
task or simply task. If the subtask can be directly defined
with a set of precondition and effects without a method, then
the subtask is called primitive task or, more commonly, ac-
tion (see Listing 1). For the same task, it is possible to define
different methods that can satisfy it. Different methods have
different preconditions, defined as predicates, that lead to a
different organization of sub-tasks.

Listing 1: HDDL domain file example of task, method and
action

(: t a s k n a v i g a t e a b s
: p a r a m e t e r s (? sys tem − sys tem ? t o − waypo in t)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

(: method m n a v i g a t e a b s 1 o r d e r i n g 0
: p a r a m e t e r s (? from − waypo in t ? sys tem − sys tem ? t o

− waypo in t)
: t a s k (n a v i g a t e a b s ? sys tem ? t o)
: p r e c o n d i t i o n (and

(a t ? sys tem ? from)
)
: s u b t a s k s (and

(t a s k 0 (v i s i t ? from ? sys tem))
(t a s k 1 (n a v i g a t e ? sys tem ? from ? t o))
(t a s k 2 (u n v i s i t ? from ? sys tem))

)
: o r d e r i n g (and

(< t a s k 0 t a s k 1)
(< t a s k 1 t a s k 2)

)
)
(: a c t i o n n a v i g a t e

: p a r a m e t e r s (? x − sys tem ? y − waypo in t ? z −
waypo in t)

: p r e c o n d i t i o n
(and

(c a n t r a v e r s e ? x ? y ? z)
(a v a i l a b l e ? x)
(a t ? x ? y)

)
: e f f e c t

(and
(n o t (a t ? x ? y))
(a t ? x ? z)

)
)

Similarly to the domain file, the problem file of the
HDDL domains changes a bit in respect to the PDDL lan-
guage (Haslum et al. 2019). An initial hierarchical network
should be laid out. It is based on which tasks should the sys-
tem accomplish and in which order.

Listing 2: Problem file task definition.
(: h t n

: p a r a m e t e r s ()
: s u b t a s k s (and

(t a s k 0 (r e l e a s e s e c o n d s y s t e m drone1 r o v e r 0))
(t a s k 1 (g e t i m a g e d a t a o b j e c t i v e 0 d e p t h))
(t a s k 2 (g e t i m a g e d a t a o b j e c t i v e 1 d e p t h))
(t a s k 3 (g e t i m a g e d a t a o b j e c t i v e 0 f i s h e y e))
(t a s k 4 (g e t i m a g e d a t a o b j e c t i v e 2 f i s h e y e))
(t a s k 5 (c a l l b a c k drone1 r o v e r 0))
(t a s k 6 (e v a l u a t e a v a i l a b l e r e s o u r c e s r o v e r 0))
(t a s k 7 (e v a l u a t e a v a i l a b l e r e s o u r c e s drone1))

)
: o r d e r i n g (and

(< t a s k 0 t a s k 1)
(< t a s k 0 t a s k 2)
(< t a s k 0 t a s k 3)
(< t a s k 0 t a s k 4)
(< t a s k 2 t a s k 5)
(< t a s k 3 t a s k 5)
(< t a s k 1 t a s k 5)
(< t a s k 4 t a s k 5)
(< t a s k 5 t a s k 6)
(< t a s k 6 t a s k 7)

)
)

Overall, the logical structure of the problem and domain
files of HDDL describes the behavior of a system with some
given formalism.

MBSE functional layer
This notion of tasks that represent what a system can do and
its division in subtasks resembles the notion of functions in
system engineering. Most operations in the space domain
are engineered and designed by system engineers with little
to no notion about AI planning, its applications and strength.
Moreover, there is usually a reticence in adopting any new
tool if it cannot be well documented or translated in a model-
based database. However, leveraging on the function/tasks

similarity, it is possible to use system engineering method-
ologies to design and track changes in the HDDL domain
and problem file. Exploiting the formalism of SysML and
the capabilities of MBSE, a designer can study and simu-
late the behavioural layer of a system before exporting the
modeling in the HDDL language and plan the system’s op-
erations. The backbone of the method relays in the func-
tional analysis, where the the expected behaviours of the
system are analysed. Starting from the goal ”functions”, it
is possible to create a breakdown structure with all the sub-
functions that effectively ”answer” to the question how to
perform the goal ”function” (Figure 2). The goal ”functions”
are the tasks derived from the requirement analysis. They
are the ”objective behaviors” of the system. The designer
identifies the sub-functions that will satisfy the main func-
tion. The breakdown goes down to the leaf functions, en-
tities that can directly be performed by the system under
study, like move to a destination. This hierarchy of func-
tions is the fundamental process of any functional analysis
of MBSE. The process has been detailed in both (Walden et
al. 2015) and (Shishko and Aster 1995). The top-down pro-
cess is usually represented as a functional tree or a functional
block diagram. The first method represents a simple hierar-
chical decomposition that usually ends with the indication of
a system, subsystem or component that can accomplish the
task (Wertz, Everett, and Puschell 2011). The second one
includes both a top-down decomposition and an information
on the sequence of the functions to be performed (Wertz,
Everett, and Puschell 2011).

Figure 2: Hierarchical visualization of functions for the
IGLUNA campaign. Only the functions related to the func-
tions Get Picture of the Goal have been extended to show
the hierarchical structure of the problem.

To visualize the logic flow of sub-functions, how they are
related and their input/outputs, designers use two principal
schemes: the activity diagram in SysML and the Enchanted
Flow Functional Block Diagram (EFFBD)3 in MBSE. In this
study, we would use the latter. It is important to highlight
that SysML is the foundation of MBSE, however, the lat-
ter is usually more expressive and facilitates the design of

3http://www.vitechcorp.com/resources/
GENESYS/onlinehelp/desktop/Views/Enhanced_
Function_Flow_Block_Diagram_(EFBD).htm

the system. The EFFBD shows the succession or parallelism
of functions. It indicates if functions should be executed si-
multaneously, if the flow can take different branches or if a
function or set of functions should be iterated or replicated.
The main difference between a standard Flow Functional
Block Diagram and the EFFBD is the possibility of visu-
alizing inputs and outputs of a function. However, another
helpful scheme to check the flow of inputs and outputs is the
IDEF04. The scheme does not give any information on the
order of functions, just on the flow of the items. It can be
used to check that the output of the leaf-functions is effec-
tively the expected one of the high-level function.

MBSE to HDDL translation
The parallelism between HDDL and MBSE is relatively
straightforward: tasks can be analyzed as high-level func-
tions, methods can be modelled as second-level tasks that
contain the other compound tasks and actions (Fig 3). On
the other hand, actions can be compared to leaf functions.

The objects and their types can be modelled as compo-
nents or items. The latter is preferred: it is possible to asso-
ciate multiple items to a function but not multiple compo-
nents.

Figure 3 shows this parallelism. The tasks, methods and
actions of the HDDL problems can be compared to the func-
tions of MBSE. At the same time, the predicates that ad-
vance the HDDL plan are related to the output and inputs of
functions, usually modelled as items in MBSE. However, the
designer choices of what to consider as a high-level function
and how to define the items would affect the final form of
the domain and problem file. Different designers may there-
fore obtain different tasks and method decomposition. Nev-
ertheless, the final set of defined actions should be the same.
The actions are ”functions” directly executable by the sys-
tem. They are directly interfaced with the components or
main subsystems (mobility, power, sensing, etc.). Moreover,
it is possible to cross-check the analysis coupling the func-
tional analysis with a bottom-up approach. Starting from the
known set of actions that the system can execute, it is possi-
ble to verify that all methods and tasks are considered.

Usually, the MBSE model is designed. Then, the paral-
lelism between the HDDL entries and the functional analy-
sis is used to easily translate the MBSE model to the HDDL
domain and problem files, as shown in Figure 4. The red
arrows represent the translation from MBSE instances to
HDDL language entries. The blue arrows show the logical
flow of MBSE functional analysis.

The logical steps of this MBSE-HDDL translation are:
1. Define the system functional requirements. This is done

using the Requirement Scheme. Functional requirements
are all the ones that define what the system should
do (Wertz, Everett, and Puschell 2011), i.e., the actions
it should perform.

2. Define the high-level functions that are generated from the
functional requirements. Those functions are the transla-
tion of the requirement in the form of a verb followed by
4https://www.vitechcorp.com/resources/

core/onlinehelp/desktop/Views/IDEF0.htm

Figure 3: Parallellism between MBSE and HDDL files’ entries.

Figure 4: Logical flow of the methodology that exports MBSE model to HDDL files. The red arrows represent the translation
from MBSE to HDDL, while the blue arrows show the logical flow of the MBSE functional analysis.

a complement. For example, the functional requirement
The involved systems shall be able to take photos of the
point of interest. can be translated in the high-level func-
tion Get a picture of the goal.

3. Define the first set of tasks in the HDDL domain file. The
high-level functional requirements are the first set of tasks
that the system should perform.

4. Assemble the high-level function in a EFFBD. The
scheme should show if there is a hierarchy of functions.
This analysis will be then translated in the initial hierar-
chical network in the HDDL problem file. It is even help-
ful to understand if a function can be incorporated into
another one because, for example, it always precedes it.
In the EFFBD, it is possible to start highlighting the in-
puts of each function and the expected outputs. That pro-
cess helps understand the hierarchy of functions as well: a
function may always precede another because its output is
an essential input of the following one. To easily visualize
this flow of inputs and outputs, the IDEF0 scheme can be
used. The IDEF0 highlights which outputs of a function

are the input of another. These inputs and outputs will then
be translated as the predicates used in HDDL to advance
a plan.

5. Decompose the high-level functions into sub-functions,
answering the question how do we accomplish the func-
tion. This decomposition in ordered subtasks will define a
method. If different decompositions are possible starting
from different inputs, we will define different methods for
the same function. Again, the prefered scheme to be used
is the EFFBD to highlight the ordering of the subtasks.
The input/output flow can be studied with an IDEF0 dia-
gram. In the case of the methods, it is possible to verify
that the expected output of the high-level function is ef-
fectively the one in output from the subtask.

6. Define the methods from the decomposition in ordered
subtasks. The :precondition() of the method are the in-
puts of the high-level function (defined in step 4) and the
specific inputs of each method. The predicates for each
method can be easily visualized in the IDEF0 diagram.

7. Analyze the sub-functions. For each sub-function evalu-

ate if it can be further decomposed or if it can be identi-
fied as a leaf-level function (a function that the system can
directly implement). If a function can be further decom-
posed, consider it as a compound task and go back to step
five.

8. Translate the leaf functions in HDDL actions. If the sub-
function is a leaf function, it is possible to write it as an
HDDL action. In this case, only the IDEF0 diagram can
be used for the translation to analyse the :preconditions()
(input predicates) and the :effects() (output predicates) of
the action.

At the end of the steps, the domain files’ task, methods, and
actions should be defined. The list of predicates will be writ-
ten from the :preconditions() and :effects() of methods and
actions. The problem file initial hierarchical network can be
defined by step 4 using the EFFBD. The initial conditions
of the problem file, :init(), can be derived from the precon-
ditions of the methods. At this moment the translation from
the MBSE model to the HDDL language is mostly manual.
In fact, the MBSE model from Genesys can be exported as
an Excel file where the task, its methods, the actions asso-
ciated with each method and the items associated with both
are listed. This excel file is then parsed, and a preliminary
structure of the domain file is created. However, the designer
still needs to cross-check the model. Moreover, the work-
flow still lacks direct feedback from the HDDL’s files to the
MBSE model: the modification in the domain files need to
be manually reported in the MBSE model. The problem file
is partially automatized similarly to the domain file regard-
ing the initial set of true and false statements. In the specific
case of the IGLUNA mission, the problem file objectives
and ”allowable” movement models are output directly from
the mapping module of the drone. However, that is possible
for this specific application.

The following section shows an example of applying the
explained MBSE-HDDL translation to an analogue mission
starting from the functional requirements.

Example of Application: The IGLUNA mission

Functional Requirement Definition

The design of every mission starts with a set of requirements
that have to be satisfied. In system engineering, the require-
ments are divided into different categories: mission, configu-
rations, operational, functional, interface, environmental and
logistic support (Walden et al. 2015). In our specific case of
designing the activities that systems should perform, we are
interested in functional requirements. In the IGLUNA mis-
sion, the system has five principal functional requirements to
accomplish: (i) recognize points of interest, (ii) take a pic-
ture of the recognized point of interest, (iii) evaluate remain-
ing resources, (iv) release drone, (v) call back the drone.
Therefore following step 1 and 2 of the workflow, we can de-
fine the goal functions that the systems have to accomplish
from those functional requirements, as shown in Figure 5.

Figure 5: From the functional requirements analysis of
IGLUNA to its high-level functions (step 1 and 2 of the
workflow).

From Requirements to High-level Functions to
HDDL Tasks
The defined high-level functions will be the first set of tasks
in the domain files, Figure 4, Listing 3.

At the same time, those tasks are the ones that will appear
on the problem file as goal functions to be executed. How-
ever, an ordering between the tasks may be needed to set
up the initial task network definition of the HDDL problem
file. Therefore, the notion of EFFBD becomes quite helpful
to analyze the problem as explained in step 4 of the work-
flow (Figure 6, Listing 2).

Listing 3: Domain file task definition.
(: t a s k g e t i m a g e d a t a

: p a r a m e t e r s (? o b j e c t i v e − o b j e c t i v e ?mode − mode)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

(: t a s k r e a d a r T a g d a t a
: p a r a m e t e r s (? o b j e c t i v e − o b j e c t i v e)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

(: t a s k e v a l u a t e a v a i l a b l e r e s o u r c e s
: p a r a m e t e r s (? sys tem − sys tem)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

(: t a s k c a l l b a c k
: p a r a m e t e r s (? sys tem2 − sys tem ? sys tem1 − sys tem)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

(: t a s k r e l e a s e s e c o n d s y s t e m
: p a r a m e t e r s (? sys tem2 − sys tem ? sys tem1 − sys tem)
: p r e c o n d i t i o n ()
: e f f e c t ()

)

Definition of the Hierarchy of Functions
In the EFFBD, the designer can already visualize the pred-
icates linked to each task as the inputs and outputs of func-
tions. However, as previously suggested in step 4 of the

Figure 6: EFFBD of the problem file with high-level func-
tions. The diagram shows the expected succession of tasks
that should be translated in the initial hierarchical network
of the problem file as explained in step 4 of the workflow.

workflow, the IDEF0 can help better visualize the predi-
cate flow. Figure 7 shows the IDEF0 linked to the problem
EFFBD, Figure 6. Moreover, from Figures 6 and 8 it is pos-
sible to visualize that the expected output of a high-level
function becomes the effect of a leaf-function, therefore the
effect of the action (steps 5 and 6 of the workflow).

Figure 7: IDEF0 of the problem file. As outlined in step 4
and 5 of the workflow, from the high-level function is al-
ready possible to associate the expected output.

Furthermore, from the analysis of the problem EFFBD, it
is possible to conclude that the function ”Read ArTag Data”
always come before the ”Get Picture of the Target” function
and that those tasks are replicated during the overall mission.
Therefore as illustrated in step 4 of the workflow, to simplify
the redaction of the problem file, the first function can be
included in the second function using a method, Figures 8
and 9.

Definition of Methods and Primitive Tasks
In the example of the function ”Get Picture of the Target”,
only one method was needed to satisfy it. However, it is pos-
sible to have different methods that may satisfy a task, as for
the function ”Navigate to goal”, Figure 10. The plan solver
may take one or the other branch from different predicates,
as briefly laid out in step 5.

Figure 8: EFFBD of the ”Get Picture of the Target” method
(step 5 of the workflow). The sub-functions with a black
square on the top-left corner are the ones that can be further
decomposed. Those will be translated as compound tasks,
while the others are actions.

Figure 9: IDEF0 of the ”Get Picture of the Target” method.
From the IDEF0 of the problem file (Figure 7) it is pos-
sible to see that the expected output of the functions
are sent picture ?objective ?control center and take picture
?objective ?system. With this IDEF0, it is possible to ver-
ify that these outputs are effectively the end effects of the
last two actions of this method as described in step 5 of the
workflow.

Figure 10: EFFBD of the ”navigate to goal” methods. The
image visually summarizes step 6 of the worflow. Thanks
to the functional analysis, defining different methods for a
single task with an ”or” logical structure is possible. The
chosen branch will depend on the ”active” predicates in the
problem file.

The process of the top-down functional analysis is repli-
cated for all the tasks and their subtasks, as described in step
7 of the workflow. In the end, it is possible to export the
structure of the MBSE model to the HDDL file following
the breakdown of the EFFBD and checking the predicate
flow with the IDEF0. At the conclusion of the design pro-
cess, the designer can check the consistency and correctness
of the problem and domain files against the created MBSE
model. In the case of the IGLUNA mission, the benchmark
plan for the exploration of a terrain of 9m2 with three ob-
jectives is shown in Listing 4. HiPOP (Bechon, Lesire, and
Barbier 2020; Lesire and Albore 2021) was used as solver
for the HDDL problem. The problem file of IGLUNA was
directly created from the SLAM (Simultaneous Localiza-
tion and Mapping) of the two robotic systems. Therefore,
during the real field camping, the planner had to deal with
more than one hundred waypoints, two systems, two cam-
eras per system, and ten objectives. The output plan has
around eighty lines, and it was interfaced with the execution
layer of the two systems through a state machine.

Listing 4: Output plan for a 3x3 map with 3 objetives
==>
0 (m a k e a v a i l a b l e d rone1)
1 (v i s i t waypo in t0 drone1)
2 (n a v i g a t e drone1 waypo in t0 waypo in t1)
3 (u n v i s i t waypo in t0 drone1)
4 (r e a d a r T a g r o v e r 0 waypo in t0 o b j e c t i v e 2 camera0)
5 (c o m m u n i c a t e a r T a g d a t a r o v e r 0 g e n e r a l o b j e c t i v e 2)
6 (t a k e i m a g e drone1 waypoin t1 o b j e c t i v e 2 camera3 f i s h e y e)
7 (c o m m u n i c a t e i m a g e d a t a drone1 g e n e r a l o b j e c t i v e 2 f i s h e y e)
8 (n a v i g a t e drone1 waypo in t1 waypo in t4)
9 (v i s i t waypo in t4 drone1)
10 (n a v i g a t e drone1 waypo in t4 waypo in t6)
11 (u n v i s i t waypo in t4 drone1)
12 (r e a d a r T a g drone1 waypoin t6 o b j e c t i v e 0 camera2)
13 (c o m m u n i c a t e a r T a g d a t a drone1 g e n e r a l o b j e c t i v e 0)

14 (t a k e i m a g e drone1 waypo in t6 o b j e c t i v e 0 camera3 f i s h e y e)
15 (c o m m u n i c a t e i m a g e d a t a drone1 g e n e r a l o b j e c t i v e 0 f i s h e y e)
16 (n a v i g a t e drone1 waypo in t6 waypo in t4)
17 (v i s i t waypo in t4 drone1)
18 (n a v i g a t e drone1 waypo in t4 waypo in t8)
19 (u n v i s i t waypo in t4 drone1)
20 (r e a d a r T a g drone1 waypoin t8 o b j e c t i v e 1 camera2)
21 (c o m m u n i c a t e a r T a g d a t a drone1 g e n e r a l o b j e c t i v e 1)
22 (t a k e i m a g e drone1 waypo in t8 o b j e c t i v e 1 camera2 d e p t h)
23 (c o m m u n i c a t e i m a g e d a t a drone1 g e n e r a l o b j e c t i v e 1 d e p t h)
24 (v i s i t waypo in t0 r o v e r 0)
25 (n a v i g a t e r o v e r 0 waypo in t0 waypo in t5)
26 (u n v i s i t waypo in t0 r o v e r 0)
27 (r e a d a r T a g r o v e r 0 waypo in t5 o b j e c t i v e 0 camera0)
28 (c o m m u n i c a t e a r T a g d a t a r o v e r 0 g e n e r a l o b j e c t i v e 0)
29 (t a k e i m a g e r o v e r 0 waypo in t5 o b j e c t i v e 0 camera0 d e p t h)
30 (c o m m u n i c a t e i m a g e d a t a r o v e r 0 g e n e r a l o b j e c t i v e 0 d e p t h)
31 (n a v i g a t e drone1 waypo in t8 waypo in t4)
32 (v i s i t waypo in t4 drone1)
33 (n a v i g a t e drone1 waypo in t4 waypo in t5)
34 (u n v i s i t waypo in t4 drone1)
35 (g e t d a t a f r o m s e n s o r s r o v e r 0)
36 (s e n d s y s t e m s t a t e r o v e r 0 g e n e r a l)
37 (g e t d a t a f r o m s e n s o r s drone1)
38 (s e n d s y s t e m s t a t e d rone1 g e n e r a l)
<==

Main Results and Conclusions
This paper presented a workflow to simplify the writing of
HDDL problem and domain files starting from the func-
tional layer of MBSE. The modelling starts from defining
the goals of the mission as functional requirements. Then,
it continues with the definition of the high-level functions
linked to the requirements. Those first set of functions will
define the first tasks of the domain file. Then the high-
level functions are further broken down into leaf functions.
The different sub-functions constitutes the other compound
and primitive tasks. The EFFBD and IDEF0 schemes show
this decomposition and the predicate flow of each function.
The overall process permits fast prototyping and writing of
HDDL files while verifying the consistency of the design.
However, the work still lacks a comprehensive tool that can
rapidly translate the functions and items into ready-to-run
HDDL files. The translation from MBSE to HDDL is mostly
manually executed, reporting the MBSE outputs to ”.hddl”
files. Therefore, future work will focus on creating an inte-
grated framework from the MBSE to the definition of ready
to be used domain and problem files. In the specific case
of the problem files for space robotic application, a partial
knowledge of the environment is usually a must-know. How-
ever, this can be easily included if a map is available. In the
specifics of the IGLUNA analogue mission, a C++ script that
translates a given map in predicates that can be used for the
navigation tasks has already been implemented and used for
the problem file definition. At the same time, the team will
be dedicated time to a more in-depth study of the formalism
of MBSE and SySML and how to better used them as as-
sets for Knowledge Engineering. The final aim is to define a
logical and operational architecture usable in space-related
scenarios, from rovers to satellites, to define operations with
AI planning.

References
Bechon, P.; Lesire, C.; and Barbier, M. 2020. Hybrid
planning and distributed iterative repair for multi-robot mis-
sions with communication losses. Autonomous Robots 44(3-
4):505–531.
Behnke, G.; ; Höller, D.; and Bercher, P., eds. 2021. Pro-
ceedings of 10th International Planning Competition: Plan-
ner and Domain Abstracts – Hierarchical Task Network
(HTN) Planning Track (IPC 2020).
Bercher, P.; Alford, R.; and Höller, D. 2019. A survey on
hierarchical planning-one abstract idea, many concrete real-
izations. In IJCAI, 6267–6275.
Chi, W.; Chien, S.; and Agrawal, J. 2020. Scheduling with
complex consumptive resources for a planetary rover. In
Proceedings of the International Conference on Automated
Planning and Scheduling, volume 30, 348–356.
Chien, S.; Rabideau, G.; Knight, R.; Sherwood, R.; Engel-
hardt, B.; Mutz, D.; Estlin, T.; Smith, B.; Fisher, F.; Barrett,
T.; et al. 2000. Aspen-automated planning and scheduling
for space mission operations. In Space Ops, volume 82.
Coles, A. J.; Coles, A. I.; Munoz, M. M.; Savas, O. E.;
Keller, T.; Pommerening, F.; and Helmert, M. 2019. On-
board planning for robotic space missions using temporal
pddl. In 11th International Workshop on Planning and
Scheduling for Space (IWPSS).
Corporation, V. 2020. Genesys: Enhancing systems engi-
neering effectiveness.
Fiala, M. 2005. Artag, a fiducial marker system using digital
techniques. In 2005 IEEE Computer Society Conference on
Computer Vision and Pattern Recognition (CVPR’05), vol-
ume 2, 590–596 vol. 2.
Gao, Y.; Burroughes, G.; Ocón, J.; Fratini, S.; Policella,
N.; and Donati, A. 2016. Mission operations and auton-
omy. Contemporary Planetary Robotics: An Approach To-
ward Autonomous Systems 321–401.
Georgievski, I., and Aiello, M. 2014. An overview
of hierarchical task network planning. arXiv preprint
arXiv:1403.7426.
Ghallab, M.; Nau, D.; and Traverso, P. 2004. Automated
Planning: theory and practice. Elsevier.
Haslum, P.; Lipovetzky, N.; Magazzeni, D.; and Muise, C.
2019. An Introduction to the Planning Domain Definition
Language. Morgan&Claypool.
Huckaby, J.; Vassos, S.; and Christensen, H. I. 2013. Plan-
ning with a task modeling framework in manufacturing
robotics. In International Conference on Intelligent Robots
and Systems (IROS).
Humphreys, T. 2019. Exploring htn planners through exam-
ple. In Game AI Pro 360. CRC Press. 103–122.
Höller, D.; Behnke, G.; Bercher, P.; Biundo, S.; Fiorino, H.;
Pellier, D.; and Alford, R. 2020. HDDL: An Extension to
PDDL for Expressing Hierarchical Planning Problems. In
AAAI Conference on Artificial Intelligence (AAAI).
Lesire, C., and Albore, A. 2021. pyHiPOP – Hierarchical
partial-order planner. In Proceedings of 10th International

Planning Competition: Planner and Domain Abstracts – Hi-
erarchical Task Network (HTN) Planning Track (IPC 2020).
Muscettola, N.; Nayak, P. P.; Pell, B.; and Williams, B. C.
1998. Remote agent: To boldly go where no ai system has
gone before. Artificial intelligence 103(1-2):5–47.
Plch, T.; Chomut, M.; Brom, C.; and Barták, R. 2012. In-
spect, edit and debug PDDL documents: Simply and effi-
ciently with PDDL studio. In International Conference on
Automated Planning and Scheduling (ICAPS), Demonstra-
tion Paper.
Shishko, R., and Aster, R. 1995. Nasa systems engineering
handbook. NASA Special Publication 6105.
Silva, J. M., and Silva, J. R. 2019. A new hierarchical
approach to requirement analysis of problems in automated
planning. Engineering Applications of Artificial Intelligence
81:373–386.
Singhi, S. 2005. Emacs mode for PDDL,
http://rakaposhi.eas.asu.edu/
f04-cse574-mailarchive/msg00088.html.
Strobel, V., and Kirsch, A. 2014. Planning in the Wild: Mod-
eling Tools for PDDL. In German Conference on Artificial
Intelligence (KI).
Vaquero, T. S.; Tonidandel, F.; de Barros, L. N.; and Silva,
J. R. 2006. On the Use of UML.P for Modeling a Real
Application as a Planning Problem. In International Con-
ference on Automated Planning and Scheduling (ICAPS).
Walden, D. D.; Roedler, G. J.; Forsberg, K.; Hamelin, R. D.;
and Shortell, T. M., eds. 2015. Systems Engineering Hand-
book: A Guide for System Life Cycle Processes and Activi-
ties. Hoboken, NJ: Wiley, 4 edition.
Wertz, J. R.; Everett, D. F.; and Puschell, J. J. 2011. Space
mission engineering: the new SMAD. Microcosm Press.

