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Summary

Main goals of this Ph.D. dissertation are the design, the implementation and
the validation of innovative natural interfaces able to e�ciently and e�ectively sup-
port the user when interacting with di�erent kind of machines and systems. The
interfaces represent one of the most critical aspect of an interaction system. They
act as contact points between the virtual world and the real one. Hence, their
development must be carefully planned. In the �rst part of this thesis, the analysis
of several Natural User Interfaces (NUIs) is presented, discussing their underlying
mechanisms and highlighting their weaknesses and strengths. Then, among all the
possible NUIs, this dissertation will focus on the use of Virtual and Augmented Re-
ality (VR/AR) interfaces to improve the human-machine/human-robot interaction
domain with particular interest for the Industry 4.0 context and serious gaming
scenario. The VR and AR technologies will be �rstly presented by analyzing their
functioning and work �ow. Afterwards, several original works regarding the use of
AR and VR in the Industry 4.0 domain will be presented and detailed. Speci�cally,
by analyzing how AR interfaces are currently employed to improve the e�ciency
of smart factories, some works related to the use of virtual interfaces to enhance
maintenance and training operations will be detailed. Furthermore, virtual robotic
teleoperation systems will be also considered, presenting some original works re-
lated to the use of RGB-D cameras and immersive VR interfaces to accurately
control industrial robot arms. The AR and VR technologies will be also combined
in the third chapter, discussing how hybrid virtual environments can be e�ectively
developed, additionally analyzing the impact of the �eld-of-view on the usability of
the virtual interfaces in the gaming context.
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Chapter 1

Introduction

A User Interface (UI) can be de�ned as �the medium through which the commu-
nication between users and computers takes place� [181]. Given an input (normally
from a human user), the machine computes the output which in turn is given back
to the user as a feedback. The �rst rudimentary machines forced users to provide
input using ine�cient and complex systems (e.g., punched cards or paper tapes).
Then, in 1968, Douglas Engelbart showed a combination of input/output interfaces
using a new device of his own invention: the mouse [289]. This new input interface
allowed users to provide input by simply moving a virtual cursor, displayed on a
video interface. If until Engelbart the functionality of the input paradigm was not
considered as fundamental as the machine itself, with the invention of the mouse
it became clear that the input modality would have been increasingly important
to properly interact with the machines. Despite it was possible to create a �per-
fect� machine, its performance would have been really limited by the users’ input
interface [99]. Hence, it became clear that the interaction between humans and
machines was of primary importance to develop a stable and e�ective system. The
very wide topic of the humans-machines communication is the main subject of the
Human-Computer Interaction (HCI) science [181] and nowadays it is possible to
�nd a plethora of di�erent types of interfaces.

Figure 1.1 shows an high-level view of the main input/output interfaces, clus-
tered by category. The input interfaces have been divided in four di�erent branches:
(i) Body Gestures, (ii) Voice, (iii) Brain, and (iv) Controller interfaces. Although
this dissertation mainly focuses on the Natural and 3D User Interfaces, the Con-
troller interface group has been added to the graph to provide readers a complete
overview of the di�erent types of input interfaces. However, this particular group
will not be discussed in this work. Referring to Fig. 1.1, the top-right red rectangle
highlights the so called Natural User Interfaces (NUIs). This peculiar set of inter-
faces encompasses those systems that allow the users to interact with the machines
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Figure 1.1: The Input and Output interfaces. The top-right rectangle highlights
the so called Natural User Interfaces

without the necessity to learn the underlying interface mechanism1. Similarly to
the input interfaces, the output ones have been divided in �ve distinct branches,
corresponding to the �ve di�erent human senses: (i) Video, (ii) Taste, (iii) Sound,
(iv) Haptic and (v) Smell.

In the following sections, both input and output interfaces will be presented
discussing their underlying mechanism.

1.1 The User Interfaces

1.1.1 The Natural Input Interfaces
Independently of the speci�c input interface, a NUI requires a tracking or recog-

nition system. Since the underlying systems may greatly di�er from one to another,
the Body, Voice and Brain interfaces will be discussed separately in the following
sections.

Body Gestures

Body gestures can be divided in three di�erent categories: (i) Hand, (ii) Head
and Eye gestures (Fig. 1.1). Hand gestures are normally classi�ed into static and
dynamic gestures [61]. The former accounts only for the position and orientation of
the hand without considering any type of movement. On the other hand, the latter
deals with the variations of the position and orientation of the hand with respect
to time. In order to detect the hand gestures, it is possible to employ at least
two di�erent methodologies: the contact based and vision based approaches [361].

1Although in this work the above de�nition of NUI is employed, it should be noticed that there
is currently an open debate around the word natural and its intrinsic meaning [275]
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The contact based approaches rely on the use of physical sensors that should be
worn or manually used by the users. These sensors may employ di�erent tracking
devices, such as mechanical [219], haptic [475], ultra-sonic [207] and inertial [384]
sensors. Although it has been show that the contact based approaches can be
quite e�ective in acquiring the hand’s gesture data, they require a direct contact
between the users and the sensors, making them bulky and uncomfortable to be
used. Therefore the vision based approaches have greatly attracted the attention
of the researchers, allowing to capture the hand’s movements without forcing users
to wear any type of device. These approaches normally employ RGB or RGB-D
cameras and possibly markers (active or passive) placed on the user’s hand. There
are at least two di�erent types of hand gesture representations: appereance and
3D model based [378]. Appearance representation methods try to create a 2D
hand model using color [46], silhouette geometry [34], deformable gabarit [206] and
motion [269] models. On the other hand, 3D model based methods try to create
the 3D shape of the hand using 3D texture volumetric [280], 3D geometric [171] or
3D skeleton [218] models.

A hand gesture recognition system is composed by four di�erent steps [378, 57]:
(i) detection, (ii) gesture modeling, (iii) feature extraction, and (iv) classi�cation.
The detection step involves capturing the gestures’ data using contact or vision
based systems. Then, the acquired data have to be properly modeled depending
on the application’s type. One of the simplest methods to represent static ges-
tures consists in using appearance approaches. However, since these approaches
struggle in identifying complex static hand gestures, 3D static methods are usually
employed. They are classi�ed in discriminative and generative approaches [57].
The �rst ones do not create a hand 3D model but they employ classi�ers trained
to map unknown hand shape data with appearance features. Instead, generative
approaches try to �t a 3D model of the human hand directly using the acquired
data. Dynamic gestures can be modeled using motion information and they usu-
ally require the tracking of the human hand centroid. Once it has been tracked, its
position, velocity and acceleration can be determined to create a model of the hand
motion. One of the main issues is related to the detection of the so-called gesture
spotting, the beginning and ending points of a speci�c gesture in a continuous mo-
tion. After the gesture has been properly modeled, features should be extracted to
recognize the related gesture. Several descriptors are available to extract features,
such as Fourier [164], discrete cosine transform (DCT) [5], wavelet [189], curva-
ture [488] and histogram of gradients (HOG) [116] descriptors. Then, the collected
features have to be recognized using a suitable classi�er. The most commons are
based on k-Means [120, 273] or k-Nearest neighbour [440] algorithms. Support vec-
tor machines and Hidden Markov model have been also successfully employed to
recognize hand features [79, 237]. Finally, some more recent approaches employ
arti�cial neural networks or deep networks to recognize the hand data [170, 231].
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The detection of head movements and gestures is becoming increasingly impor-
tant to �nd out humans’ intentions. These gestures allow humans to �select� objects
of interest or improve the human-computer communication [355]. Head movements
can be recognized using several approaches [355]. Computer vision methods rely
on the analysis of a single image or of a video sequence. Head pose information can
be extracted from a single image using several approaches [302]: appearance tem-
plate methods [30, 314], detector arrays [500], nonlinear regression methods [392,
501], manifold embedding methods [290, 415], and �nally �exible [232, 71] or ge-
ometric [140, 185] models. Video analysis is e�ectively carried out using tracking
approaches [302]. In [262], Scale-Invariant Feature Transform (SIFT) descriptors
are employed to match features points among di�erent video frames. Once de-
tected, the relative angle is computed determining the global head pose. Kupetz
et al. [236] have proposed a head pose estimation using infrared (IR) cameras and
LEDs. An infrared LED array is positioned on the user’s head and its movements
are tracked using the method proposed in [122]. The detected movements are sub-
sequently used to control an electric wheelchair. Several other computer vision
approaches exists (e.g., Lucas-Kaskade algorithm [502], 3D models [490], etc.); for
a complete and comprehensible review refer to [302, 355]. Sensor methods rely on
the use of ad-hoc hardware (e.g., accelerometers, gyroscopes, etc.) to detect the
head movements. Some examples can be found in [224], whose authors employ neu-
ral netowrks to calssify the accelerometer data or in [222], where gyroscope data are
used to determine the global head pose. It is worth noticing that it is also possible
to �nd commercial Virtual and Augmented Reality devices that detect and track
the head pose. Some examples (but not limited to) are the HTC Vive2, the Oculus
Quest3 and the Microsoft HoloLens 24. Finally, it is possible to detect the head
movements using acoustic-signal methods [379] that estimate the head direction by
localizing the origin of the human voice.

Similarly to the head movements’ recognition, eye detection has greatly cap-
tured the attention of the researchers. The eyes themselves and their movements
can convey emotions, needs and aspirations [320], playing a key-role in the human-
machine interaction context. Eye movements can be e�ectively tracked using com-
puter vision methods. They usually comprehend four steps: image acquisition, eye
detection, eye tracking and gaze estimation [163]. During the �rst step, an image
containing the eye and its surroundings is acquired, then the position of the eye
is detected in the second step. Once detected, the movements of the eye can be
tracked in the third phase and eventually the gaze direction can be estimated in
the last step. Several techniques exist to detect and track the eyes movements:

2https://www.vive.com/eu/
3https://www.oculus.com/quest/
4https://www.microsoft.com/it-it/hololens
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pattern recognition approaches [360, 433], shape-based techniques [62, 228] and
feature-based methods [213, 212]. Independently of the detection technique, the
aforementioned approaches employ a camera that captures the eye and the region
around it. Other approaches instead use IR cameras that illuminate the eye, lo-
calizing the corneal re�ection [395]. Examples of IR systems can be found in [491,
492]. Finally, due to thier intrinsic capability of being non-intrusive, the computer
vision methods have been widely researched and employed. However, it is worth
mentioning that there exist alternative methods that employ sensors placed around
the eye that analyze the electric potentail, known as electrooculogram [145].

Speech

Speech is one of the most important form of communication. It allows us to
convey intentions, actions and, more importantly, it is a natural and e�ective way
to exchange information among humans. Due to their importance, speech inter-
faces are expected to be employed to control machines and to exchange data with
them [131]. A speech recognition system is usually composed of four di�erent
steps [142, 313]: (i) signal acquisition, (ii) pre-processing, (iii) feature extraction,
and (iv) classi�cation. During the �rst phase, the audio signal is acquired using
dedicated hardware (e.g. microphones). Then, the signal is pre-processed, remov-
ing noise and dividing the signal itself into small frames that will be analyzed in the
following step [203]. Once pre-processed, the frames are analyzed to extract mean-
ingful features that will classi�ed in the last step. There exist several approaches
to extract features from audio frames, the more relevant being the following: Prin-
cipal Component Analysyis [382, 394], Mel Frequency Cepstral Coe�cients [375,
235] and Linear Predictive Coding [153, 160]. Finally, the extracted features are
classi�ed in the last step. It is possible to �nd several methods to e�ectively clas-
sify the audio features: acoustic phonetic approaches [405, 247], pattern recognition
methods [354], support vector machine [98, 493] and arti�cial neural networks [95,
8] (for a complete classi�cation, please refer to [131, 203, 313]).

Brain

Brain computer interfaces (BCIs) are increasingly employed to provide humans
with the capability of controlling machines by analyzing the brain activities [2].
Normally, the human brain controls the muscular and skeleton systems which in
turn allow us to interact and complete the desired action. A BCI instead allows
human operators to directly complete the action without involving the muscular
and skeleton systems [445]. A BCI is composed of four major steps: (i) signal ac-
quisition, (ii) artifact processor, (iii) feature extraction, and (iv) classi�cation [25,
445]. The �rst step involves the signal acquisition from the brain activities. It can
be done with invasive, partially invasive or non-invasive techniques. The former
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refers to read the brain signals by placing sensors inside the grey brain matter. On
the other hand, partially invasive techniques place sensors outside the grey brain
matter, reducing the risk of damage to the brain itself. Finally, the latter are the
most used ones and they employ electrodes placed outside of the skull. Several non-
intrusive techniques exist, the most well known are: Electroencephalogram [104],
magnetic and functional magnetic resonance imaging [22, 408], Electrocorticog-
raphy [356] and positron emission tomography [343]. Before acquiring the data,
the signal is ampli�ed easing the data acquisition. However, the acquisition may
produce artifacts that are subsequnetly removed in the artifact processor step [25].
Then the brain signal is analyzed in the feature extraction step. Features can be ex-
tracted using several methods such as discrete Wavelet transform [396], fast Fourier
transform [472] or Wavelet Packet Decomposition [444]. Finally, the features are
examined to extract useful information that will be converted in the related user’s
action. Several classi�cation methods are available, the most well-known (but not
limited to) are: Support Vector Machine [422], Common Spatial Pattern [37], multi
layer perceptron [220] and random forest methods [75]. Interested readers should
refer to [445] for a comprehensive review of BCI.

1.1.2 Output Interfaces
Human beings use their senses to receive stimuli from the environment. Hence,

the output interfaces have been divided according to the �ve human senses: (i)
Smell, (ii) Taste, (iii) Sound, (iv) Haptic, and (v) Video (Fig. 1.1). Since the
underlying working mechanism may greatly di�er from one interface to another, in
the following sections each of them will be separately presented and discussed.

Smell Interfaces

It is estimated that humans can recognize over a trillion of di�erent fragrances [50].
Besides recognizing di�erent odours, smell is also employed to de�ne a spatial map-
ping of the environment [100, 191] and to track objects [126, 350]. Given the impor-
tance of such sense, the smell interfaces have increasingly captured the attention
of researchers and therefore there exist several techniques to create the sensation
of smell. A smell interface can be de�ned as an olfactory display, a device ca-
pable of �being programmed to create an olfactory stimulus by emitting odorous
molecules (chemo-stimulation) or creating a sense of smell (electro-stimulation)�
[336]. Such devices can be classi�ed based on the their mechanism for produc-
ing smell and the most well-known are the following: ultrasonic atomization [38,
10], atomization through Venturi e�ect [215], evaporative di�usion [349, 177] and
electro-stimulation [165, 414]. Olfactory displays have been used in several areas.
Baus et al. [28] (Fig. 1.2) suggest that bad arti�cial smell can be more e�ective
than pleasing odours in the gaming context. Military training has also bene�ted
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