
Summary

This thesis discusses a statistical physics approach to linear estimation prob-
lems using expectation propagation (EP) based methods. EP dates back to
about twenty years ago, when it was independently discovered in the context
of statistical physics by Opper and later in the context of machine learning by
Minka. The ideas underlying the method draw upon the Thouless-Anderson-
Palmer approach introduced to study the physics of disordered systems and are
well suited to be applied to probabilistic modeling in general. In this thesis,
we have applied EP based schemes to a broad class of problems that, in their
simplest form, can be cast as finding solutions of underconstrained systems of
linear equations of the kind Fx = y, where x ∈ RN , y ∈ RM and M < N , to
be solved under additional constraints concerning the structure of the unknown
vector x, given the knowledge of the linear transformation F (often called the
measurement matrix) and of the set y of partial observations. Generalizations
of the problem just described often consist in sampling the vector y from a
non linear or stochastic componentwise function of Fx. The resulting set of
problems is very general and widely arises in physics, information processing
and engineering, especially in the context of applied optics, medical imaging
and bioinformatics. Some important applications, for example, include tomog-
raphy, magnetic resonance imaging and photon limited imaging. In this thesis,
linear estimation problems are addressed in a Bayesian framework, where the
additional constraints on the hypothesized structure of the sought solution are
encoded in suitable prior distributions. Thus, the resulting problem to be solved
approximately reduces to computing the marginals of some Boltzmann distribu-
tion, whose Hamiltonian is the sum of an interaction-like contribution penaliz-
ing solutions that do not fulfil the linear constraints and of an external field-like
contribution related to the prior distributions associated with the unknowns.
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