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Summary

Probabilistic graphical models provide an unified framework to analyze physical systems of
many interacting degrees of freedom, by combining elements of graph and probability theory.
Interacting physical systems display a variety of collective phenomena, depending on the mutual
dependencies between units and the consequent topological structure of their interactions, whose
first analysis led to the foundation of statistical mechanics and the study of phase transitions. A
paradigmatic example is given by classic spin models defined on graphs or lattices, historically
developed to describe the microscopic origin of magnetism; at the same time, they provide a gen-
eral description of a wide class of phenomena in several research fields, from biology, neuroscience,
computer science and econophysics. In this perspective, the formalism of graphical models pro-
vides a common framework and set of methodologies to analyze interacting systems in virtually
any field of pure and applied science. In general, the difficulty of analyzing high-dimensional
system is that the presence of interactions makes any computation unfeasible in practice, as the
volume of the configuration space grows exponentially with the system size. In this sense, the
term approximate inference in the manuscript’s title refers to the generic problem of estimating
relevant features of a probabilistic graphical model, such as its marginal distributions.

The main goal of this thesis is to introduce a novel class of approximation schemes to estimate
marginal probabilities on discrete (spin) models, called Density Consistency. This method shares
similarities with other message-passing schemes commonly employed in statistical physics and
inference, such as Belief Propagation and Expectation Propagation. The novelty introduced by
Density Consistency relies on a simple way to encode approximate loop corrections coming from
all the cycles in the graph, by exploiting a refined Gaussian approximation.

The structure of the manuscript resembles the research path I carried out during my three
years of PhD, and it is divided in two parts. After a brief introduction presented in the first
chapter, Part I focuses on the Density Consistency method: in particular, I discuss a generic
derivation on probabilistic graphical models of binary degrees of freedom, using the factor graph
representation. Its properties and its relations to other advanced mean field methods are discussed,
and its performances are evaluated on finite size systems. Furthermore, I present an analytic
theory for the ferromagnetic Ising model in the thermodynamic limit, providing a closed form
expression for the critical temperature. Finally, Density Consistency is applied to the Inverse
Ising problem in statistical inference and its performances are compared to other state-of-the-art
techniques.

Part II of the manuscript contains a standalone chapter, in which I discuss another project
I contributed to during my last year of PhD, somehow prompted by the COVID-19 pandemic.
By using message-passing techniques in a Bayesian inference framework, we developed an on-line
epidemic mitigation protocol in order to detect the individuals with the highest risk to be infected,
starting from the knowledge about their contacts, that can be registered using digital contact
tracing applications. Probabilistic inference provide a criterion to selectively isolate individuals
with the highest risk, so that an effective epidemic suppression can be achieved while avoiding
global containment measures, with consequent and well-known economic and social drawbacks.
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This project has been carried out jointly with another group of researchers based in Paris (France)
and Lausanne (Switzerland).

I summarize below the contents of each chapter and the list of co-authored papers, all of them
being covered in the manuscript.

Thesis Outline
Chapter 1: Introduction

I present some basic notions of equilibrium statistical physics, graph theory and
statistical inference, in order to provide a common background knowledge and no-
tation used through the whole manuscript.

Part I Loop corrections in spin models through Density Consistency

Chapter 2: Approximate methods in statistical physics
I discuss several state-of-the-art approximations in statistical physics and high-
dimensional inference, with a special focus on message-passing techniques such as
Belief Propagation. An additional detailed derivation of Expectation Propagation
is presented, that is required to better understand Density Consistency.

Chapter 3: Density Consistency
This is the core chapter of the manuscript, where Density Consistency is derived
on graphical models of binary spins and its main properties are discussed. The
contents of this chapter are included in Paper A.

Chapter 4: Results: forward problem
I evaluate the performances of Density Consistency in comparison to other ap-
proximations. In particular, the first part presents a series of results on finite size
systems, while in the second DC is used to derive a quasi-analytic solution for the
ferromagnetic Ising model in the thermodynamic limit. The contents of this chapter
are included in Paper A.

Chapter 5: The Inverse Ising problem
This chapter focuses on the Inverse Ising Problem in statistical physics. After
presenting some background motivations and formulating the problem in a Bayesian
framework, I derive an approximate solution for the maximum likelihood estimator
using Density Consistency, whose performances on synthetic data are compared
with other state-of-the-art techniques. The contents of this chapter are included in
Paper B.

Chapter 6: Conclusions and future perspectives
I summarize the main findings obtained so far on Density Consistency. In addition,
I describe some future directions and possible applications of Density Consistency
to be yet investigated.

Part II Bayesian inference approaches for epidemic mitigation

Chapter 7: Bayesian inference approaches for epidemic mitigation
This chapter describes a Bayesian-inference guided mitigation protocol for epidemic
spreading processes from contact tracing data. The main method used to perform
the approximate inference is Belief Propopagation; results are validated on top of
a compartmental model designed to describe a realistic spreading of SARS-CoV-2
in a population. The contents of this chapter are related to Paper C.
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Chapter 1

Introduction

This opening chapter reviews some basic concepts in statistical physics and its connection
to inference problems, that will be used in the rest of the thesis. In addition, some elementary
notions about graph theory will be recalled in Sec. 1.2, with a particular attention to the factor
graph representation that will be needed in Chapters 2-3. Finally, a very brief introduction to
Bayesian inference is presented in Section 1.3.

1.1 Statistical Physics and thermodynamics
Statistical physics was born at the end of 19th century as an attempt to provide a microscopic

interpretation of classical laws of thermodynamics. Thermodynamics deals with global properties
of physical systems, that can be described in terms of few relevant macroscopic quantities. A
macroscopic physical system is characterized by an enormous (∼ NA = 1023 where NA is Avo-
gadro’s constant) number of interacting degrees of freedom, so that deterministic laws of classic
mechanics are unfeasible to describe the behaviour of each microscopic object. In this perspective,
statistical physics relies on a probabilistic approach where each microscopic configuration is asso-
ciated to a certain probability to be observed under suitable external conditions; in this way the
macroscopic behaviour is obtained through a statistical, averaged description of the phenomena
occurring at the microscopic level.
Historically, the first microscopic model developed is the one of the ideal gas, where macroscopic
quantities like pressure or internal energy can be derived from the collective microscopic motion of
each gas particle that can freely move inside a box with fixed volume. In this case, the assumption
that degrees of freedom are independent makes the computation of thermodynamic variables easy:
however, it fails to capture the correct behaviour of the gas at low temperature (for instance, when
a phase transition to the liquid occurs upon lowering the external temperature). The presence
of interactions make most statistical physics models not solvable exactly, so that approximation
methods are needed to estimate their collective behaviour. In the rest of the manuscript, we will
deal with classical statistical physics, where the degrees of freedom are real (or eventually discrete)
variables: this means that the quantum nature of the microscopic degrees of freedom (described
by wave-functions in infinite-dimensional Hilbert spaces) is not taken into account. The whole
information about the microscopic interactions between the degrees of freedom is encoded in the
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1 – Introduction

Hamiltonian H, that can be generically written as a sum of k-body functional interactions:

H (x1, . . . xN ) =
N∑︂
k=1

H(k) (x1, . . . , xN ) (1.1)

H(k) (x1, . . . , xN ) =
∑︂
i1,...ik

J̃i1,...ikϕ
(k)
i1,...,ik

(xi1 , . . . , xik ) (1.2)

where each variable xi denotes a degree of freedom (they might be canonical coordinates or
momenta, rotational or vibrational degrees of freedom associated to complex molecules, magnet
dipoles, and so on). In most cases, one assumes that a certain physical system described by a
Hamiltonian of the type (1.1) is in equilibrium with a heat bath (also called reservoir) at a fixed
temperature T . Therefore, microscopic degrees of freedom are allowed to exchange energy with
the bath, that is assumed to be un-modified from these interactions (this is consistent with an
assumption of an infinitely large reservoir). These settings define the so-called canonical ensemble.
The probability distribution describing the probability of observing each microscopic configuration
in equilibrium with the reservoir is expressed by the Boltzmann law:

p (x1, . . . , xN ) = 1
Z
e−βH(x1,...,xN ) (1.3)

where the quantity β=̂1/kBT is called inverse temperature. The above expression has a very simple
interpretation: configurations with low energy are more likely to be observed with respect to high-
energy ones, and states with same energy have the same probability to be observed. Moreover,
the ratio between the probability of high-energy configuration w.r.t. low-energy ones depends on
the temperature T , being an exponential decreasing function w.r.t. β. In this perspective, two
extreme cases can be distinguished: at infinite temperature (β → 0), the Boltzmann’s law (1.3)
becomes a uniform measure over all the configurations; on the other hand, in the zero-temperature
limit (β → ∞), the equilibrium distribution becomes peaked over configurations with minimum
energy (ground states), all the others having a null measure. The constant Z, called partition
function, ensures the correct normalization of (1.3) and it can be computed by integrating over
all the possible microscopic configurations:

Z =
∫︂
dx1 . . . dxN exp [−βH (x1, . . . , xN )] (1.4)

The full information about the macroscopic behaviour of the physical system is encoded into the
partition function (1.4). Apart from a constant prefactor, its logarithm defines the Helmoltz free
energy, that is equivalent to the one defined in standard thermodynamics:

F =̂− 1
β

logZ ≡ U − TS (1.5)

where U is the internal energy and S is the entropy. It is easy to show that these quantities can
be expressed as suitable expectation values over the Boltzmann measure (1.3):

U =
∫︂
dxp (x)H (x) (1.6)

S = −kB
∫︂
dxp (x) log p (x) (1.7)

where (1.7) is the expression derived by Shannon in information theory [38, 125]. The above
distribution describes an ensemble of particles interacting through the Hamiltonian H, subject
to thermal flucutations at inverse temperature β. The analogy with information theory allows
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1.1 – Statistical Physics and thermodynamics

to derive the canonical ensemble distribution from the maximum-entropy principle [38]. The
main goal of statistical physics is to provide a description of the macroscopic physical system by
evaluating its free energy, from which any physical quantity can be computed. For instance, the
average energy and entropy can be obtained by:

U = ∂ (βF )
∂β

S = ∂F

∂T
(1.8)

There are only few examples in which an exact evaluation of F can be performed, as in gen-
eral the configuration space grows exponentially with the system size. The simplest case occurs
for non-interacting models, i.e. where the Hamiltonian contains only 1−body terms and the
Boltzmann law (1.3) factorizes over single-node marginals, so that an exact computation can be
carried out (e.g. in the ideal gas). The interesting cases where degrees of freedom interact under
suitable potentials are intractable in almost all cases. Interacting models give rise to a variety
of collective phenomena, that can be described mathematically by evaluating the free energy F
in the thermodynamic limit, i.e. when the number of degrees of freedom goes to infinity. The
existence of collective phenomena determines different macroscopic behaviours, corresponding to
changes in the free energy under external conditions. The point(s) at which the system changes
its global behaviour by a small perturbation of the control parameter (e.g. temperature) define
a phase transition: mathematically, they correspond to points at which the free energy shows a
non-analytic behaviour in the thermodynamic limit.

1.1.1 Discrete models and binary spins
In this thesis, we will mainly focus on systems with discrete degrees of freedom, so that each

of them takes values on a finite alphabet X = {a1, . . . , aq}. The simplest case corresponds to a bi-
modal support, i.e |X | = 2: without loss of generality, the two states can be taken as symmetric,
namely σi ∈ {−1,1}. In this setting, the generic p−body functional interactions in (1.1) can be
simplified as the product of the p degrees of freedom that participate to the interaction:

H (σ1, . . . , σN ) =
∑︂
i

J̃iσi +
∑︂
i,j

J̃ijσiσj +
∑︂
i,j,k

J̃ijkσiσjσk + . . . (1.9)

Discrete degrees of freedom defined on {−1,1} are typically called binary spins in statistical
physics: indeed they represent the classical counterpart of 1

2−spin models in quantum mechan-
ics, used to describe the behaviour of the electron’s magnetic dipoles in crystal (or disordered)
structures. In particular, the scalar degree of freedom σi can be related to the projection of the
spin-momentum operator along one of the three spatial axis. The simplest - and yet highly non-
trivial - example of an interacting model of classic spins can be obtained from (1.9) by keeping
only pairwise interactions, and it is known in the literature as the Ising model. For convenience,
we rewrite its Hamiltonian by specifying the 1-body terms (also called external fields and denoted
with hi) and 2-body couplings, denoted in the following with Jij :

H (σ1, . . . , σN ) = −
∑︂
i

hiσi −
∑︂
i,j

Jijσiσj (1.10)

In a real physical system, the strength of interactions typically depend on the distance between
the two spins, that assumed to occupy the sites of a certain topology (e.g. a lattice): as a
consequence, interactions can be neglected if the distance between them is large enough; the
simplest case corresponds to retaining only the interactions between the “closest” spins (also
referred to as nearest neighbours), so that each spin interacts with a small subset of the other
variables: as a consequence, not all the Jij are present in (1.10). A more mathematical description
of the interaction topology is based on graph theory, discussed in the next section. In general,
depending on the sign of the couplings we distinguish three very different scenarios:
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1 – Introduction

• if all the couplings are positive, i.e. Jij > 0, the model is ferromagnetic

• if all the couplings are negative, i.e. Jij < 0 the model is called antiferromagnetic

• if couplings are both positive and negative, the model is called spin glass

The above categorization can actually be extended to Hamiltonians including high order interac-
tions as in 1.1: for instance, the spin-glass limit where the all possible k−spin couplings (up to
the N -body term) are considered and all the k-th order interaction tensors are sampled from a
Gaussian distribution defines the Random Energy Model, developed by Derrida in [41].
Each coupling in the Hamiltonian defines a “soft” constraint (at T > 0) that favours configu-
rations where the product Jijσiσj is positive. This is true for any k-body term: for instance,
an external field hi favours configurations where σi is aligned to it. In the ferromagnetic case,
nearest neighbours spin prefer to be aligned, so that there is a competition between the energetic
term and the thermal fluctuations each spin is subject to. Depending on the graph topology,
this competition determines a different global behaviour in the thermodynamic limit, controlled
by the external temperature T : in particular, below a critical value Tc, the energetic term dom-
inates the contribution to the free energy, so that the system is characterized by a global spin
ordering (ferromagnetic phase); conversely, at high temperatures the thermal fluctuations destroy
such ordering, so that the free energy is dominated by configurations with no alignment between
nearest-neighobour spins (paramagnetic phase). In a homogenous model, i.e. when all the inter-
action terms in (1.10) are equal, this phase transition can be characterized in terms of a unique
order parameter, namely the magnetization m:

m (β) = 1
N
⟨
∑︂
i

σi⟩ = − 1
β

∂F

∂h
(1.11)

where ⟨·⟩ denotes the ensemble average w.r.t. the Boltzmann measure (1.3) with the Ising Hamilto-
nian (1.10). An abrupt change of the order parameter m determines a ferromagnetic-paramagnetic
phase transition: the free energy computed as a function of m shows indeed a different behaviour
in the two regimes: at T > Tc it has a unique minimum at m = 0; at T < Tc, the point m = 0
becomes a maximum and two symmetric minima (in the absence of an external field) appear at
m = ±m0 (T ). This behaviour signals a spontaneous symmetry breaking, so that in the thermo-
dynamic limit the system is observed in just one of the two minima.
Conversely, with Jij < 0 the two spins try to minimize the energy by having oppisite sign (↑↓).
Spin glasses encode both positive and negative couplings, that are typically assumed to be ran-
domly drawn from a certain distribution (for instance, a Gaussian). Combining all the interactions
together, it might happen in the antiferro / spin glass scenario that no configuration satisfies all
the constraints induced by the couplings. This behaviour determines a frustration in the model.
The ground-state free energy of such systems typically displays an exponential number of min-
ima, corresponding to those configurations that minimize the number of un-satisfied constraints.
The main issue is that these configurations depend on the particular instance of the disordered
couplings. The common approach used in this case is to analyze the typical properties of the free
energy with respect to the distribution of the interactions, that are assumed to be varying on a
time-scale much larger with respect to thermal fluctuations (this feature is referred to as quenched
disorder). The corresponding free energy is obtained by averaging with respect to the parame-
ters distribution, whose computation requires highly non trivial analytic tools (among them, the
replica method [89]).
Historically, the ferromagnetic model is the first one introduced in the seminal works by Lenz [80]
and Ernst Ising [66] on a one-dimensional chain. However, the first exact solution displaying a
ferromagnetic-paramagnetic phase-transition at finite T was obtained by Onsager on the square
lattice [102], in the absence of external fields. The general case in d ≥ 3 still lacks for an exact
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solution in the thermodynamic limit: in this case, the equilibrium behaviour of the model can
be analyzed both by using numerical techniques (such as Monte Carlo sampling), mean-field like
theories (as we will discuss in the next Chapter) or eventually using field theories (such as con-
formal bootstrap).
With regard to spin glass models, a first mean-field theory was developed by Sherrington and
Kirkpatrick [126], who introduced an analytic solution for the fully connected spin glass with
random couplings (or SK model, named after the authors). A huge step forward to understand
the nature of the spin glass phase at low temperatures was developed by Parisi in a series of works
[89, 106], postulating how the symmetry of the paramagnetic phase is broken into a hierarchical
multi-valley structure, which turns out to be exact in the fully connected spin glass.
However, in the present manuscript we will not deal with ensemble properties 1, all the discussion
being presented at the single instance level, i.e. for a given realization of the Hamiltonian.
As an overall final remark, the success of discrete (or spin) models in statistical physics relies on
their ability to describe a large variety of cooperative phenomena observed several fields of pure
and applied science: for instance, the Ising model can be used to describe phase separations in
binary mixtures [140], DNA thermal denaturation [136], cancer growth [131], urban segregation
[122] or financial markets [150].
Any discrete model with pairwise interactions can be defined on a generic topology, depending on
how the interactions are arranged. Mathematically, the topological connections between degrees
of freedom can be described in terms of a graph, as discussed in the next section.

1.2 A brief introduction to Graph Theory
Graphs are mathematical structures encoding pairwise relations/interactions between pairs of

objects. A graph G = (V,E) is defined by a (ordered) set V = {1, . . . , N} of vertices - also called
nodes - and by a set E = {(i, j) | i, j ∈ V, i /= j} of node pairs, called links or edges. Each node
is associated to a degree of freedom and links represent the interactions or relations between the
two nodes connected by the link. The topological connections between nodes can be encoded in
the so-called adjacency matrix of the graph, a N ×N square matrix whose entries are defined as
follows:

Aij =
{︄

1 if (i, j) ∈ E
0 if (i, j) /∈ E

(1.12)

so that all the non-zero elements of A correspond to an edge (i, j). Nodes connected between
an edge are tipycally referred to as adjacent or nearest neighbours (n.n.), a nomenclature that
will be extensively used in the rest of the manuscript. Graphs can be directed or undirected: in
the latter case, if a node i is connected to another j it is also true that j is connected to i; as a
consequence, the adjacency matrix defined by (1.12) is symmetric by construction. On directed
graphs, each edge is an ordered pair of nodes, i.e. it is characterized by a direction on which the
link is defined; as a consequence, the corresponding adjacency matrix is not symmetric. Figure
1.1 shows two examples of an undirected (left) graph and a directed (right) graph with five nodes.
The neighborhood of a node i is the set of nodes directely connected to i by a link, namely
∂i = {j ∈ V | (i, j) ∈ E}. We also define the degree of a certain node i as the number of nodes
in its neighborhood, i.e. di = |∂i|. On directed graphs, one should distinguish between inner
and outer links with respect to a node i, where the inner (resp. outer) edges in the neighborood
are defined as the number of links that point to (resp. start from) node i. A walk (or path) in

1Here the word “ensemble” is intended with respect to the distribution of interaction strenghts in the
Hamiltonian.
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a graph is a sequence of edges connecting two nodes: in particular, given a sequence of vertices
{k0, . . . , kn+1} with k0 = i and kn+1 = j, a walk between i and j is defined by the set of edges
{(ka, ka+1) ∈ E, a = 0, . . . , n}, n being the path’s length. Walks are closed if the starting and the
ending node coincide, i.e. i ≡ j; closed walks are typically called loops. An important distinction
that will be used in the rest of the manuscript is made between sparse and dense graphs. A dense
graph is characterized by a number of edges that is “close” to its maximum number: the extreme
case is achieved when each node is connected to all the others, so that |E| =

(︁
N
2
)︁
∼ O

(︁
N2)︁

and the corresponding adjacency matrix is given by Aij = (1− δij); this topology is called fully-
connected. Conversely, sparse graphs are characterized by a “low” number of edges w.r.t. the
fully-connected limit, so that |E| ∼ O (Nα) with α < 2. At fixed number of vertices, the graph
containing the smallest number of edges while still connecting all the nodes by at least one link is
called tree (or acyclic graph): in this case, the number of edges is simply equal to the number of
vertices minus one, i.e. |E| = N − 1; tree graphical models are particularly relevant in statistical
physics since they can be efficiently solved using message-passing techniques, as we will discuss
in the next Chapter. The graph formalism just introduced allows to define models with pairwise

Figure 1.1: Example of an undirected graph (left) and directed graph (right) with N = 5 vertices.
The arrows in the directed graph indicate the direction of the links.

interactions on any topology. From now on, we will refer to the Ising model as any binary spin
model with 1 and 2-body couplings, defined on a generic graph G = (V,E):

H (σ) = −
∑︂

(i,j)∈E

Jijσiσj −
∑︂
i

hiσi (1.13)

p (σ) = 1
Z

exp

⎡⎣ ∑︂
(i,j)∈E

βJijσiσj + β
∑︂
i

hiσi

⎤⎦ (1.14)

where the couplings are assumed to be non-zero for all the nodes i, j connected by a link in the
graph, and we used a vectorial notation σ = {σ1, . . . , σN} to indicate the full set of variables.
In the rest of the thesis, we will make use of several graph architectures with different properties,
depending on the presence of short/long loops. A simple distinction can be made between graphs
that locally behave as trees and graphs with short loops. For instance, random graphs gener-
ated according to the Erdős-ény model [46] or with constant degree (also called random regular
graphs) can be considered as locally tree-like: the reason is that the typical length of loops in-
creases with the number of nodes as O (logN). Among the architectures that contain short loops
we will mainly deal with lattices, i.e. graphs with constant degree (apart from eventual open
boundary conditions) whose edges distribution is represented by a regular structure with no topo-
logical randomness (linear chains, regular planar graphs, hypercubic lattices, and so on). Lattice
models are among the most studied objects in condensed matter physics, mainly because of the
analogies with the typical atomic arrangment in solid crystals; moreover, the regular structure of
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these graphs allows (in some cases) to carry out analytic calculations, by exploiting additional
model symmetries [128]. Somehow in between the two above classes, we will also deal with other
architectures inspired by real-world networks, such as small-world [137] and scale-free graphs [8].

1.2.1 Factor graphs
Graphs defined as in the previous section are well-suited to describe models with pairwise

interactions. However, many physical systems or analogous models in biology or computer sci-
ence can display high-order relations between degrees of freedom. A natural way of generalizing
graphical models previously introduced to this setting exploits the factor graph representation
[99]. The factor graph is a powerful construction that allows to describe the factorization of a
certain multivariate probability distribution in terms of “local” objects, encoding for arbitrary
high-order interactions.
A factor graph is defined by a set of variable nodes V = {i}Ni=1, a set of factor (or check) nodes
F = {a}Ma=1 and a set of edges E = {(i, a) | i ∈ V, a ∈ F}: edges always connect nodes of the
two different sets, so that the resulting graph is bi-partite. Each node i ∈ V represents a real
(or discrete) degree of freedom xi; conversely, each factor node a ∈ F is associated to a certain
non-negative function ψa (also called compatibility or potential function) that takes into account
the local mutual dependencies between the subset of variable nodes connected to a by a link
(i, a) ∈ E. A toy example of a factor graph is shown in Figure 1.2.

1

2 4

3 5

6

7

8

9
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B

C

D

E

F

G

Figure 1.2: Toy example of a factor graph with 9 variable nodes and 7 factor nodes

The joint probability distribution over the factor graph G = (V, F,E) with prescribed com-
patibility functions {ψa}a∈F can be expressed as:

p (x) = 1
Z

∏︂
a∈F

ψa (x∂a) (1.15)

The above expression defines a probabilistic graphical model (also called markov random field)
[78, 99, 134], and it will be the central object under investigation through the rest of this thesis.
The potential functions ψa can, in principle, have a very general expression depending on the
specific interactions of the problem investigated, so that the factor graph formalism can be used
to describe a wide range of models in inference, machine learning, combinatorial optimization.
In the latter case, (1.15) can be used to describe the set of solutions of constraint satisfaction
problems like k-SAT [99]. In statistical physics, any model of interacting degrees of freedom
described by a Hamiltonian of the type (1.1) shows indeed such a factorization property, as a
consequence of the locality of physical interactions. In particular, the Boltzmann law (1.3) can
be expressed into the form (1.15), by identifying each k-body interaction term in the Hamiltonian
(1.1) with a compatibility function, thanks to the following map:

J̃i1,...ikϕ
(k)
i1,...,ik

(xi1 , . . . , xik ) = − 1
β

logψa (xi1 , . . . , xik ) (1.16)
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where ∂a = {i1, . . . , ik}. If all the factor nodes have degree 2, the factor graph reduces to a simple
graph, so that a ≡ (i, j) and the potential functions ψa ≡ ψij describe the mutual local interaction
between two nodes. In this setting, Eq. 1.15 defines a pairwise graphical model.

1.3 Statistical Inference
The word inference denotes a generic process that allows to retrieve information from a cer-

tain amount of data. Nowadays, inference problems appear in any field of science, from signal
processing to computational biology, from neuroscience to artificial intelligence, and - particularly
relevant in the post-Covid world - in the context of epidemic spreading. The increasing availaibil-
ity of large-scale datasets in the last decades is challenging the scientific community to develop
computational efficient tools to perform inference in high-dimensional systems.
Since data are always affected by some noise, its is necessary to rely on a probabilistic description:
therefore, with the name statistical inference we typically refer to the process of deducing some
information about a probabilstic model by the analysis of data, whose most common approach
is based on the Bayesian framework. A Bayesian inference problem aims at deriving features of
some unknown set of variables {xi}i=1,...,N , by knowing some measurements of another set of
quantities {yµ}µ=1,...,M ; furthermore, we assume to know a model (or hypothesis) H describing
the deterministic relation between the two sets of variables.
Bayesian inference allows to express the probability distribution of the variables x to be inferred
conditioned to the observed data y, and it can be derived from law of conditional probability [87]
(or, more directly, from the Bayes theorem):

p (x | y,H) = p (y | x,H) p0 (x)
p (y,H) (1.17)

Each of the quantities in (1.17) has a speficic meaning and nomenclature. The term p (x | y,H)
at the left-hand side is called posterior distribution, representing the probability of the unknown
quantites conditioned to the observed data: it quantifies our belief after observing the data.
Conversely, p0 (x) is the prior distribution, encoding additional a-priori information we assume
to know about the quantities to be inferred: in other words, it represents our belief before observing
the data. The term p (y | x,H) is the likelihood, quantifiying the probability of observing the data
for given values of the unknown parameters, and it has to be interpreted as a function of the latters
at given data. In practice, the likelihood represents as a stochastic function, encoding how the
observed quantities are related to the unknown ones with the additional presence of noise. Finally,
p (x | H) is the evidence, and it is a constant w.r.t. the unknown variables x, that ensures the
normalization of the posterior.
In many applications, the model is given by external information, i.e. laws describing the relation
between x and y. A simple example is given by Linear Estimation Problems (discussed in the
next chapter). The unknown vector x might as well describe the parameters of a certain statistical
model describing an input-output relation, as it happens in linear regression or, more in general,
in supervised learning.
There are also situations where we only have empirical measurements about some quantity of
interests, without a stastitical model describing their mutual dependencies: in these cases, it
is necessary to exploit an effective statistical description, such that the resulting model is the
“fairest” one to describe the data. The most common - and rigorous - approach relies on the
maximum entropy principle [125], that allows to reconstruct the least-biased distribution (in
terms of entropy) subject to additional constraints in such a way to be compatible with the data.
We will come back to this issue in Chapter 5 for the inverse Ising problem.

18



1.3 – Statistical Inference

1.3.1 Connection to Statistical Mechanics
The Bayesian approach can be directly linked to statistical mechanics by rewriting the posterior

distribution in terms of the Boltzmann law:

pβ (x | y,H) = 1
p (y, β) exp [β log p (y | x,H) + β log p0 (x)] = e−βH(x|y)

Z (y, β) (1.18)

where in the right-most hand side H is the Hamiltonian, to be considered as a function over the
x components, each one representing a microscopic dregree of freedom. Further notice that the
additional parameter β plays the role of a fictious temperature, providing an exact mapping to the
statistical physics picture. In particular, the MAP estimator coincides with the ground state of
the Hamiltonian in (1.18), at it can be computed by letting β →∞. In the language of disordered
systems, the data y play the role of quenched disorder. Moreover, in this notation the evidence is
nothing but the partition function Z of the model. Typically, the prior distribution is factorized
over the x components, so that the second term in (1.18) is interpreted as a 1-body interaction
term, while all the remaining interacting part is encoded into the (log) likelihood function.
The connection between statistical physics and inference dates back to the seminal works by
Jaynes [68] and Shannon [125], and nowadays the two branches are more and more connected,
as developments into one of the two find applications in - or give more understanding to - the
other. This connection allows to interpret common estimators used in Bayesian inference in statis-
tical physics terms: for instance, the maximum-a-posteriori (MAP) estimator is equivalent to the
ground state of the Hamiltonian in (1.18), and it can be computed in the limit β →∞; conversely,
marginal probabilities computed over the posterior coincide with equilibrium expectation values
over the Botlzmann measure at the right hand side.
The connection to statistical physics further allows to address more information-theoretic ques-
tions: for instance, under which conditions the information encoded in the data is sufficient to
retrieve the unknown quantities. This type of questions can be formulated in terms of algorithmic
phase transitions, separating easy regimes where inference is possible from hard regimes where it
is not, typically depending on the fraction between the number of observations M and the number
of variables to be inferred N . Furthermore, somehow in between the two aforementioned phases
one should distinguish regimes where inference is computationally feasible from where it is not
[149].
We finally remark that many problems in statistical inference can be considered as dual or inverse
with respect to what typically done in statistical physics: indeed, in the latter case one typically
starts from a known model with the aim of computing some relevant observables; in the former
the process is reversed, so that we want to gain insights of a unknown model by knowing some
observations. This connection will be transparent in Chapter 5 where we will discuss the inverse
Ising problem.
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Chapter 2

Approximate methods in
statistical physics

This chapter reviews some approximation methods commonly used in statistical physics. In
particular, Section 2.1 introduces a variational approach to compute free energy approximations in
probabilistic graphical models, based on the Gibbs free energy minimization. This setting allows
to derive the Mean-Field method and the Bethe Approximation, discussed respectively in Sections
2.1.1 and 2.2. Section 2.3 summarizes other techniques that improve the Bethe Approximation on
loopy graphs. Finally, 2.4 describes Expectation Propagation in the context of high-dimensional
inference. Most of the contents of this chapter will be needed to better understand the derivation
of Density Consistency in Chapter 3, and to make numerical comparisons in Chapter 4.

2.1 Variational methods
The free energy is a fundamental quantity in statistical physics, as it contains all the informa-

tion required to describe the macroscopic behaviour of a physical system at equilibrium. Knowing
the free energy and its dependency on the model parameters (specified by the Hamiltonian) and
on external control quantities (e.g. temperature), any observable can be computed by performing
suitable derivatives on it. However, there are only a few examples in which this quantity can be
computed exactly, for instance in very homogeneous models in the thermodynamic limit. For a
generic physical system of N interacting degrees of freedom, the computation of the free energy is
an intractable problem: in particular, when the variables take values on a discrete finite alphabet
X , its computation scales exponentially with the system size N as O

(︂
|X |N

)︂
. In the language of

computational complexity, evaluating the free energy is typically a ♯P-complete problem [95, 99].
For this reason, in the statistical physics community a lot of effort has been devoted to design
tractable approximations to the free energy. In the following, we will discuss variational methods
in the generic context of probabilistic graphical model discussed in Section 1.2.1. We will mainly
restrict to models of discrete variables, denoted with σi ∈ X , even if the same reasoning can be
applied to continuous degrees of freedom. Let us consider the following graphical model, whose
probability density is given by:

p (σ | β,θ) = 1
Z

exp [−βH (σ | θ)] = 1
Z

∏︂
a

ψa (σ∂a | β,θ) (2.1)

where β = T−1 and we set kB = 1 for simplicity. The above equivalence holds for any model
defined by a Hamiltonian H with local interaction terms, included into θ, so that the Boltzmann
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distribution can always be written as a product of local terms ψa. We recall the definition of the
Helmholtz free energy:

F (β,θ) = − 1
β

logZ (β,θ) (2.2)

In the following, we will drop the dependency on β and on the model parameters θ to simplify
the notation. Variational methods can be designed starting from a functional expression for the
free energy, tipycally referred to as the Gibbs variational free energy , and defined as follows:

F [q] = U [q]− TS [q] . (2.3)

The quantities U and S refer respectively to the variational internal energy and the variational
entropy:

U [q] =
∑︂

σ

q (σ)H (σ) = − 1
β

∑︂
a

∑︂
σ∂a

q (σ) logψa (σ∂a) (2.4)

S [q] = −
∑︂

σ

q (σ) log q (σ) (2.5)

where the right hand side of (2.4) follows from (1.16). In the above expressions, q is a trial prob-
ability distribution, and the square brackets in (2.3) indicate that the quantity F is a functional
of q. The variational principle states that the physical system under investigation is described
at equilibrium by the distribution q∗ minimizing (2.3), subject to the constraint that q∗ has to
be normalized to 1. Constraints can be included by means of Lagrange multipliers and using the
method of constrained optimization. Let us consider the following modified Gibbs free energy,
where the normalization constraint is included by using a Lagrange multiplier λ:

Fλ [q] = F [q] + λ

(︄∑︂
σ

q (σ)− 1
)︄

(2.6)

It is straightforward to show that minimizing (2.6) w.r.t. q (σ) leads to the Boltzmann distribution
(2.1) and the Gibbs free energy minimum corresponds to the Heltmholtz free energy:

p = argmin
q
Fλ [q] = 1

Z
e−βH(σ) (2.7)

F = min
q
Fλ [q] = Fλ [p] (2.8)

Equivalently, one can show that inserting the Boltzmann law as trial distribution into (2.3) leads
to the Helmholtz free energy (2.2). However, this formal justification of the variational principle
does not help in computing the free energy. Indeed, in deriving (2.7), we just assumed that the
trial probability distribution has to be normalized. In statistical mechanics, many approximations
rather exploit factorized trial distributions to approximate the true free energy, and the minimiza-
tion procedure leads in general to a system of self-consistent equations to be solved iteratively do
determine the approximate trial probabilities. Using the above reasoning, the variational principle
can also be rephrased as:

F [q] = F + 1
β
DKL (q || p) (2.9)

where DKL is the Kullback-Leiber divergence between two probability distributions [38]:

DKL (q || p) =
∑︂

σ

q (σ) log q (σ)
p (σ) (2.10)

In this way, the Gibbs free energy can be used to compute upper bounds to the true free energy,
since DKL (q || p) ≥ 0, the equality being satisfied only when q (σ) ≡ p (σ).
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2.1.1 Mean Field
The simplest variational approach can be obtained by assuming that the trial probability

distribution is factorized over single-node marginals: this approximation is known as naïve Mean-
Field (nMF, or simply Mean-Field), and it represents the first step in analyzing any model in
statistical physics, by relying on the simple assumption that the degress of freedom are un-
correlated. The MF trial distribution has the following expression:

qMF (σ) =
∏︂
i∈V

qi (σi) (2.11)

where each qi is the single-node marginal over node i, also called belief. By plugging the above
trial expression into the Gibbs Free energy functional (2.3), it is straightforward to show that the
corresponding Mean-Field variational free energy is given by:

F
[︁
qMF

]︁
= − 1

β

∑︂
a∈F

∑︂
σi,i∈∂a

logψa (σ∂a)
∏︂
i∈∂a

qi (σi) + T
∑︂
i∈V

∑︂
σi

qi (σi) log qi (σi) (2.12)

Note that while the Gibbs free energy is a function of the full joint probability distribution, the
mean-field free energy is only a functional of single-node beliefs and it contains a polynomial
amount of terms w.r.t. the system size N . After adding a set of normalization constraints for
each single-node belief, we are left with the following minimization:

FMF = min
{qi}i∈V

{︄
F
[︁
qMF

]︁
+
∑︂
i∈V

λi

(︄∑︂
σi

qi (σi)− 1
)︄}︄

(2.13)

where we introduced a set of Lagrange multipliers {λi}i∈V and FMF corresponds to the mean-
field approximation to the true free energy. Minimizing the above expression leads to a set of
self-consistent equations to determine the marginals qi. On the other hand, minimization w.r.t.
the multipliers λi ensures that the single-node beliefs are correctly normalized. Once the self-
consistent equations are solved, one can plug in their expression into 2.12 to get the approximate
Mean-Field free energy FMF . The main drawback of the Mean-field approximation is that it
neglects all the information about correlations, so that the joint distribution of any set of variables
(or equivalently, their expectation value) is trivially factorized:

⟨σi1 , . . . , σin⟩qMF =
n∏︂
k=1
⟨σik⟩qMF (2.14)

Mean field theory for the Ising model

As a simple example, we breifly discuss the mean-field theory for the ferromagnetic Ising model.
In this case, the degrees of freedom take two symmetric values, i.e. σi ∈ {−1,1}. This allows to
parametrize the single-node beliefs qi by a unique real quantity, namely the magnetization mi,
which is nothing but the expectation value of σi over qi:

qi (σi) = 1 + σimi

2 (2.15)

⟨σi⟩qi
= qi (+1)− qi (−1) = mi (2.16)

Plugging in the parametrization (2.15) into (2.12) allows to rewrite the Mean-Field variational
free energy with an explicit dependence over the magnetizations:
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FMF
(︁
{mi}i∈V

)︁
= −

∑︂
i

himi −
∑︂

(i,j)∈E

Jijmimj −
1
β

N∑︂
i=1

[︃
H
(︃

1 +mi

2

)︃
+H

(︃
1−mi

2

)︃]︃
(2.17)

where H (x) = −x log x. Note that FMF is not anymore a functional but rather a function of the
full set of magnetizations {mi}Ni=1. Its minimum can be found by setting

∂F

∂mi
= 0 ∀i = 1, . . . , N (2.18)

which leads to the following set of self-consistent equations for the magnetizations:

mi = tanh

⎡⎣β
⎛⎝hi +

∑︂
j∈∂i

Jijmj

⎞⎠⎤⎦ ∀i = 1, . . . , N (2.19)

Notice that there is no need to add the normalization constraints in the minimization in (2.17)
as the single-node marginals (2.15) are already normalized by construction. In the Mean-Field
approximation, degrees of freedom turn out to be uncorrelated, but each of them is subject to
an effective local field resulting from the combined action of its neighbours. Eq. (2.19) can be
iteratively solved to provide an estimate of the equilibrium behaviour of the model. In particular,
on ferromagnetic models defined on hypercubic lattices, the above expression can be further
simplified by assuming a constant coupling J among nearest neighbour spins:

m = tanh [2dβJm] (2.20)

where 2d is the degree of each node and d is the dimensionality of the lattice, and we set h = 0
for simplicity. At thermodynamic limit, the mean-field theory predicts a second-order phase
transition at a critical temperature Tc = 1/βc = 2dJ (in zero field), where a spontaneous non-
zero magnetization arises below Tc. This means that mean field theory is able to capture the
presence of a spontaneous symmetry breaking, marking the onset of a paramagnetic-ferromagnetic
transition. However, the mean field theory for the Ising model is exact only in the fully connected
limit: in the above expression, this can be obtained by letting the number of dimensions d go to
infinity, and by properly rescaling the couplings as J → J/2d in order to have an intensive free
energy density w.r.t. N . The universal behaviour of the model given by its critical exponents is
also known to be predicted by the Mean Field theory for d ≥ 4 (du = 4 is known as the upper
critical dimension for the Ising model).
As a final comment, we remark that, despite the correlations are not taken into account under
the Mean Field approximation, one can use Linear Response theory to estimate their contribution
[57, 71]: we will come back to this point in the context of the Inverse Ising Problem discussed in
Chapter 5.

2.2 The Bethe Approximation and Belief Propagation
A natural way to go beyond the Mean-field approximation can be obtained by considering

a trial distribution factorized over function-node marginals rather than variable-nodes. This
approximation is named after Bethe and Peierls who first introduced it in the context of lattice
ferromagnetic models [14, 109]. A more general approach on factor graph models was developed
by Yedidia, Weiss, Freeman in a series of works [143, 145, 146]. For reasons that will be clear in the
following, the derivation of the Bethe approximation is typically carried out starting from models
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on acyclic graphs (trees), and then extended to generic loopy graphs. Following this approach,
we start from a graphical model defined by (2.1) on an acyclic factor graph, whose probability
distribution can be expressed as follows:

p (σ) =
∏︁
a qa (σ∂a)∏︁

i∈V qi (σi)|∂i|−1 (2.21)

where

qa (σ∂a) =
∑︂
σ\∂a

p (σ) (2.22)

qi (σi) =
∑︂
σ\i

p (σ) (2.23)

are respectively the factor and node marginals. If the graphical model does not contain loops, Eq.
(2.21) is an exact expression, and (2.22)-(2.23) represent the true marginals over factor/variable
nodes. The denominator in Eq. (2.21) needs to be introduced in order to remove the effect of
the overcounting of each single-node’s contribution to the factor probabilities qa: indeed, each
variable σi appears in a number |∂i| of factor-node marginals, so that it is overcounted exactly
|∂i| − 1 times in the numerator. Plugging in (2.21) into the Gibbs variational free energy, we get
the following expression for the Bethe variational free energy:

FBA [q] = − 1
β

∑︂
a∈F

∑︂
σi,i∈∂a

logψa (x∂a) qa (σ∂a) + T
∑︂
a∈F

∑︂
σi,i∈∂a

qa (σ∂a) log qa (σ∂a)

+ T
∑︂
i∈V

(1− |∂i|)
∑︂
σi

qi (σi) log qi (σi) (2.24)

The above expression, involves only a polinomial amount of terms to be computed w.r.t. N , as in
the Mean-Field case: in particular, the first term in (2.24) corresponds to the energetic part of the
free energy, while the others refer respectively to the entropy of each function-node and variable-
node marginals, the latters being multiplied by 1 − |∂i| to avoid overcounting in the entropic
contribution of factor-node marginals, as previously discussed. If the graph is acyclic, the Bethe
free energy coincides with the true free energy of the model when the {qa} and {qi} coincide to
the true marginals, and its stationary points can be computed by a polinomial iterative algorithm
known as Belief Propagation, discussed in the next section.

2.2.1 Belief Propagation
The constrained minimization of (2.24) results in a set of self-consistent equation that can be

solved in polynomial time by using an iterative scheme known as Belief Propagation (BP). It was
first introduced by Gallager in the context of decoding algorithms and then generalized by Pearl
in [108]. However, the connection between the Belief Propagation equations and the Bethe free
energy was first clarified in [70], and further generalized by Yedidia and collaborators in a series
of seminal works [143–146]. In the following, we will follow the latters’ approach, described also
in [99]. The minimization of the Bethe free energy can be carried out with respect to a set of node
and factor beliefs, by enforcing the normalization constraints for each of them, plus an additional
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set of local consistency conditions between the two beliefs:∑︂
σ∂a

qa (σ∂a) = 1 ∀a ∈ F (2.25)∑︂
σi

qi (σi) = 1 ∀i ∈ V (2.26)∑︂
σ∂a\i

qa(σ∂a) = qi (σi) ∀a ∈ F, i ∈ ∂a (2.27)

As previously done with the Mean-Field approximation, these constraints can be included through
a suitable set of Lagrange multipliers. Thefore, let us define the following constrained free energy,
denoted with L:

LBA = FBA +
∑︂
i

γi

[︄∑︂
σi

qi (σi)− 1
]︄

+
∑︂
i

∑︂
a∈∂i

∑︂
σi

λai (σi)

⎡⎣qi (σi)−
∑︂

σ∂a\i

qa (σ∂a)

⎤⎦ (2.28)

Notice that the constraints (2.25) do not need to be inserted in the above expression, as they follow
directly from the other two conditions. Setting to 0 the derivatives of (2.28) with respect to the
beliefs qi, qa gives the equations for the beliefs at the fixed point as functions of the Lagrange
multipliers {γa}a∈F , {γi}i∈V , {λai}

i∈∂a
a∈F ; on the other hand, imposing the stationarity of (2.28)

over the multipliers enforces the normalization and consistency conditions (2.25)-(2.26)-(2.27).
The connection between the Belief Propagation update equations and the stationary points of
(2.6) is obtained by identifying the Lagrange multipliers λai with the following quantities [99,
143]:

λai (σi) = log νi→a (σi) = log
∏︂

b∈∂i\a

mb→i (σi) (2.29)

Inserting the above expression into the saddle-point equations for (2.27), one gets the Belief
Propagation fixed point equations for the site and factor beliefs, shown below:

qa (σ∂a) = 1
Za
ψa (σ∂a)

∏︂
i∈∂a

νi→a (σi) ∀a ∈ F (2.30)

qi (σi) = 1
Zi

∏︂
a∈∂i

ma→i (σi) ∀i ∈ V (2.31)

The quantities νi→a (σi) ,ma→i (σi) are called messages, and represent the variational param-
eters used to update BP equations until convergence. Their update rules follow directly from
(2.29) and by imposing the consistency condition (2.27) on (2.30)-(2.31). After some straighfor-
ward algebra, we get:

m
(τ+1)
a→i (σi) ∝

∑︂
σ∂a\i

ψa (σ∂a)
∏︂

j∈∂a\i

ν
(τ)
j→a (σj) (2.32)

ν
(τ+1)
i→a (σi) ∝

∏︂
b∈∂i\a

m
(τ)
b→i (σi) (2.33)

where τ is an iteration number. Eqs. (2.32)-(2.33) are known as the belief propagation update
equations: in both cases, the symbol ∝ states that the two sides of the equation must be equal
apart from a constant factor, to be computed by imposing the normalization of the left-hand
sides. A graphical representation of the variable/factor node beliefs and the update rules for
the message is shown in Figure 2.1-2.2, respectively. We remark that, in principle, one could
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Figure 2.1: Left: graphical representation of a factor node belief qa (σ∂a) given by (2.30), where
∂a = {i1, i2, i3}; red arrows represent variable-to-factor messages νi→a (σi), and the compatibility
function ψa is implicitly included into the white square representing factor node a. Right: graph-
ical representation of a variable node belief qi (σi) given by Eq. (2.31), where ∂i = {a1, a2, a3};
blue arrows represent factor-to-variable message ma→i (σi).

Figure 2.2: Left: graphical representation of the update rule for the variable-to-factor message
νi→a (σi) as given by Eq. (2.33), where ∂i\a = {b1, b2, b3}. Right: graphical representation of the
update rule for the factor-to-variable message ma→i (σi) given by (2.32), where ∂a\i = {j1, j2, j3};
the variable nodes traced over (∂a\i) are represented as gray dots. In both panels, red and
blue arrows represent respectively variable-to-factor messages νi→a and factor-to-variable message
ma→i as in Figure 2.1.

write a single set of self-consistent equations by choosing just one of the two sets of messages,
either {ma→i}, i.e. the ingoing messages to variable nodes, or {νi→a}, i.e. the outgoing messages.
The set of equations (2.33)-(2.32) can be iteratively solved up to numerical convergence w.r.t.
{νi→a,ma→i}a∈F

i∈V : once a fixed point is found, the marginal beliefs can be computed using (2.30)-
(2.31). The Belief propagation algorithm runs on a polinomial time w.r.t to the system size N ,
provided that the graph is sparse. For instance, if both factor and variable nodes have a degree
∼ O (1) w.r.t. N , the computational cost per iteration scales like O (2 |E|), |E| being the number
of edges in the factor graph. Notice that the message update rules and the beliefs definition can
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be used to re-write the Bethe Free energy only in terms of messages:

FBA
[︂
{νi→a,ma→i}a∈F

i∈V

]︂
= −

∑︂
a

logZa −
∑︂
i

logZi +
∑︂
(ia)

logZia (2.34)

where

Za =
∑︂
σ∂a

ψa (σ∂a)
∏︂
i∈∂a

νi→a (σi) (2.35)

Zi =
∑︂
σi

∏︂
a∈∂i

ma→i (σi) (2.36)

Zia =
∑︂
σi

ma→i (σi) νi→a (σi) (2.37)

It can be rigorously proven [99] that the set of BP fixed point equations provides exact values
of the marginal distributions when the underlying graph is a tree. In this case, the probability
distribution of the original model coincides with (2.21) and the beliefs (2.30)-(2.31) coincide
with the true marginals 1. Moreover, BP fixed points are in one-to-one correspondence with the
stationary points of the Bethe free energy [143].
On loopy graphs, the true probability distribution does not factorize as in (2.21), so that the
ansatz is not well defined; however, despite it is not possible to define a probability measure over
the full set of degrees of freedom like (2.21), we can use the BP scheme to get approximate values
of its marginal probabilities: in this way, the Bethe approximation provides a set of beliefs that
satisfy local consistency conditions of the type (2.27), but they cannot be expressed as marginals
of a single joint measure over the full set of variables. As a consequence, the corresponding
approximation for the free energy cannot be used as a upper bound to the true free energy.
On graphs with loops, this approach is commonly referred to as “Loopy Belief Propagation”,
even if the message-passing equations are exactly the same as (2.39)-(2.40). The convergence
properties of (loopy) BP depend on the particular instance considered (i.e. the graph structure,
the distribution of interactions, and the external temperature), so that convergence cannot be
guaranteed in general. In particular, the presence of a phase transition in the model is typically
connected to the existence to more than one BP fixed points, that in turn correspond to local
minima of the Bethe free energy. The connection between BP fixed points and minima of the
Bethe free energy allows to exploit other iterative schemes with different convergent properties
than the message-passing scheme just discussed [94, 147].
Belief Propagation has been employed for several applications both in statistical physics and
inference problems: for instance, in Low-Density-Parity-Check (LDPC) [21], learning in neural
networks with discrete synapses [20], and more recently in our group in the context of inference
problems in epidemic spreading processes: further details on the latter topic will be addressed in
Chapter 7.

Relation to the cavity method In statistical physics, the BP equations can be derived fol-
lowing an equivalent approach known as the cavity method. The cavity method allows to obtain
recursive equations for the marginal probabilities in a factor graph: these equations are obtained
by computing free energy shifts when one node (either function or variable) in the graph is re-
moved, thus creating a cavity. The key assumption is that the correlations between the remaining

1In this case, the BP equations can efficiently run by choising a proper schedule for the message updates:
in particular, by choosing one node as a root, the messages can be propagated inwards starting from the leaves
towards the root node, and then back out from the root towards the leaves; such procecdure gives the exact
values for the marginals in just two steps.
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variables are easier to treat in the cavity graph. In this perspective, the Bethe approximation
corresponds to a factorized assumption on the neighbours of each factor node a, when the latter
is removed from the graph:

g\a (σ∂a) Bethe∼
∏︂
i∈∂a

νi→a (σi) (2.38)

where g\a denotes the cavity distribution, obtained by removing node a and all its links. This
assumption is exact in the absence of loops, since removing one factor node breaks the graph into
|∂a| disconnected components. It can be shown that the recursive relations obtained by using the
cavity method coincide with the BP update equations. The cavity method allows to interpret
the messages as marginal probabilities in a modified graphical model: in particular, the message
νi→a (σi) represents the marginal of node i in the cavity graph where factor node a has been
removed; conversely, the message ma→i (σi) corresponds to the marginal of node i in a modified
factor graph in which all the factor nodes connected to i, except a, have been removed.
It is important to remark that the name “cavity method” is typically referred to its ensemble
version, used to analyze the typical2 properties of tree-like graphical models defined on random
graphs [89]. In the next section, we briefly discuss how to apply the Bethe approximation to the
Ising model.

2.2.2 Bethe approximation for the Ising model
On a generic pairwise graphical model, the message-passing equations can be easily expressed

by choosing just one of the two sets of messages. In this case, all factor nodes have degree two,
and in the following we will use the notation a ≡ (ij) to specify the two nodes connected by the
edge. Depending on which set is chosen, we get two alternative (sets of) fixed points equations:

m(ij)→i (σi) ∝
∑︂
σj

ψij (σi, σj)
∏︂

k∈∂j\i

m(jk)→j (σj) (2.39)

νi→(ij) (σi) ∝
∏︂

k∈∂i\j

∑︂
σk

ψik (σi, σk) νk→(ik) (σk) (2.40)

If now we restrict to the Ising model where σi ∈ {−1,1}, each message can be parametrized by
a single real number, physically interpreted as a local field. In particular, choosing the outgoing
messages

{︁
νi→(ij)

}︁
for the update rule, we rewrite them as follows:

νi→(ij) (σi) =̂ eσiωi→(ij)

2coshωi→(ij)
; ωi→(ij) = 1

2 log
νi→(ij) (σi = +1)
νi→(ij) (σi = −1) (2.41)

Plugging in (2.41) into (2.40) leads to the following update equation for the fields ωi→(ij):

ωi→(ij) = βhi +
∑︂

k∈∂i\j

atanh
[︁
tanhβJiktanhωk→(ik)

]︁
(2.42)

where the first term comes from the message mψi→i, ψi = eβhiσi , if an external field is present.
Analogously, the magnetization of the single-node belief is given by:

mi = ⟨σi⟩q(i) = tanh
[︄
βhi +

∑︂
k∈∂i

atanh
[︁
tanhβJiktanhωk→(ik)

]︁]︄
(2.43)

2with respect to the disorder distribution
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As a final remark, we briefly discuss the Bethe solution for the ferromagnetic Ising model defined
on a hypercubic lattice in d dimension: in this case, Eqs. (2.42)-(2.43) can be further be simplified
by exploiting the translational invariance of the model, so that all the local fields will be identical
to a unique quantity ωi→(ij)=̂ω, leading to:

ω = (2d− 1) atanh [tanhβJ tanhω] (2.44)
m = tanh [2d atanh [tanhβJ tanhω]] (2.45)

where we set to zero the external field. The above equations always admit a paramagnetic solution
with ω,m = 0: however, this solution becomes unstable at a critical value of the temperature
βcJ = atanh

[︂
(2d− 1)−1

]︂
, that can be computed by analyzing the stability of the fixed point equa-

tion (2.44). At β > βc the Bethe approximation predicts a ferromagnetic phase with ω,m (ω) /= 0.
The critical exponents are, however, the same as in the mean field theory: for this reason, the
Bethe approximation is referred to as a mean-field like approach.

2.3 Beyond the Bethe Approximation
The Bethe approximation is constructed in such a way that the entropic term in the free en-

ergy takes into account exactly the contribution coming from each factor node together with its
neighbours. It is possible to generalize such a construction to include larger regions of the graphs
exactly: this procedure defines a class of approximation techniques known as Cluster Variational
Methods, briefly discussed in the next subsection.
On the other hand, several attempts to improve the BP algorithm and its convergence properties
on loopy graphs have been carried out, see for instance [62, 94, 147, 148]
Another way to go beyond the Bethe approximation is to include loop corrections. For instance,
Rizzo and Montanari in [91] presented a loop corrected version of the Bethe approximation, that
is exploited to compute a refined value to the critical temperature of the ferromagnetic Ising
model, as well as on spin glass models on random graphs. A similar but more general approach
on generic factor graphs was developed in [92] by Mooji and Kappen, known as Loop Corrected
Belief Propagation (LCBP): the latter works by applying standard BP on the cavity graphs for
each variable node, and then combining all the cavities together into another message-passing
approach to estimate self-consistently the single-node marginals. This method turns out too be
exact if the graph contains only one loop. We will come back to these two methods in Chapter 4
where a comparison with Density Consistency will be discussed.
Another series of works by Chertkov and Chernyak [30, 31] show how to express the partition
function in terms of a infinite series, each term representing a loop contribution: in this perspec-
tive, the Bethe approximation is recovered as the leading term in their expansion.
Finally, a common issue with BP is that only nearest-neighbours correlations can be easily esti-
mated: although one could include additional constraints in the original factor graph to estimate
long-range correlations, it is often cumberstone to do so. A common approach to determine long-
range correlation relies on Linear Response theory: in this perspective, a powerful approach was
developed by Welling and Teh in [138, 139], known as Susceptibility Propagation (SP). We will
come back to that in Chapter 5 for the Inverse Ising Problem.

2.3.1 Cluster Variational Method
The cluster variational method (CVM) is class of approximation schemes that generalizes the

Bethe approximation by taking into account exactly the effect of short loops. Historically, this
approach was first introduced by Kikuchi in [75] in the context of lattice ferromagnetic models; a
more general formulation was developed by Yedidia and collaborators in [143, 146]. The key idea
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behind the CVM is that an approximate variational free energy can be constructed by summing
a series of local contributions, each one corresponding to a different region of the graph: this
procedure is typically referred to as region-based free energy construction. A region R is defined
by the set of function nodes AR and the variable nodes VR such that, for each factor node a ∈ AR,
all its neighbours belong to VR, namely VR = {i | i ∈ ∂a,∀a ∈ AR}. To each region R we associate
a (region) belief, denoted with qR and defined over the set of degrees of freedom living inside region
R, namely σR = {σi, i ∈ VR}. With these definitions, we can define the (functional) region energy
UR and entropy SR, and free energy FR, respectively:

UR [qR (σR)] = − 1
β

∑︂
σR

qR (σR)
∑︂
a∈AR

logψa (σa) (2.46)

SR [qR (σR)] = −
∑︂
σR

qR (σR) log qR (σR) (2.47)

FR [qR (σR)] = U [qR (σR)]− TSR [qR (σR)] (2.48)

A factor graph can be covered by a set of regions, denoted with R0, such that each variable and
factor node is included in at least one region R ∈ R0: moreover, regions must be chosen in such
a way that no element in R0 is a subregion of any other one in the same set. The regions in R0
are called maximal regions, and they represent the largest contribution taken into account exactly
into the Gibbs variational free energy. The intuitive idea is that, choosing larger sizes for the
elements in R0 will give better free energy approximations. In order to define a proper region-
graph free energy on R0, we should pay attention to the intersections between their elements.
With this in mind, we define R1 as the set of all possible intersections between two regions in
R0: the procedure can clearly be iterated, since two elements in R1 might have intersections as
well. By iterating this procedure, one can define a set of regions Rk that are intersections of the
elements in Rk−1 for some k > 1. The CVM is then defined by the union of these regions, namely
P = ∪nk=0Rk: in this notation, Rn is a set of disjoint regions, so that there is no intersection
between any pair of its elements. The reason why it is necessary to take into account these
intersection is that, in order to have a valid approximation to the free energy, each factor/variable
node must be included exacly once, without overcounting. For each R ∈ P, its contribution to
the free energy (2.48) must be multiplied by an integer coefficient, known as counting number and
denoted with cR. The counting numbers must satisfy the following relations:∑︂

R∈P
cRI [a ∈ AR] = 1 ∀a ∈ F (2.49)∑︂

R∈P
cRI [i ∈ VR] = 1 ∀i ∈ V (2.50)

where I denotes the identity function of the condition given by its argument. The above proce-
dure allows to define the free energy approximation on the region set P, known as the Kikuchi
variational free energy:

FKikuchi =
∑︂
R∈P

cRUR [qR (σR)]− T
∑︂
R∈P

cRSR [qR (σR)] (2.51)

The counting numbers can be easily computed recursively. By construction, the maximal regions
R ∈ R0 will have cR = 1. Then, the counting numbers of their intersections (and so on) can be
recursively computed using the Moebius formula [110]:

cR = 1−
∑︂
R′⊃R

cR′ (2.52)
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where the summation runs over all the regions R′ that include R (so that R ∈ Rk and R′ ∈ Rk−1).
A simple example of two different constructions is shown in Figure (2.3) for a pairwise model with
6 nodes3: in particular, by choosing a set of maximal regions where each element includes only one
factor node a, the Kikuchi free energy coincides with the Bethe Free energy (2.24). Conversely,
by choosing squared plaquettes as maximal regions leads to a more refined approximation since
the short loops in each plaquette are corretly taken into account.
The above construction can be in principle applied by choosing arbitrary large regions, but the
computational cost to evaluate (2.51) increases exponentially with the size of maximal regions.
The extreme limit corresponds to consider only one region R∗ ∈ R0 that coincides with the full
factor graph: in this case, VR∗ = V and AR∗ = F , and the corresponding belief coincides with
the true joint measure (2.1), so that the Gibbs variational free energy (2.3) is recovered.
The minimization of (2.51) can be carried out following a similar approach used in the previous
section to derive the BP message-passing equations. In general, one can define a constrained free
energy starting from (2.51) by adding a set of normalization constraints for each region’s belief,
plus a set of consistency conditions between beliefs of two regions R ∈ Rk and R′ ∈ Rk−1 such
that R′ is the smallest superset including R (in the literature, R′ defined in such a way is typically
called a parent of region R, and viceversa R is a children of R′):

q (σR) =
∑︂

σV ′
R

\VR

q (σR′ ) ∀R′ ⊃ R (2.53)

The constraints can be added to (2.51) by using a suitable set of Lagrange multipliers: however,
there are in general different ways to enforce these constraints, leading to different message-passing
schemes which are equivalent only at fixed point, but differ in the dynamical update rules and/or
convergence properties. It is out of the scope of this thesis to review them, and we refer to [143]
for a more detailed discussion about this issue.
It is straightforward to show that, when the regions are chosen in such a way to include at most
one factor node a, (2.51) reduces to the Bethe free energy, and the corresponding message-passing
equations are the same as BP. For this reason, the message-passing equations derived from the
minimization of the constrained Kikuchi free energy are typically referred to as Generalized Belief
Propagation (GBP) equations , being equivalent to BP whenever the maximal regions include
single factor nodes. GBP equations can be proven to give an exact estimation of the region beliefs
whenever the graph topology contains loops only inside the maximal regions: for instance, for
a pairwise model defined on a ladder system of two coupled linear chains with open boundary
conditions, the resulting CVM with plaquette maximal regions (as in Figure 2.3) is exact [110]. In
a similar but more general spirit, Cantwell and Newman [26, 76] proposed a generalized message-
passing scheme to deal with loopy networks, by defining a series of approximations in which the
correlations induced by loops of length r + 2 (or lower, for a certain positive integer r) is exactly
taken into account: in this perspective, the r = 0 case corresponds to standard BP, and the
computational cost of the iterative scheme grows exponentially with r. With respect to CVM,
the main advantage of this method is that it does not need an explicit construction of region
graph covering and it easily adapts to arbitrary topologies. On the other hand, analogously to
the CVM, contributions coming from loops outside the maximal regions (or longer than r + 2)
are not taken into account.

3The topology of Fig. 2.3 topology is called ladder, and it is composed by two linear chains with transverse
interaction between adjacent sites in the two chains

34



2.4 – Expectation Propagation

1

2

3

4 6

5 1

2

3

4 6

5

Figure 2.3: Construction of the maximal region graphs onto a ladder of 6 spins. Left: maximal re-
gions correspond to square plaquettes. In this case, R0 = {□1,□2} where V□1 = {1,2,3,4} ,V□2 =
{3,4,5,6}. Their intersection set is R1 = {(3,4)}, containing only 1 link. The corresponding count-
ing numbers are c□1 = c□2 = 1 and c(34) = −1. Right: maximal regions correspond to edges. In
this case R0 = E (i.e. the set of edges) and R1 = V (set of nodes). The counting numbers are
cl = 1 for l ∈ E and ci = 1 − di for i ∈ V , where di is node i’s degree. The latter construction
corresponds to the Bethe approximation.

2.4 Expectation Propagation
Expectation Propagation (EP) denotes a family of approximation schemes introduced by

Minka in [90] to perform approximate inference in high-dimensional systems; at the same time,
a very similar approximation was discovered by Opper and Winther in the statistical physics
community [104] known as Expectation Consistency, based on the Adaptative-TAP method [103].
The main idea behind EP is to approximate an intractable - i.e. non integrable - multivariate
probability distribution with a tractable family, whose parameters are fixed in such a way to
satisfty local moment matching conditions. Expectation Propagation can be defined over generic
probabilistic graphical models expressed in terms of an exponential family. However, in the fol-
lowing we will first focus on the simplest setup where the tractable family of approximation is
Gaussian. In this way, the connection to Density Consistency discussed in Chapter 3 will be more
evident. In this context, EP can be used to approximate marginals of a probability distribution
written as the product of a multivariate Gaussian, denoted with g (x), times a set of single-site
functions ψi:

p (x) = 1
Z
g (x)

N∏︂
i=1

ψi (xi) (2.54)

In this setting, the variables xi are continuous, i.e. x ∈ RN . Graphical models of this type arise
in many contexts of both statistical physics and inference. As a simple example, notice that the
equilibrium distribution of an Ising model can always be written in the form (2.54), by including
the Boltzmann weight into g (x) and defining each function ψi (xi) as a combination of Dirac’s
deltas, in order to enforce the constraints that variables have to be defined over {−1,1}:

g (x) = exp

⎡⎣β ∑︂
(ij)∈E

Jijxixj + β
∑︂
i

hixi

⎤⎦ (2.55)

ψi (xi) = 1
2 [δ (xi − 1) + δ (xi + 1)] (2.56)

With the above identifications, from (2.54) one recovers exactly the Boltzmann law (1.14). On the
other hand, the above parametrization can be used to describe a wide class of Bayesian inference
problems known as Linear Estimation Problems.
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Figure 2.4: Factor graph representation of the distribution (2.54)

Linear estimation problems

Linear estimation problems (LEPs) arise in many research fields, such as theoretical computer
science, signal analysis and computational biology. In general, linear estimation problems attempt
to solve an under-determined linear system of equations in the form y = F x, with y ∈ RM ,
F ∈ RM×N and x ∈ RN : the vector x is typically referred to as an unknown input (source)
signal, and y is a known output vector. When M < N , i.e. when the number of measurements
(encoded in the vector y) is lower than the number of unknowns (encoded in x), there is in principle
an infinite number of solutions to the linear system. Therefore, one needs to impose additional
constraints to find a particular set of solutions, depending on the problem under investigation. In
a Bayesian framework, such constraints can be enforced by adding suitable prior distributions on
the unknown source vector components. First notice that any linear system of equations can be
represented by a constraint of the type δ (y − F x), where δ (x) is the Dirac’s delta function. By
using a Gaussian representation of the delta function, we get:

δ (y − F x) = lim
∆→0

exp
[︃
− 1

∆ (y − F x)t (y − F x)
]︃

(2.57)

The parameter ∆ plays the role of a noise added to the measurements (it can also be considered
as a fictious temperature): the scenario with finite ∆ can therefore be used whenever the original
linear system is affected by the presence a Gaussian noise, namely y = F x + ε where all the
components of the noise-vector ε are i.i.d. Gaussian variables, εi ∼ N (0,∆). For instance, in the
Compressed Sensing Problem [44] one attempts in finding a solution x∗ where a fraction of the
source components are zero: this information can be enforced by adding a sparsity prior ℓ0, so
that the overall (posterior) probabilty distribution over the set of solutions can be written as:

p (x | y) ∝ exp
[︃
− 1

∆ (y − F x)t (y − F x)
]︃∏︂

i

ψi (xi) (2.58)

ψi (xi) = (1− ρ) δ (xi) + ρN (xi; 0, σ) (2.59)

where N (x) is a short-hand notation for a Gaussian density. In this setting, (2.57) plays the role of
a likelihood function, and the prior ψi enforces an a-priori knowledge such that a fraction 1−ρ of
the source components must be 0. In the CS problem, computing marginal probabilities over 2.58
allows to select relevant solutions where a fraction of the x components is 0 given the observed
signal y. Whenever ψi differs from a Gaussian density, an exact integration of (2.58) cannot
be carried out. In this perspective, Expectation Propagation can be implemented to compute
marginal probabilities of (2.58), and several applications have been recently carried out in our
group: for the already cited Compressed Sensing problem [23], inference in metabolic networks
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(where, in particular, the matrix F is related to the stochiometric matrix describing the chemical
reactions inside a cell) [22] and in tomographic images [97]. In the next section, we discuss the EP
scheme in the simple setting where the approximating family is chosen to be a normal distribution.

2.4.1 EP algorithm
Let us start from the intractable probability distribution defined in (2.54), whose factor graph

representation is shown in Figure 2.4. Expectation Propagation works by replacing each term ψi
with a univariate Gaussian density, denoted with ϕi, and parametrized as follows:

ϕi (xi) = exp
[︃
−1

2Γix2
i + γixi

]︃
(2.60)

The set {(λi,Γi)}i=1,...,N defines the ensemble of parameters encoded by EP. By replacing each
prior ψi with (2.60), it is possible to construct a multivariate Gaussian density, denoted with q,
that approximates the starting probability distribution:

q (x) = 1
Zq
g (x)

∏︂
i

ϕi (xi) (2.61)

The constant Zq and the moments of 2.61 ⟨x⟩q = µ, ⟨xxt⟩q = Σ + µµt can be computed by
standard Gaussian integration. The factor graph representation of 2.61 is shown in the left plot
of Figure 2.5. For each variable we can also define a tilted (or leave-one-out) distribution that is
obtained from (2.61) by replacing the approximate factor ϕi with the true prior ψi:

q(i) (x) = 1
Zi
g (x)ψi (xi)

∏︂
j /=i

ϕj (xj) (2.62)

∝ q (x) ψi (xi)
ϕi (xi)

(2.63)

The idea behind EP is that the tilted distribution q(i) can be used as a tractable estimator for
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Figure 2.5: Factor graph representation of the “full” Gaussian measure (2.61) (left) and the tilted
distribution (2.62) over node 1 (right).

the single-node marginal over i. Indeed, by construction, all the other variables appearing in
(2.62) can be marginalized by using standard Gaussian integration. As a consequence, the single-
site marginal q(i) (xi) can be written as the product of the prior ψi times a univariate Gaussian
distribution, denoted with g\i (xi):

q(i) (xi) =
∫︂
dx\iq

(i) (x) ∝ ψi (xi)
∫︂
dx\ig (x)

∏︂
j /=i

ϕj (xj) = 1
z̃i
ψi (xi) g\i (xi) (2.64)
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The quantity g\i (xi) is typically referred to as a cavity distribution, and it is obtained by removing
one single factor ϕi and marginalizing over all variables but i:

g\i (xi) ∝
∫︂
dx\i

q (x)
ϕi (xi)

∝ q (xi)
ϕi (xi)

(2.65)

The above expression allows to write in an equivalent way the single-node marginal of the full
Gaussian measure:

q (xi) = 1
zi
ϕi (xi) g\i (xi) (2.66)

Note that (2.64) and (2.66) only differ by the choice of the univariate factor, which is taken exactly
(ψi) in the first equation and approximately (ϕi) in the second. It is therefore natural to choose a
suitable set of conditions between these two marginals in order to determine the parameters of ϕi,
namely (γi,Γi). In particular, within the EP scheme, these are fixed by imposing local moment
matching conditions on the first two order statistics:

⟨xi⟩q(i) = ⟨xi⟩q = µi ∀i (2.67)
⟨x2
i ⟩q(i) = ⟨x2

i ⟩q = Σii + µ2
i ∀i (2.68)

to be solved w.r.t. (γi,Γi). Alternatively, it is straightforward to show that the above moment
matching conditions (2.67)-(2.68) can be obtained by a local minimization of the Kullback-Leiber
divergence between the tilted distribution q(i) and the full Gaussian measure q:

∂DKL

(︁
q(i) || q

)︁
∂γi

= 0 −→ ⟨xi⟩q = ⟨xi⟩q(i) (2.69)

∂DKL

(︁
q(i) || q

)︁
∂Γi

= 0 −→ ⟨x2
i ⟩q = ⟨x2

i ⟩q(i) (2.70)

where DKL is defined in (2.10), with a proper replacement of the sums with integrals over
xi ∈ R. The set of equations (2.67)-(2.68) give a closed system to be solved iteratively w.r.t.
{(λi,Γi)}i=1,...,N . In the simplest update scheme where all the parameters are updated simulta-
neously at each iteration (parallel update) the computational cost scales as O

(︁
N3)︁, dominated by

the inversion Σ, i.e. the covariance matrix of (2.61). In the next section, we discuss how to derive
the EP free energy, whose derivation is similar to the preliminary result presented in Section 3.4.2
for the Density Consistency free energy.

2.4.2 EP free energy
The following derivation of the EP free energy (discussed in [23]) comes from analogy with

Belief Propagation. On a generic graphical model given by (2.1), the starting (intractable) density
can be written using the Bethe factorization as:

p (σ) = ZBA
Z

p̂ (σ) (2.71)

where − logZBA is the Bethe free energy expressed in terms of messages (2.34) and p̂ is given
by (2.21). Such relation holds on any loopy graph; however, if BP is exact (i.e. on a tree) the
starting probability measure factorized exactly as in (2.21), so that ZBA = Z. Following the same
reasoning, we now derive the EP free energy by writing the starting probability density (2.54)
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in terms of the tilted distributions and the full Gaussian measure. Let us start from (2.63) and
rewrite the tilted distirbution q(i) as follows:

q(i) (x) = 1
Zi
g (x)ψi (xi)

∏︂
j /=i

ϕj (xj)

= Zq
Zi
q (x) ψi (xi)

ϕi (xi)
(2.72)

Then, by taking the product of all the tilted distributions, after some manipulations we get:∏︂
i

q(i) (x) =
∏︂
i

Zq
Zi
q (x) ψi (xi)

ϕi (xi)

=
ZNq∏︁
i Zi

qN (x)
∏︁
i ψi (xi)∏︁
i ϕi (xi)

=
ZNq∏︁
i Zi

qN (x) Zp (x)
Zqq (x)

=
ZN−1
q∏︁
i Zi

qN−1 (x)Zp (x) (2.73)

where in the last line we explicity show the dependency over the true distribution p. Let us now
rewrite the last expression as

p (x) = ZEP
Z

p̂ (x) (2.74)

where
p̂ (x) =

∏︁
i q

(i) (x)
qN−1 (x) ; ZEP =

∏︁
i Zi

ZN−1
q

(2.75)

By analogy with the BP case discussed at the beginning, whenever EP is exact, ZEP = Z and
p (x) = p̂ (x). In this setting - i.e. where the approximating family is Gaussian - EP becomes
exact when the priors ψi are Gaussian distributed. In this case, the EP scheme is trivially solved
by identifying ψi ≡ ϕi; as a consequence, the starting density p, the full Gaussian measure q and
all the tilted distributions will be identically equal (namely p = q = q(i) and Z = Zq = Zi ∀i) so
that p̂ (x) = p (x) and ZEP = Z. We can now define the EP free energy as:

FEP = − logZEP = (N − 1) logZq −
∑︂
i

logZi (2.76)

Its stationary points can be obtained by deriving (2.76) w.r.t. the gaussian parameters λi,Γi,
leading to:

∂FEP
∂γi

= (N − 1) ⟨xi⟩q −
∑︂
j /=i

⟨xi⟩q(j) (2.77)

∂FEP
∂Γi

= (N − 1) ⟨x2
i ⟩q −

∑︂
j /=i

⟨x2
i ⟩q(j) (2.78)

The right hand sides of (2.77)-(2.78) depend on the moments of a spin i computed w.r.t. to a
tilted distribution defined on another variable j /= i. These “mixed” tilted moments are not the
ones used by the algorithm to update the parameters through the moment matching conditions.
However, it still possible to explicitly compute them by exploiting Gaussian integration properties,
as discussed in Appendix A: in this way, it is easy to prove that EP fixed point equations (2.67)-
(2.68) satisfy the above relations. The EP free energy can be used also to on-line learn the
parameters encoded in the priors ψi, by using an expectation-maximization (EM) procedure [23].
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2.4.3 Relation between EP and BP
On a discrete graphical models (2.1), it has been shown that Belief Propagation corresponds

to a specific instance of Expectation Propagation, when the approximating family q is chosen to
be a fully-factorized distribution over single nodes [90]. In order to prove it, let us start from
the probability distribution (2.1), and replace each function node ψa with a factorized discrete
distribution over single-node functions, denoted with ϕa:

ϕa (σ∂a) ∝
∏︂
i∈∂a

mai (σi) (2.79)

where mai is the marginal of ϕa over σi, by construction. For simplicity, we will assume that
the degrees of freedom are binary spins, namely σi ∈ {−1,1}, even if the same reasoning can be
extended to arbitrary discrete variables (e.g. Potts-like). The tractable joint distribution encoded
by EP can be constructed by taking the product of all the approximate factors ϕa, similarly to
2.61:

q (σ) ∝
∏︂
a

ϕa (σ∂a) ∝
∏︂
i

[︄∏︂
a∈∂i

mai (σi)
]︄

(2.80)

The last equality (apart from a normalization factor) states that q (σ) is factorized over single
nodes, so that single-node marginals can be computed straightforwardly. The tilted distributions
can now be defined by removing one factor node ϕa from (2.80) and replacing it with the true
factor ψa:

q(a) (σ) ∝ q (σ) ψa (σ∂a)
ϕa (σ∂a) ∝ ψa (σ∂a)

∏︂
b/=a

∏︂
i∈∂b

mbi (σi) (2.81)

Eqs (2.80)-(2.81) can be easily marginalized over the neighbours of a since all the other spins’
contributions are factorized:

q(a) (σ∂a) =
∑︂
σ\∂a

q(a) (σ) ∝ ψa (σ∂a)
∏︂
j∈∂a

∏︂
b∈∂j\a

mbj (σj) (2.82)

q (σ∂a) =
∑︂
σ\∂a

q (σ) ∝
∏︂
j∈∂a

∏︂
b∈∂j

mbj (σj) (2.83)

As discussed in the previous section, the EP scheme works by imposing moment matching con-
dition between the two above marginals. First notice that, since each of them is a discrete
distribution, imposing moment matching on single-node marginals is equivalent to impose that
the two marginals are proportional, apart from a normalization factor:

⟨σi⟩q(a) = ⟨σi⟩q ⇐⇒ q(a) (σi) ∝ q (σi) (2.84)

where q(a) (σi) is the tilted marginal over σi (and the same holds for q (σi)). Further notice that
there is no need of imposing the matching of second-order moments as in the Gaussian EP scheme
previously discussed: the reason is that a single-node distribution of a binary variable is uniquely
defined by a single parameter (on the contrary, an univariate Gaussian has two sufficient statistics,
namely its mean and variance). We first rewrite explicitly the single-node marginals of q(a)and q
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using their definitions (2.83)-(2.82):

q(a) (σi) ∝
∑︂

σ∂a\i

ψa (σ∂a)
∏︂
j∈∂a

∏︂
b∈∂j\a

mbj (σj)

∝

⎡⎣ ∏︂
b∈∂i\a

mai (σi)

⎤⎦ ∑︂
σ∂a\i

ψa (σ∂a)
∏︂

j∈∂a\i

∏︂
b∈∂j\a

mbj (σj)

q (σi) ∝
∏︂
a∈∂i

mai (σi)

Finally, using the above formulas and imposing (2.84), we get:

mai (σi) ∝
∑︂

σ∂a\i

ψa (σ∂a)
∏︂

j∈∂a\i

∏︂
b∈∂j\a

mbj (σj)

The above expression coincides with the BP update equations for the messages, obtained by
inserting (3.43) into (3.42), where the quantity mai is recognized as the factor-to-node BP message
ma→i (σi). As a final remark, we recall the definition of the EP cavity (2.65) distribution, that in
the present framework is given by:

g\a (σ) ∝ q (σ)
ϕa (σ∂a) ∝

∏︂
b/=a

∏︂
i∈∂b

mbi (σi) (2.85)

The above expression is factorized over single nodes. In particular, its marginal over node a’s
neighbours can be written as:

g\a (σ∂a) =
∑︂
σ\∂a

g\a (σ) ∝
∏︂
i∈∂a

∏︂
b∈∂i\a

mbi (σi)

which corresponds exacly to the Bethe ansatz for the cavity distribution (2.38). Therefore, the
above results provide a mapping between the Belief Propagation approach and Expectation Prop-
agation. Note also that, by applying the same reasoning used in Section 2.4.2 to derive the EP free
energy in this context, one recovers exactly the Bethe free energy. This relation will be further
highlighted in the next Chapter, where the connection between BP, EP and Density Consistency
will be discussed.
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Chapter 3

Density Consistency

This chapter represents the main core of the manuscript, where we derive the Density Consis-
tency scheme and analyze its properties. The method is constructed as a generalization of both
the Belief Propagation and Expectation Propagation algorithms described in the previous Chap-
ter, with the peculiar property to be exact on acyclic graphs. In particular, Section 3.1 presents
the derivation for generic probabilistic graphical models of binary degrees of freedom. Section 3.2
discusses the main properties of Density Consistency, namely its exactness on trees and its relation
to Belief Propagation fixed points, as well as the connection to Expectation Propagation. Section
3.3 discusses some algorithmic details and a pseudocode implementation. Finally, in Section 3.4
we present a possible generalization to non-binary degrees of freedom and a preliminar variational
formulation.

3.1 Derivation
In this section, we are going to derive the Density Consistency approximation for generic

probabilistic graphical models, using the factor graph representation introduced in section 1.2.1.
We start by stating the problem addressed in the whole chapter, i.e. the computation of marginal
distributions from a probabilistic graphical model defined by a density p (σ), where σ = {σi}i∈V is
the vector of degrees of freedom. The model is defined on a factor graph G = (V, F,E) of N = |V |
variable nodes and M = |F | factor nodes: each variable node represents a degree of freedom, and
we will restrict for the rest of the chapter to binary (or Ising) spins, i.e. σi ∈ {−1,1}; further
generalization to arbitray binary supports {a, b} and non-binary variables will be discussed in Sec.
3.4.1. Each edge (i, a) ∈ E connects a variable node to a factor node, so that the overall graph is
bipartite w.r.t. V ∪ F . Each factor node a ∈ F is associated to a certain non-negative function
ψa (σ∂a) that depends on all the variable nodes i in the neighborhood of a. The probability
distribution of such a model, denoted with p (σ), is given by:

p (σ) = 1
Z

∏︂
a∈F

ψa (σa) . (3.1)

where the vector σa is a short-hand notation of σ∂a = {σi, i ∈ ∂a}, and it will be kept for the
rest of the discussion. The prefactor in Eq. (3.1) is the inverse of the partition function Z:

Z =
∑︂

σ

∏︂
a∈F

ψa (σa) (3.2)

where the summation runs over all the {−1,1}N spin configurations. A toy example is shown
in Figure 3.1, where black dots identify the discrete variables σi (one for each node), and each
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white square represents a factor node a ∈ F . As already discussed, the computation of marginal
distributions (or equivalently the partition function Z) has an exponential computational cost
w.r.t. to the system size N . For convenience with the following discussion, we rewrite Eq. (3.1)
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Figure 3.1: Factor graph representation of a toy model of the type (3.1) with 9 variable nodes
and 7 factor nodes.

as a distribution of real variables, denoted with xi ∈ R:

p (x) = 1
Z

∏︂
a∈F

ψa (xa)
∏︂
i

∆i (xi) , (3.3)

where again xa = x∂a and

∆i (xi) = 1
2 [δ (xi − 1) + δ (xi + 1)] , (3.4)

and δ (x) is the Dirac’s Delta Function. The functions ∆i (xi) ensure that (3.3) is correctly de-
fined on the support {−1,1}N , so that there is no difference between Eq. (3.3) and (3.1). In the
following, we will use the short notation ∆i (xi) ≡ ∆i.
In the same spirit as for the Expectation Propagation algorithm described in Section 2.4, we will
approximate the intractable distribution p (x) with a family of Gaussian densities, whose param-
eters will be determined iteratively by imposing local consistency condition on the marginals.
To this aim, we approximate each compatibility function ψa (xa) in (3.3) with a multivariate
Gaussian distribution, denoted by ϕa (xa) and parametrized as follows:

ϕa (xa) = exp
[︃
−1

2xtaΓ(a)xa + xtaγ(a)
]︃

∀a ∈ F. (3.5)

where the superscript ·t denotes the transpose vector. In this notation, each Gaussian density
ϕa (xa) is parametrized by a vector γ(a) ∈ R|∂a|, and by a symmetric matrix Γ(a) ∈ R|∂a|×|∂a|. In
a statistical mechanics jargon, the quantities

{︂
γ

(a)
i

}︂
i∈∂a

act as local fields on each variable and

we refer to them as a Gaussian fields. The matrix Γ(a) is the precision matrix of the Gaussian
measure (3.5), and it is the inverse of its covariance matrix: it encodes a set of self-couplings Γ(a)

ii as
well as approximate pairwise (quadratic) interactions

{︂
Γ(a)
ij

}︂
i /=j

between all the pair of nodes in
the neighborhood of a. In this perspective, an equivalent parametrization can be constructed by
defining each factor ϕa in terms of its first and second moments, respectively denoted with µ(a),
Σ(a); the mapping between the two parametrizations is given by:

Σ(a) =
[︂
Γ(a)

]︂−1
, µ(a) = Σ(a) · γ(a) (3.6)

where the superscript −1 denotes the matrix inversion and the dot symbol · denotes the matrix-
vector product. However, in the rest of the discussion we will use the parametrization of ϕa in
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terms of linear and quadratic terms as in (3.5). Therefore, Density Consistency will be defined
by the set of approximate Gaussian factors {ϕa}a∈F . Since the product of Gaussian densities
results in another normal distribution (i.e. the Gaussian family is closed under the product of
their densities), by taking the product of all the {ϕa}a∈F it is possible to construct a multivariate
Gaussian distribution over the full set of N variables:

q (x) ∝
∏︂
a∈F

ϕa (xa) = 1
Zq

exp
[︃
−1

2 (x− µ)t Σ−1 (x− µ)
]︃
. (3.7)

In the last equality, the quantities µ ∈ RN and Σ ∈ RN×N denote the mean vector and the
covariance matrix over the measure (3.7), respectively:

µ = ⟨x⟩q, (3.8)
Σ = ⟨xxt⟩q − ⟨x⟩q⟨xt⟩q. (3.9)

The covariance matrix Σ is symmetric by construction and it has to be positive definite in order for
(3.7) to be defined. The quantity Zq in (3.7) denotes the normalization factor of the distribution:

Zq =
√︂

(2π)N log |det Σ| (3.10)

The Gaussian moments (3.8)-(3.9) can be easily computed starting from the set of parameters{︂
γ(a),Γ(a)

}︂
a∈F

encoded in each factor ϕa. By construction of q (x), the following relations hold:

(︁
Σ−1)︁

ij
=

⎧⎨⎩
∑︁

a∈F
i,j∈∂a

Γ(a)
ij i /= j∑︁

a∈F
i∈∂a

Γ(a)
ii i = j

(︁
Σ−1µ

)︁
i

=
∑︂
a∈F
i∈∂a

γ
(a)
i . (3.11)

In this way, the Gaussian moments µ,Σ can be constructed by inverting (3.11) at given parameters{︂
γ(a),Γ(a)

}︂
a∈F

. Notice that (3.7) encodes the same factorization of the original probability
distribution (3.1), and indeed the inverse covariance matrix Σ−1 has the same structure of the
starting factor graph: in particular, an off-diagonal element

(︁
Σ−1)︁

ij
will be non-zero if nodes i

and j are both connected to (at least) one factor node. As an example, Figure 3.2 shows the factor
graph representation of (3.7) for the toy model in Figure 3.1. Since Gaussian densities are defined
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Figure 3.2: Factor graph representation the multivariate Gaussian distribution 3.7 referred to the
toy model in Figure 3.1. Blue dots refer to nodes with continuous (real) variable xi and the red
squares represent approximate Gaussian factors ϕa.

over continuous degrees of freedom, in Figure 3.2 variable nodes are represented by blue dots, to
avoid confusion with previously defined discrete variables; on the other hand, the approximate
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3 – Density Consistency

factors ϕa are shown as red squares, a notation that will be useful to understand the following
definitions. It is important to remark that that the Gaussian parametrization takes into account
only pairwise effective interactions: neverthless, we will keep using the factor representation of
the Gaussian measure as in Figure (3.2) to avoid confusion. This simple equivalence is shown in
Figure 3.3 for the 4−body factor in the toy model of Figure 3.1.
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Figure 3.3: Representation of the approximate factor A of Figure 3.2 in terms of pairwise inter-
actions. For simplicity, the diagonal terms of the precision matrix Γ(A)

ii and linear terms γ(A)
i

(i ∈ ∂A) are not shown.

The set
{︂

γ(a),Γ(a)
}︂
a∈F

is the ensemble of parameters encoded by Density Consistency, that
need to be determined by an appropriate iterative scheme proposed in the following. The total
number of parameters is

∑︁
a∈F |∂a| (|∂a|+ 3) /2: indeed, for each Gaussian factor (3.5), there are

|∂a| linear terms (Gaussian fields), |∂a| diagonal entries for the precision matrix Γ(a) (also called
self-couplings), and

(︁|∂a|
2
)︁

= |∂a| (|∂a| − 1) /2 non diagonal terms (couplings).

3.1.1 Tilted distributions
Since we are interested in computing marginal distributions over factor nodes, a more refined

approximation can be obtained by replacing all the functions ψa with their Gaussian counterparts,
except for one. This is the same procedure used within the EP scheme discussed in the previous
Chapter. We thus define another set of probability measures called tilted distributions, one for
each factor node a, denoted with q(a) (x) and defined as follows:

q(a) (x) = 1
Za

∏︂
b∈F
b/=a

ϕb (xb)×Ψa (xa) ∀a ∈ F (3.12)

where
Ψa (xa) = ψa (xa)

∏︂
i∈∂a

∆i (xi) , (3.13)

and ψa is the true factor associated to node a. In practice, the distributions (3.12) are constructed
by removing the corresponding Gaussian density ϕa and replacing it with the true factor ψa, with
the addition of the set of constraints {∆i}i∈∂a, defined in (3.4): in this way, the discrete nature
of the variables in the neighborood of a is correctly taken into account. The main idea behind
Density Consistency is that the distribution (3.12) will be a tractable estimator of the marginal
distribution of (3.1) on the variables i ∈ ∂a, as the factor ψa is correctly included in (3.12):
conversely, all the other degrees of freedom are encoded into a normal distribution, and therefore
they can be marginalized out analytically. Figure 3.4 shows the factor graph representation of a
tilted distribution in the toy model of Figure 3.1 over factor node D: in order to keep in mind the
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3.1 – Derivation

discrete support of {i ∈ ∂a}, each of them is represented as a black dot, analogously to Figure
3.1. Equivalently, a discrete degree of freedom is can be graphically represented as a continuous
variable xi with the additional 1-body function ∆i, as shown in the right part of Figure 3.4.
It is instructive to rewrite both the Gaussian distribution (3.7) and the tilted (3.12) by isolating
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Figure 3.4: Factor graph representation of a tilted distribution over factor node D defined by Eq.
(3.12), referred to the toy model in Figure 3.1. In this case, the neighbour nodes of D (variables
5,6,7) are represented as discrete variables (black dots), as a result of the constraints defined by
(3.4).

the terms associated to node a:

q(a) (x) ∝ q (x) Ψa (xa)
ϕa (xa) ∝ g

\a (x) Ψa (xa) , (3.14)

q (x) ∝ q (x) ϕa (xa)
ϕa (xa) ∝ g

\a (x)ϕa (xa) , (3.15)

where
g\a (x) ∝ q (x)

ϕa (xa) ∝
∏︂
b/=a

ϕb (xb) . (3.16)

Indeed, a part of a normalization constant, the tilted distribution can be rewritten as the product
of the factor Ψa (xa) and a Gaussian density g\a (x), that will be denoted in the rest of the thesis
as Gaussian cavity distribution. For each factor node a, its corresponding cavity g\a (x) can
be constructed from (3.7) by simply removing the Gaussian factor ϕa, as shown by Eq. (3.16).
From the definition of the tilted distribution we can now compute its marginal over the variables
{i, i /∈ ∂a}, by means of a Gaussian integral.

q(a) (xa) =
∫︂
dx\aq

(a) (x) = Ψa (xa)
∫︂
dx\ag

\a (x) = 1
za
g\a (xa) Ψa (xa) (3.17)

From now on, we use the notation ρ (xa) to represent the marginal of ρ over the subset of variables
xa, with ρ being an arbitrary probability distribution. In Eq. (3.17) the notation

∫︁
dx\a indicates

the integral over all the variables not connected to factor node a, namely x\a = {xk, k /∈ ∂a}.
The quantity g\a (xa) in (3.17) is the marginal cavity distribution, that we write explicitly as the
exponential of a quadratic form:

g\a (xa) ∝
∫︂
dx\ag

\a (x) ∝ exp
[︃
−1

2xtaS(a)xa + xtaw(a)
]︃

(3.18)

where w(a) ∈ R|∂a| is a vector of cavity fields and S(a) ∈ R|∂a|×|∂a|is a (symmetric by construction)
square matrix. In principle, these quantities should be computed starting from the definition (3.16)
and then marginalizing over the neighbours of a. However, a simple procedure allows to compute
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3 – Density Consistency

them from the marginal distribution of the full Gaussian measure. Notice first the following
equivalence:

g\a (xa) ∝
∫︂
dx\ag

\a (x) ∝ 1
ϕa (xa)

∫︂
dx\aq (x) ∝ q (xa)

ϕa (xa) (3.19)

Using the above formula, and expressing q (xa) as an exponential form, the cavity parameters can
be computed much easier through the following relations:

S(a) =
(︁
Σ[∂a,∂a]

)︁−1 − Γ(a) (3.20)

w(a) =
(︁
Σ[∂a,∂a]

)︁−1 · µ[∂a] − γ(a) (3.21)

where µ[∂a] (resp. Σ[∂a,∂a]) denotes the sub-block of µ (resp. Σ) on the ∂a indices. By construc-
tion, the contribution to the cavity couplings (i.e. the off-diagonal elements of S(a)) comes from all
the walks that connect two nodes in the cavity graph, due to the matrix inversion. For instance,
in the toy model of Figure (3.1), removing node D splits the factor graph in two disconnected
components: however, variables 5 and 6 are still connected by a walk, so that their correlation
will be approximately taken into account by the Gaussian cavity distribution, in particular by the
off-diagonal term of the matrix S(D) associated to the edge (5,6).
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Figure 3.5: Representation of the marginal tilted distribution over factor D of the Toy model of
Figure 3.1, highliting the effect of the cavity distribution. For simplicity, the diagonal terms of
the cavity coupling matrix S(D)are not shown.

For convenience, we report also the expression of the marginal Gaussian measure q (xa):

q (xa) ∝
∫︂
dx\aq (x)

∝ exp
[︃
−1

2

(︂
xa − µ[∂a]

)︂t (︁
Σ[∂a,∂a]

)︁−1
(︂

xa − µ[∂a]

)︂]︃
∝ g\a (xa)ϕa (xa) (3.22)

where the last line follows from the definition of the cavity. The marginal tilted and gaussian
distribution are graphically shown in Figure 3.5 for the toy model, when computed over factor
node D: in particular, the waved line represents the effective cavity coupling coming from the
walk between spin 5 and 6, as previously discussed. On a generic loopy factor graph, each pair
of nodes (i, j) in the cavity graph obtained by removing factor node a might still be connected
by some walks: if this happens, their correlation will be taken into account approximately by the
corresponding element S(a)

ij of the cavity coupling matrix.
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3.1 – Derivation

The moments of the marginal tilted distribution (3.17) can now be easily computed by performing
a finite summation over {−1,1}|∂a|:

⟨xa⟩q(a) = 1
za

∫︂
dxaxaΨa (xa) g\a (xa) = 1

za

∑︂
σi,i∈∂a

σaψa (σa) g\a (σa) (3.23)

⟨xaxta⟩q(a) = 1
za

∫︂
dxaxaxtaΨa (xa) g\a (xa) = 1

za

∑︂
σi,i∈∂a

σaσtaψa (σa) g\a (σa) (3.24)

where za =
∑︁
σi,i∈∂a ψa (σa) g\a (σa) is the partition function of the marginal tilted distribution,

and the variables σi ∈ {−1,1} are re-introduced to stress that the marginal tilted is in practice a
discrete probability. Notice that moments of the tilted distribution are affected by the presence
of non-diagonal elements in the cavity coupling matrix S(a); on the contrary, its diagonal entries
are not effective since σ2

i = const for σi = ±1, so that their contribution can be included in
the normalization constant za. It is important to remark that in order to evaluate (3.23)-(3.24),
it is not necessary to know all the elements of Σ: only the elements of the sub-block [∂a, ∂a]
enter into the computation of the marginal tilted moments. In principle, one could think about
iterative schemes to compute only the elements of Σ needed, instead of relying on standard matrix
inversion techniques. Neverthless, the other entries of Σ (i.e. Σij for i ∈ ∂a, j ∈ ∂b, b /= a) can
be still used to estimate long-range pairwise correlations.

3.1.2 DC condition
As stated at the beginning, the goal is to define a family of approximation schemes such

that computation of marginals is exact in the case of acyclic graphs. To do so, for each node
a, we impose a matching of the density values between the single-node marginals of the tilted
distribution q(a), defined by Eq. (3.12)-(3.17) and the full Gaussian q (3.7) for each node i ∈ ∂a on
the support {−1,1}. This condition can be rephrased as q(a) (xi) ∝ q (xi), where the dependency
on xi on the two distributions implies that we are considering their marginal distributions. We
first rewrite the single-node marginals of q(a) and q for a variable i ∈ ∂a:

q(a) (xi) =
∫︂
dxa\iq

(a) (xa) =
1 + xi ⟨xi⟩q(a)

2 ∆i (xi) (3.25)

where in the last equality the single-node marginal is written in terms of its first moment ⟨xi⟩q(a)

(namely, the magnetization), without loss of generality. In the same spirit, the marginal of the
full Gaussian distribution q (x) over node i can be simply written as:

q (xi) =
∫︂
dx\iq (x) = 1√

2πΣii
exp

[︄
− (xi − µi)2

2Σii

]︄
(3.26)

Therefore, the matching of the density values of (3.25) and (3.26) on xi = {−1,1} can be rephrased
as:

q(a) (xi) ∝ q (xi) ⇐⇒
q (xi = +1)
q (xi = −1) = q(a) (xi = +1)

q(a) (xi = −1) (3.27)

After some straightforward algebra, the following condition is obtained:

µi
Σii

= atanh ⟨xi⟩q(a) ∀i ∈ ∂a, a ∈ F. (3.28)
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3 – Density Consistency

Eq. (3.28) is called DC condition and it is chosen because it ensures exactness on acyclic graphs:
a rigorous proof will be discussed in the next section. Qualitatively, this condition imposes that
the single-node marginal q (xi) has the same behaviour of q(a) (xi) when evaluated on the discrete
support {−1,1}: this is possible because a univariate gaussian can always be fitted on two values,
provided that their sufficient statistics µi and Σii satisfy (3.28). An equivalent way of deriving
(3.28) is by imposing a moment matching condition between the single-node marginals of the tilted
distribution q(a) and a modified Gaussian distribution q̂(i) (x), obtained from (3.7) by adding a
discrete constraint ∆i on variable i:

q̂(i) (x) = 1
Ẑi
q (x) ∆i (xi) (3.29)

Notice that both q̂(i) and q(a)are discrete distributions over node i. It is straightforward to show
that ⟨xi⟩q̂(i) = tanh µi

Σii
, so that the DC condition just described can also be written as:

⟨xi⟩q(a) = ⟨xi⟩q̂(i) ∀i ∈ ∂a, a ∈ F

This alternative derivation will be used in Section 3.4.2 where preliminar calculations to derive a
variational DC free energy will be carried out.
The total number of equations obtained so far by imposing (3.28) is

∑︁
a |∂a|. From now on, we

call Density Consistency (DC) any scheme that enforces Eq. (3.28). As a final remark, notice
that Eq. 3.28 guarantees that single node marginals for a certain spin i are independent on the
tilted distribution used to compute them (at least at fixed point):

⟨xi⟩q(a) = tanh µi
Σii

∀i ∈ ∂a (3.30)

where the right-hand side does not depend on a.

3.1.3 DC closure
DC condition (3.28) is not enough to fix all the parameters encoded in the set of Gaussian

factors {ϕa}a∈F . In principle, there are infinite choices to fix the remaining
∑︁
a |∂a| (|∂a|+ 1) /2

parameters. We propose to complement (3.28) with two further conditions, i.e. the matching
of first moments and Pearson correlation coefficients, between the (marginal) tilted distributions
and the (marginal) Gaussian measure, for each a ∈ F :

µi = ⟨xi⟩g(a) (3.31)
corrq (xi, xj) = corrq(a) (xi, xj) (3.32)

where µi = ⟨xi⟩q and

corrρ (xi, xj)=̂
⟨xixj⟩ρ − ⟨xi⟩ρ⟨xj⟩ρ√︂(︁
1− ⟨xi⟩2ρ

)︁ (︁
1− ⟨xj⟩2ρ

)︁ (3.33)

is the Pearson correlation coefficient between to variables i and j of a distribution ρ (in this case
ρ ∈

{︁
q, q(a)}︁). Finally, by putting together the DC condition (3.28) and the above matching

equations (3.31)-(3.32) we get the following system of closure equations, for each factor node
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3.1 – Derivation

a ∈ F :

µi = ⟨xi⟩q(a) ∀i ∈ ∂a (3.34a)

Σii =
⟨xi⟩q(a)

atanh⟨xi⟩q(a)
∀i ∈ ∂a (3.34b)

Σij = η
(︁
⟨xixj⟩q(a) − ⟨xi⟩q(a)⟨xj⟩q(a)

)︁ ⌜⃓⃓⎷ ΣiiΣjj(︂
1− ⟨xi⟩2q(a)

)︂(︂
1− ⟨xj⟩2q(a)

)︂ ∀i, j ∈ ∂a, i /= j

(3.34c)

where the Gaussian variances Σii are derived from (3.28) by using (3.34a). Other possible closures
are discussed in Section 3.2.2. Note that despite (3.34b) is not well-defined for mi = 0, it has a
finite limit: in particular, lim⟨xi⟩

q(a) →0 Σii = 1 (see also 3.6). Notice also that in (3.34c) a further
parameter η has been added. The quantity η plays the role of an interpolation between a full DC
solution, obtained by matching the Pearson coefficient, and the BP fixed points: indeed, as it will
be discussed in the next section, setting η = 0 is equivalent to neglect cavity correlations and it
turns out to give BP fixed points on any graph topology. However, for the time being, let us put
η = 1 for simplicity. The set (3.34) is a system of an equal number of equations and unknowns,
that can be iteratively solved w.r.t. to the Gaussian parameters

{︂
γ(a),Γ(a)

}︂
a∈F

to provide an
estimation of the original distribution’s moments onto each factor node.
The choice behind the matching of the Pearson correlation coefficient is justified by the following
argument. Suppose to have already applied a set of closure conditions to fix both the first moments
and the variances of the marginal Gaussian distribution q (x∂a) (respectively, {µi,Σii}i∈∂a). The
remaining parameters to fix are the off-diagonal covariances, whose number is

(︁|∂a|
2
)︁
. Matching the

Pearson coefficient is equivalent to apply the same trasformation used to map the tilted variances
to the Gaussian’s ones, also on the nearest neighbours’ covariances. For simplicity, we now restrict
to factor nodes of degree 2, even if the following argument holds for arbitrary connectivity. Let
us start from the covariance matrix of the marginal tilted distribution, defined as:

⟨x∂axT∂a⟩q(a) − ⟨x∂a⟩q(a)⟨xT∂a⟩q(a) =
(︃

1−m2
i cij

cij 1−m2
j

)︃
(3.35)

where mi = ⟨xi⟩q(a) and cij is the connected covariance between i and j. First notice that, thanks
to the Cauchy-Schwartz inequality, c2

ij ≤
(︁
1−m2

i

)︁ (︁
1−m2

j

)︁
, so that the determinant of (3.35) is

always non-negative. DC works by imposing local consistency conditions between q(a) (x∂a) and
q (x∂a), so that the two covariance matrix will be connected by a certain transformation(︃

Σii Σij
Σij Σjj

)︃
= F

[︃(︃
1−m2

i cij
cij 1−m2

j

)︃]︃
(3.36)

where F : R|∂a|(|∂a|+3)/2 → R|∂a|(|∂a|+3)/2. The diagonal elements of the covariance matrix in
(3.22) are already fixed thanks to (3.34a)-(3.34b), so that Σii = Fii (mi) = mi/atanhmi. The idea
is to transform also the non-diagonal covariances in such a way to mimic the same trasformation
from the variances of the tilted distributions onto the Gaussian’s ones. By defining the following
quantity:

Ai (mi) =
√︃

mi

(1−m2
i ) atanhmi

(3.37)

the resulting covariance matrix of the (marginal) Gaussian distribution will be given by:

⟨x∂axT∂a⟩q − ⟨x∂a⟩q⟨xT∂a⟩q =
(︃

Σii Σij
Σij Σjj

)︃
=
(︃(︁

1−m2
i

)︁
A2
i cijAiAj

cijAiAj
(︁
1−m2

j

)︁
AjAj

)︃
(3.38)
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3 – Density Consistency

With the above mapping, the covariances Σij are fixed by Σij = Fij (cij ,mi,mj) = cijAiAj . It is
easy to verify that such a condition is equivalent to (3.34c). Indeed, by rewriting Ai in terms of
Σii (and the same for Aj), we get:

Σij = cijAiAj = cij

√︄
Σii

(1−m2
i )

√︄
Σjj(︁

1−m2
j

)︁ (3.39)

Finally, by dividing both sides by
√︁

ΣiiΣjj we recover the Pearson correlation matching as in
(3.34c). This matching for the off-diagonal covariances seems to be a natural choice to ensure
that, if the covariance matrix of the tilted distribution (3.35) is invertible, so it is the Gaussian’s
one (3.36). Indeed, the determinant of (3.38) is equal to A2

iA
2
j

[︁(︁
1−m2

i

)︁ (︁
1−m2

j

)︁
− c2

ij

]︁
, that

is always non-negative by construction: in particular, the product A2
iA

2
j is positive by definition

of (3.37) (i.e. mi/atanhmi ≥ 0), and the term in square brakets is non-negative thanks to the
Cauchy-Schwartz inequality. Finally, by using this mapping it is necessary to fix an arbitrary set
of closures on the first moments µi = α(1) (mi) and on the diagonal entries Σii = α(2) (mi) in
such a way to satisfy DC condition (3.28), i.e. α(1) (mi) /α(2) (mi) = atanhmi; then, by defining
Ai (m) =

√︁
α(2) (m) / (1−m2

i ), the non-diagonal elements can be computed by using (3.39).

3.1.4 Parameters’ update
The above set of closure equations provides a way to fix the Gaussian moments µ[∂a], Σ[∂a,∂a]

in terms of the tilted ones. Their effect is then incorporated into the full Gaussian density q by
updating the parameters encoded into ϕa, i.e. the approximating factor over node a. The update
rule of its parameters follows from (3.20)-(3.21):(︂

Γ(a)
)︂τ+1

=
[︂
Στ

[∂a,∂a]

]︂−1
−
(︂

S(a)
)︂τ

(3.40)(︂
γ(a)

)︂τ+1
=
[︂
Στ

[∂a,∂a]

]︂−1
· µτ[∂a] −

(︂
w(a)

)︂τ
(3.41)

where τ is an integer corresponding to the iteration number and w(a), S(a) are the cavity param-
eters.

3.2 Properties
In this section, we summarize the main properties of Density Consistency, namely its exactness

on trees and the relation to Belief Propagation on generic loopy graphs, as well as the relation to
Expectation Propagation.

3.2.1 Exactness on trees and relation to Belief Propagation
On acyclic graphs, DC condition (3.28) is sufficient to guarantee exact computation of marginals,

independently on the other closure equations used to fix the remaining paramters of {ϕa}a∈F .
Moreover, by neglecting cavity covariances DC marginals coincide with the Belief Propagation
fixed points on any graph topology. These two properties can be rigorously proven in the following
theorem. For convenience, we first recall the Belief Propagation fixed point equations, already
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discussed in Sec (2.2):

ma→i (σi) ∝
∑︂

σ∂a\i

ψa (σa)
∏︂

j∈∂a\i

νj→a (σj) (3.42)

νi→a (σi) ∝
∏︂

b∈∂i\a

mb→i (σi) (3.43)

bi (σi) ∝
∏︂
b∈∂i

mb→i (σi) (3.44)

where σi ∈ {−1,1}. The first two are recognized as the BP message-passing equations (resp.
(2.32)-(3.43) in Section 2.2), and the third one is the single-node belief (2.31).

Theorem 1. If (H1) the factor graph is acyclic or (H2) DC scheme applies null covariances (η =
0), the quantity g\a (xi) ∝ νi→a (xi) satisfies (3.43), and the single node beliefs q(a) (xi) ∝ bi (xi)
satisfy (3.44)(3.42) when xi ∈ {−1,1}.

Proof. Under either hypothesis (H1 or H2), the marginal cavity distribution g\a (xa) (3.18) is
factorized: respectively, under H1 this is true by construction since the graph is a tree, while under
H2 it holds because in the full Gaussian measure q (x) we neglect all the connected correlations
Σij (i.e. the matrix Σ is diagonal). In both cases, we rewrite the marginal cavity distribution as
the product over single-node distributions:

g\a (xa) ∝
∏︂
i∈∂a

g\a (xi) ∝
∏︂
i∈∂a

νi→a (xi) (3.45)

Let us define the quantity ma→i (xi) ∝ q(xi)
νi→a(xi) . Thanks to DC condition (3.28), q (xi) ∝ q(a) (xi)

when xi ∈ {−1,1}. Therefore:

ma→i (xi) ∝
q (xi)

νi→a (xi)
(3.46)

∝ q(a) (xi)
νi→a (xi)

(3.47)

∝ 1
νi→a (xi)

∫︂
dx∂a\iq

(a) (xa) (3.48)

∝ 1
νi→a (xi)

∫︂
dx∂a\ig

\a (xa) Ψa (xa) (3.49)

∝
∫︂
dx∂a\i

∏︂
j∈∂a\i

νj→a (xj) Ψa (xa) (3.50)

where in (3.47) we used DC condition, in (3.48)(3.49) the definition of the marginal tilted dis-
tribution in terms of cavities (3.17) and (3.45) to derive the last line. Eq. (3.50) is identical to
(3.42): indeed, by virtue of the constraints included in Ψa, both right sides of (3.50) have measure
only on xi ∈ {−1,1}. We conclude that the set of messages {ma→i, νi→a} satisfy (3.42) under
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either hypothesis H1 and H2. Notice also the following relation:

ma→i (xi) ∝
q (xi)

νi→a (xi)
1

νi→a (xi)

∫︂
dx∂a\iq (xa) (3.51)

∝ 1
νi→a (xi)

∫︂
dx∂a\ig

\a (xa)ϕa (xa)

∝
∫︂
dx∂a\i

∏︂
j∈∂a\i

νj→a (xj)ϕa (xa) (3.52)

Under hypothesis (H2), the full Gaussian measure is factorized by assumption, q (x) ∝
∏︁
i∈V q (xi).

By construction, also the approximate Gaussian factors will be factorized:

ϕa (xa) ∝ q (xa)
g\a (xa)

∝
∏︂
i∈∂a

q (xi)
νi→a (xi)

∝
∏︂
i∈∂a

ma→i (xi) (3.53)

an therefore ϕa (xa) ∝
∏︁
i∈∂aϕa (xi) with ϕa (xi) ∝ ma→i (xi). Therefore we get:

νi→a (xi) ∝ g\a (xi)

∝
∫︂
dx\i

∏︂
c/=a

ϕc (xc)

∝
∫︂
dx\i

∏︂
c/=a

∏︂
j∈∂c

mc→j (xj)

∝
∏︂

c∈∂i\a

mc→i (xi)
∫︂
dx\i

∏︂
c/=a

∏︂
j∈∂c\i

mc→j (xj)

∝
∏︂

c∈∂i\a

mc→i (xi)

where the integral is just a constant that can be included into the normalization factor. To derive
(3.43) under (H1), we define the quantity Tb as the set of factors in the connected component of
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b once i is removed. We get:

νi→a (xi) ∝ g\a (xi)

∝
∫︂
dx\i

∏︂
c/=a

ϕc (xc)

∝
∫︂
dx\i

∏︂
b∈∂i\a

ϕb (xb)
∏︂

c∈Tb\b

ϕc (xc)

∝
∏︂

b∈∂i\a

⎡⎣∫︂ dxb\iϕb (xb)
∏︂

j∈∂b\i

g\b (xj)

⎤⎦
∝

∏︂
b∈∂i\a

⎡⎣∫︂ dxb\iϕb (xb)
∏︂

j∈∂b\i

mb→j (xj)

⎤⎦
∝

∏︂
b∈∂i\a

mb→i (xi)

where in the last line we used (3.52). Under either hypothesis H1, H2, the quantity νi→a (xi)
satisfies (3.43). Finally, by construction q (xi) ∝ vi→a (xi)ma→i (xi), so that also the equation for
the single node belief (3.44) is satisfied.

Therefore, we proved that Density Consistency is exact on acyclic graphs and gives the same
BP fixed points on any graph topology, provided that cavity correlations are neglected. More-
over, a simple inspection of the update equations in (1) shows that DC update rule equivalent
to an ordinary BP update. In this sense, Density Consistency can be considered as a general-
ization of Belief Propagation in which the factorization assumption in the cavity distribution is
related, in such a way to include some effective interactions between the nodes in the cavity.
These interactions are encoded by a Gaussian distribution, that easily allows to perform analytic
marginalization over any set of variables. If one neglects cavity covariances, the full Gaussian
measures is factorized over nodes, so that there is no contribution coming from cavity couplings
to the moments of the tilted distribution defined by (3.23)-(3.24). The result of Theorem 1 under
Hypothesis H2 is equivalent to what derived by Minka and discussed at the end of Section 2.4: the
only difference is that in the latter case the approximating family is defined as a joint factorized
distribution over discrete degrees of freedom. Here instead we deal with continuous distributions:
however, DC condition takes care of that, by imposing a consistency on the density values so that
the marginals q (xi) are fitted on the discrete support of the binary spin, so to be equivalent to
the moment matching condition (2.84). In this sense, Density Consistency can be considered as
a generalization of the method presented in Section 2.4.3 where the approximating family is not
factorized, but rather encoded by a family of multivariate (continuous) Gaussian densities.

The interpolation parameter η

Theorem 1 proves that setting η = 0 in (3.34c) is equivalent to assume that the cavity dis-
tribution is factorized, and therefore DC fixed points coincide with BP fixed points. The role of
the interpolation parameter η is well defined for the two limit values of η = 0,1: the first one
corresponds to BP fixed points, the second to DC fixed points obtained by “fully” matching the
Pearson correlation coefficient. However, in principle one could also set an intermediate value of
the interpolation parameter in the interval η ∈ (0,1): in this case, cavity correlations are damped
w.r.t. to the full DC solution. In this scenario, the meaning of DC approximation in this regime
has not a clear interpretation, but using a value of η < 1 can help convergence in some regimes
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where a full DC solution (obtained with η = 1) cannot be found. In this sense, η can be consid-
ered as a hyperparameter of this approximation and its effect will be discussed more in details in
Chapter 4.

3.2.2 Closure equations and relation to EP
Theorem 1 states that Density Consistency allows to compute exact marginal distributions on

acyclic graphs, provided that DC condition (3.28) is satisfied. In principle, the remaining set of
closure conditions could be chosen arbitrarily: for instance, one could either match the full set
of second moments, namely ⟨xaxta⟩q(a) = ⟨xaxta⟩q and use DC conditions (3.28) to fix the first
moments µi of the full Gaussian distribution q (x), namely:

µi =
(︂

1− ⟨xi⟩2q(a)

)︂
atanh⟨xi⟩q(a) (3.54a)

Σii = 1− ⟨xi⟩2q(a) (3.54b)
Σij = ⟨xixj⟩q(a) − ⟨xi⟩q(a)⟨xj⟩q(a) (3.54c)

In principle, any scheme satisfying (3.28) is exact on trees independently on the other closure
equations used to fix the remaining parameters. In the following, we present another closure up-
date scheme directly inspired by standard implementations of Expectation Propagation, obtained
by imposing the matching of the first two moments between the full Gaussian distribution an the
tilted distributions:

µi = ⟨xi⟩q(a) (3.55a)
Σii = 1− ⟨xi⟩2q(a) (3.55b)
Σij = ⟨xixj⟩q(a) − ⟨xi⟩q(a)⟨xj⟩q(a) (3.55c)

for ∀a ∈ F . In the rest of the manuscript, we will refer to the set of equations (3.55) as “EP”
closure. This set of equations is not exact on trees in general, as (3.28) is not satisfied. In
this sense, Density Consistency can be considered as an extension to the Gaussian Expectation
Propagation algorithm to multivariate factors, but with a different consistency condition designed
in such a way that the computation of marginals is exact on trees when the degrees of freedom are
binary spins. To highlight the difference between the two sets of closures, we show in Figure 3.6
the behaviour of µi/Σii as function of the tilted magnetization ⟨xi⟩q(a) . In particular, for the DC
closure the quantity µi/Σii is directly obtained from DC condition (3.28), while in the EP closure
it can be derived by using (3.55a)-(3.55b), that leads to µEPi /ΣEPii = ⟨xi⟩q(a)/

(︂
1− ⟨xi⟩2q(a)

)︂
.

Qualitatively, the behaviour is similar between the two methods, but only DC condition is exact
on acyclic graphs, independently on the magnetizations. It is interesting to notice that in the
simple case of zero magnetizations also the EP closure becomes exact on trees: however, despite
they give the same fixed points, the two closures differ in the dynamical update of the parameters:
indeed, we found that EP closure has typically poor convergence performances if compared to
DC. Moreover, EP closure is exact also in the limit of extreme polarized variables, i.e. when the
magnetization of spin i tends to 1 (or −1), that eventually occurs only in a zero temperature
limit. The EP closure will be extensively used in Chapter 5 for the inverse Ising problem.

3.2.3 Weight Gauge
Another interesting property concerns the possibility to move freely Gaussian-like densities

in and out the exact factors ψa (xa) . We first notice that the derivation presented so far can be
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Figure 3.6: Plot of µi/Σii as function of the tilted magnetization ⟨xi⟩q(a) = mi. Comparison
between DC condition (3.28) and the equivalent “EP” results obtained by using (3.55a) and
(3.55b).

carried out in the same way if the starting probability distribution contains a multivariate normal
distribution Φ (x):

p (x) ∝ Φ (x)
∏︂
a

ψa (xa)
∏︂
i

∆i (xi) (3.56)

With the above parametrization, the full Gaussian approximation and the tilted distributions
respectively read:

q (x) ∝ Φ (x)
∏︂
a∈F

ϕa (xa) (3.57)

q(a) (x) ∝ Φ (x)
∏︂
b/=a

ϕb (xa)×Ψa (xa) a ∈ F (3.58)

Let us now define a set of Gaussian densities {ρa (xa)}a∈F . We now rewrite Eqs.(3.56)-(3.57)-
(3.58) by inserting the set {ρa (xa)}:

p (x) ∝
[︄

Φ (x)
∏︂
a

ρa (xa)
]︄∏︂

a

ψa (xa)
ρa (xa)

∏︂
i

∆i (xi) (3.59)

q (xa) ∝
∫︂
dx\aΦ (x)

∏︂
b

ϕb (xb)

∝
∫︂
dx\aΦ (x)

∏︂
b

ϕb (xb)×
∏︁
b ρb (xb)∏︁
b ρb (xb)

∝
∫︂
dx\a

[︄
Φ (x)

∏︂
b

ρb (xb)
]︄
×
∏︂
b

ϕb (xb)
ρb (xb)

(3.60)

q(a) (xa) ∝ Ψa (xa)
∫︂
dx\a

Φ (x)
∏︁
b ϕb (xb)

ϕa (xa)

∝ Ψa (xa)
ρa (xa)

∫︂
dx\a

Φ (x)
∏︁
b ϕb (xb)

ϕa (xa) /ρa (xa) ×
∏︁
b ρb (xb)∏︁
b ρb (xb)

∝ Ψa (xa)
ρa (xa)

∫︂
dx\a

[Φ (x)
∏︁
b ρb (xb)]

ϕa (xa) /ρa (xa) ×
∏︂
b

ϕb (xb)
ρb (xb)

(3.61)
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where Ψa (xa) = ψa (xa)
∏︁
i∈∂a ∆i (xi). Define now the following distributions:

Φ′ (x) = Φ (x)
∏︂
b

ρb (xb) ϕ′
a (xa) = ϕa (xa)

ρa (xa) ψ′
a (xa) = ψa (xa)

ρa (xa) (3.62)

Inserting these expression in (3.61)-(3.60), we get the same parametrization of Eqs. (3.56)-(3.57)-
(3.58):

q(a) (xa) ∝ Ψ′
a (xa)

∫︂
dx\a

Φ′ (x)
∏︁
b ϕ

′
b (xb)

ϕ′
a (xa) (3.63)

q (xa) ∝
∫︂
dx\aΦ′ (x)

∏︂
b

ϕ′
b (xb) (3.64)

Since DC scheme imposes local constraints between the marginals q(a) (xa) and q (xa), a certain
approximating family defined by the set of Gaussian factors {ϕa}a∈F for the distribution (3.56)
and identified by

(︁
Φ, {ψa}a∈F

)︁
leads to an equivalent family {ϕ′

a = ϕa/ρa}a∈F for the distribution
(3.59) identified by

(︁
Φ′ = Φ

∏︁
b ρb, {ψ′

a = ψa/ρa}a∈F
)︁

for arbitrary Gaussian densities {ρa}a∈F .
Notice that the distributions (3.56) and (3.59) are exactly the same, and therefore the estimate
of marginal distributions must coincide. The latter reasoning holds independently on the set of
closure equations used. A first consequence is that adding a diagonal matrix into the starting pdf
does not modify at all fixed points: however, it may be use to prevent numerical issues arising in
the inversion of the covariance matrix . In particular, this property can be useful in the case of
Ising-like models, where the Hamiltonian contains only linear and quadratic terms.

3.3 Algorithmic details and implementation
In this section, we discuss some additional details about the implementation of Density Con-

sistency. Given a set of closure equations like (3.34), the Gaussian parameters can be updated
iteratively by virtue of Eqs. (3.40)-(3.41) until some convergence criterion is reached. In principle,
there are several possible update strategies: we discuss below the two simplest ones, providing
some details about the computational cost for each case.

Parallel update scheme In a parallel update scheme (PU), parameters
{︂

γ(a),Γ(a)
}︂
a∈F

are
updated simultaneously at each iteration. In this scenario, at each iteration the full covariance
matrix of the Gaussian distribution Σ needs to be inverted just once, and then all the cavity
parameters

{︂
y(a),S(a)

}︂
a∈F

are computed by using Eqs. (3.20)-(3.21). The computational cost
of one iteration scales like O

(︁
N3 +

∑︁
a 2|∂a|)︁, where the cubic term comes from the matrix inver-

sion’s cost using standard Gaussian elimination 1; conversely,
∑︁
a 2|∂a| is the number of operations

required to compute moments of marginal tilted distribution defined in Eqs. (3.23)-(3.24). How-
ever, on sparse topologies, the connectivity (i.e. the number of neighbours) of each factor node
is finite w.r.t. N , so that the computational time required to compute marginal tilted moments
is negligible w.r.t. the one required for the matrix inversion, and therefore the computational
complexity of DC scales like O

(︁
N3)︁ (for comparison, on sparse graphs BP’s computational cost

1Other algorithms have been designed to perform matrix operations with a better asymptotic computational
cost w.r.t. Gauss-Jordan decomposition, i.e. O

(︁
Nδ
)︁

where 2 < δ < 3 [37, 39]. However, the large prefactors
in the running time make their implementation not feasible in practice.
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is O (Nα) with α < 2). On the other hand, on fully connected models |∂a| ∼ O (N) and the
computational cost becomes exponentially with N , making the proposed scheme unfeasible for
large sizes. An empirical estimation of the computational cost per iteration is shown in Figure
3.7.
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Figure 3.7: Computation time per iteration vs N where DC is used to estimate marginals on an
Ising model defined on a Random Regular graph with degree k = 5. The results are averaged
over 10 instances, shown in log-scale. The inset shows the same plot in log-log scale. The red
points are obtained by using a single CPU thread, the green ones with 8 threads (i.e. the typical
default setting of LinearAlgebra libraries when running on multi-thread). In both cases, the full
lines represent the best fit curve using T (N) = T0N

γ as fitting function, whose parameters are
shown in the caption.

Random sequential update scheme In a random sequential update scheme (RSU), at each
iteration we select a random permutation of the factor nodes: each time the parameters of one
factor node a are updated, the full Gaussian density (3.7) is re-constructed. In this way, the up-
date of parameters of factor ϕa is immediately encoded into the approximation, used for the next
factor node in the (random) sequence. In this case, the computational cost becomes O

(︁
N3M

)︁
on sparse graphs, where M = |F | is the number of factor nodes. Therefore, RSU is slower in
terms of computation time per iteration, but it typically requires a smaller number of iterations
to converge, and it can be exploited in some regimes where the PU fails to do so.

As a final remark on the computational complexity, it should be possible in principle to ex-
ploit faster iterative methods designed to invert sparse matrices, in such a way to reduce the
overall computational cost of the algorithm. These methods typically allow to retrieve a subset
of the inverse matrix elements (e.g. the diagonal terms). Since the only elements needed by DC
to compute tilted moments are the diagonal entries of Σ and the off-diagonal entries [47, 67, 83]:
we leave this issue for future investigations.

3.3.1 Pseudocode implementation
A simple pseudocode implementation is shown in Algorithm 3.1 for the parallel update scheme.

A Julia implementation of the code is available at [27].
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Algorithm 3.1 Density Consistency
Input: set of compatibility functions {ψa}a∈F , maximum tolerance ε, maximum number of
iterations τmax, set of closure equations.
Initialize

{︃(︁
γ(a))︁τ=0

,
(︂

Γ(a)
)︂τ=0

}︃
a∈F

repeat for τ < τmax
compute µ,Σ by using (3.11)
for a ∈ F do

compute cavity fields and couplings w(a),S(a) from Eq. (3.20)-(3.21)
compute tilted moments ⟨xa⟩q(a) , ⟨xaxta⟩q(a)

compute the Gaussian moments µ[∂a], Στ
[∂a,∂a] using (3.34) (or any other set of closures)

update Gaussian parameters
(︁
γ(a))︁τ+1

,
(︂

Γ(a)
)︂τ+1

using (3.40)-(3.41)
until convergence δ∗ < ε where δ∗ ∈ {(3.65), (3.66)}
Output: tilted moments

{︁
⟨xa⟩q(a) , ⟨xaxta⟩q(a)

}︁
a∈F
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With regard to the initial condition, the simplest choice is to initialize the Gaussian fields{︁
γ(a)}︁

a∈F random, and the precision matrices
{︂

Γ(a)
}︂
a∈F

as identity matrices. The convergence
criterion can be defined both w.r.t. Gaussian parameters and tilted moments, respectively defined
as:

δp = max
a∈F

{︃⃓⃓⃓⃓(︂
γ(a)

)︂τ+1
−
(︂

γ(a)
)︂τ ⃓⃓⃓⃓

+
⃓⃓⃓⃓(︂

Γ(a)
)︂τ+1

−
(︂

Γ(a)
)︂τ ⃓⃓⃓⃓}︃

, (3.65)

δm = max
a∈F

{︂⃓⃓⃓
⟨xa⟩τ+1

q(a) − ⟨xa⟩τq(a)

⃓⃓⃓
+
⃓⃓⃓
⟨xaxta⟩τ+1

q(a) − ⟨xaxta⟩τq(a)

⃓⃓⃓}︂
, (3.66)

where ⟨·⟩τ is the expectation value computed with parameters at iteration τ . In particular, the
converge condition over parameters given by (3.65) is typically stronger w.r.t. the moments’ one
(3.66), and it generally requires more iterations to be reached. To overcome eventual stability
issues during the iteration, a damping ρ ∈ [0,1] can be added. In this case, the update rule is
modified as follows:

λτ+1 = ρλτ + (1− ρ)λnew λ ∈
{︂

γ(a),Γ(a)
}︂
a∈F

(3.67)

where λnew is the proposed update given by (3.40)-(3.41). Notice that the same code can be used
to compute BP fixed points on any graph topology, simply by using a closure that satisfies DC
condition (3.28) and setting η = 0 to neglect cavity covariances.

3.4 Future directions
In the previous sections, we have presented a detailed description of the Density Consis-

tency scheme, highlighting its main properties. An evaluation of its performances, compared to
other approximation methods, will be discussed in the next chapter. In the following section, we
present some preliminar discussion about two possible future directions: first, a generalization to
non-binary variables is discussed in Section 3.4.1; secondly, we provide a preliminar variational
formulation for the DC method, discussed in Section 3.4.2.

3.4.1 Generalization to non-binary variables
Density Consistency is based on the assumption that the probability values of a single-node

discrete binary distribution can be fitted by a univariate Gaussian distribution, as described in
Sec. 3.1.2. Even if the derivation presented so far has been carried out on probabilistic graphical
models of binary spins, i.e. variables a symmetric support on {−1,1}, it is straightfoward to apply
the same method any model defined on variables si having an arbitrary binary support over {a, b},
where a, b ∈ R. Indeed, the following linear transformation can always be applied:

si ∈ {a, b} −→ si = b− a
2 σi + b+ a

2 σi ∈ {−1,1} . (3.68)

It is therefore sufficient to map the starting distribution of p (s) onto a binary distribution p (σ)
by using Eq. (3.68) and apply the same machinery discussed before. On the other hand, when the
degrees of freedom take more than 2 values there is no general way to fit single-node marginals
with a univariate Gaussian distribution and DC condition (3.28) cannot be applied as such.
Many statistical physics models are defined by multi-state degrees of freedom, i.e. when the
number of values that each variable si can take is > 2: for instance, the Blume-Emery-Griffiths
model, introduced in [16] as a classical model to describe He3−He4 mixtures, is defined over
3−states variables, namely si ∈ {−1,0,1}. The BEG belongs to the more general class of Potts-
like models [113, 142], where the degrees of freedom are assumed to take k different values (often
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named colors): the Potts model has recently found many interesting applications in computational
biology, in particular for the structural inference in protein domains from coevolutionary sequences
[36]. In addition, several combinatorial optimization problems are defined by graphical models
of multistate variables, like graph-coloring [53, 96]. In the following, we discuss a possible way
to generalize Density Consistency to multi-state variable models. Let us define a probabilistic
graphical model on a factor graph G = (V,E, F ) in the same spirit as in the previous sections.
This time, each node i ∈ V represents a variable si taking values in a finite alfabet X with k > 2
states, namely si ∈ X = {θ1, . . . , θk}. The probability distribution of such a model, denoted with
p (s), can be written as:

p (s) = 1
Z

∏︂
a∈F

ψa (sa) (3.69)

Notice that the total number of configurations of (3.69) is kN . A possible way to apply Density
Consistency is to replace each k−valued variable si with a k−component vector of binary variables,
denoted with σi ∈ Rk, where σiα ∈ {−1,1} ∀α = 1, .., k. This procedure increases the number of
independent variables encoded by DC approximation to kN . However, in order to avoid including
non-physical configurations, the following constraint needs to be imposed on each vector σi:

k∑︂
α=1

σiα = 2− k ∀i ∈ V (3.70)

In this way, for each node i, only configurations of the type σi = {1,−1, ...,−1} (and its permu-
tations) are allowed, in order to select just one among the k states. This procedure is also known
as one-hot encoding in the machine learning community and it is illustrated in Figure 3.8 in the
simplest case of k = 3. The name “one-hot” is justified by noticing that only configuration in
which one the spins is up (hot) and the others are down (cold) are allowed; all the others - for
instance, configurations where two spins are +1 - would imply that the corresponding variable
si should be at the same time in two different states, and therefore they do not correspond to
physical configurations of the starting model defined by (3.69). For each degree of freedom, the

σs 1i
i

2
i

3
iσ σ

Figure 3.8: Illustration of the One-Hot encoding for a 3-colored variable.

constraints (3.70) can be implemented by adding a set of delta functions in the original probability
distribution, which is now a function of

{︁
σi
}︁
i∈V . By rewriting Eq. (3.69) in terms of the new

binary variables and taking into account for the constraints (3.70) we get:

p
(︁
σ1, . . . ,σN

)︁
= 1
Z

∏︂
a∈F

ψa

(︂{︁
σi
}︁
i∈∂a

)︂∏︂
i∈V

δ

(︄
k∑︂

α=1
σαi − (2− k)

)︄
(3.71)

which is mathematically equivalent to (3.69). The correlations induced by these constraints on
the spin components of each σi introduce short loops even when the original graph is a tree.
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Neverthless, it is still possible to write a set of matching equation similar to (3.28). Density
Consistency can be now applied in the same way as described in Section 3.1: to use the same
notation as before, we introduce a set of kN continuous variables

{︁
xi
}︁
i∈V =

{︁
xiα
}︁α=1,...,k
i∈V . In

particular, the Gaussian measure q
(︂{︁

xi
}︁
i∈V

)︂
and the tilted distributions q(a)

(︂{︁
xi
}︁
i∈V

)︂
can be

defined as:

q
(︂{︁

xi
}︁
i∈V

)︂
∝
∏︂
a

ϕa

(︂{︁
xi
}︁
i∈∂a

)︂
(3.72)

q(a)
(︂{︁

xi
}︁
i∈V

)︂
∝

⎛⎝∏︂
b/=a

ϕb

⎞⎠Ψa

(︂{︁
xi
}︁
i∈∂a

)︂
(3.73)

where again the functions ϕa are Gaussian densities defined as in (3.5), with the only difference
that each of them is now a multivariate normal distribution of k × |∂a| variables. The tilted
distributions q(a) will encode the linear constraints (3.70) for each i ∈ ∂a:

Ψa

(︂{︁
xi
}︁
i∈∂a

)︂
= ψa

(︂{︁
xi
}︁
i∈∂a

)︂ ∏︂
i∈∂a

δ

(︄
k∑︂

α=1
xαi − (2− k)

)︄
(3.74)

DC condition

DC condition can now be generalized to multistate variables by imposing a matching of the
density values between the distributions (3.72) Eq. (3.73) marginalized over all the variables
except the spin-vector xi, for i ∈ ∂a:

q(a) (︁xi)︁ ∝ q (︁xi)︁ ∀i ∈ ∂a, a ∈ F

The density matching holds on the support defined by xi = {1,−1, ...,−1} and its permutations,
which gives the following k equations:

q(a) (︁xi = {1,−1, . . . ,−1}
)︁
∝ q

(︁
xi = {1,−1, . . . ,−1}

)︁
q(a) (︁xi = {−1,1, . . . ,−1}

)︁
∝ q

(︁
xi = {−1,1, . . . ,−1}

)︁
(3.75)

...
q(a) (︁xi = {−1,−1, . . . ,1}

)︁
∝ q

(︁
xi = {−1,−1, . . . ,1}

)︁
Notice also that the above generalized DC condition can be used to prove Theorem (1) under
the same hypothesis in the case of multistate variables. However, it is not clear yet how to
generalized the set of closure equations (3.34) to this scenario, where both single-site correlation
between different “colors” (i.e. terms like Σαβii ) and nearest-neighbours correlation (i.e. Σαβij ) need
to be fixed. Notice also that in the above system (3.75) only k− 1 equations need to be explicitly
solved, and the last one will be automatically satisfied by normalization. In this perspective,
it is probably necessary to define the one hot encoding only w.r.t. k − 1 variables, otherwise
the Gaussian covariance matrix of (3.72) would have a null determinant since a number N of
its rows would be linearly dependent on the remaining N (k − 1) (this should be equivalent to
fix the so-called lattice gas gauge in Potts-like models [36]). We leave these issues for a future
investigation.

3.4.2 Towards a variational formulation
In this final section, we discuss a possible way to derive a variational approach to Density

Consistency. The idea is to derive a free energy as function of the Gaussian parameters so that
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3 – Density Consistency

its stationary points coincide with the DC fixed points, in the same way as carried out in Section
2.4.2 for Gaussian EP. Let us start by rewriting the tilted distribution (3.12) in terms of the full
Gaussian measure and the single-node constrained distributions q̂(i) defined in Eq. (3.29):

q(a) (x) = 1
Za

⎡⎣∏︂
b/=a

ϕb

⎤⎦ψa ∏︂
i∈∂a

∆i ×
ϕa
∏︁
i∈∂a Ẑi (

∏︁
c ϕc)

|∂a|−1

ϕa
∏︁
i∈∂a Ẑi (

∏︁
c ϕc)

|∂a|−1

=
∏︁
i∈∂a Ẑi

Za

∏︁
i∈∂a q̂

(i) (x)
(
∏︁
c ϕc)

|∂a|−1
ψa
ϕa

=
∏︁
i∈∂a Ẑi

Za

∏︁
i∈∂a q̂

(i) (x)
(
∏︁
c ϕc)

|∂a|−1
ψa
ϕa
× Z

|∂a|−1
q

Z
|∂a|−1
q

=
∏︁
i∈∂a Ẑi

ZaZ
|∂a|−1
q

∏︁
i∈∂a q̂

(i) (x)
q (x)|∂a|−1

ψa
ϕa

(3.76)

where Ẑi (resp. Zq) is the partition function of q̂(i) (resp. q). Now, by taking the product of all
the tilted distributions written as in Eq. (3.76), we get:∏︂

a

q(a) (x) =
∏︂
a

[︄ ∏︁
i∈∂a Ẑi

ZaZ
|∂a|−1
q

∏︁
i∈∂a q̂

(i) (x)
q (x)|∂a|−1

ψa
ϕa

]︄
=

=
∏︂
a

[︄ ∏︁
i∈∂a Ẑi

ZaZ
|∂a|−1
q

∏︁
i∈∂a q̂

(i) (x)
q (x)|∂a|−1

]︄
×
∏︂
a

ψa
ϕa
×
Z
∏︁
i ∆i

Z
∏︁
i ∆i

=
∏︂
a

[︄ ∏︁
i∈∂a Ẑi

ZaZ
|∂a|−1
q

∏︁
i∈∂a q̂

(i) (x)
q (x)|∂a|−1

]︄
× p (x)Z∏︁

a ϕa
∏︁
i ∆i

×
(
∏︁
a ϕa)N−1

(
∏︁
a ϕa)N−1

=
∏︂
a

[︄ ∏︁
i∈∂a Ẑi

ZaZ
|∂a|−1
q

∏︁
i∈∂a q̂

(i) (x)
q (x)|∂a|−1

]︄
× p (x)Z∏︁

i Ẑiq̂
(i) (x)

× [q (x)Zq]N−1

= p (x)Z

∏︁
i

[︂
Ẑiq̂

(i)
]︂di−1

(
∏︁
a Za) [Zqq (x)](1−N)+

∑︁
a

(|∂a|−1)
(3.77)

Using the above expression and rewriting it to isolate the distribution of the original model p (x),
we get:

p (x) =
∏︁
a Zaq

(a) (x) [Zqq (x)](1−N)+
∑︁

a
(|∂a|−1)

Z
∏︁
i

[︂
Ẑiq̂(i) (x)

]︂di−1

=
∏︁
a Za [Zq](1−N)+

∑︁
a

(|∂a|−1)

Z
∏︁
i Ẑ

di−1
i

∏︁
a q

(a) (x) [q (x)](1−N)+
∑︁

a
(|∂a|−1)∏︁

i

[︁
q̂(i) (x)

]︁di−1 (3.78)

= p̃ (x) ZDC
Z

(3.79)

where

p̃ (x) =
∏︁
a q

(a) (x) [q (x)](1−N)+
∑︁

a
(|∂a|−1)∏︁

i

[︁
q̂(i) (x)

]︁di−1 (3.80)

ZDC =
∏︁
a Za [Zq](1−N)+

∑︁
a

(|∂a|−1)∏︁
i Ẑ

di−1
i

(3.81)
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3.4 – Future directions

The ratio α = ZDC/Z will be equal to 1 when DC is exact, which occurs on acyclic graphs, where
Density Consistency coindice with the Bethe Approximation. This allows to define the DC free
energy as follows:

FDC = − logZDC = −
∑︂
a

logZa +
∑︂
i

(di − 1) log Ẑi −
[︄

(1−N) +
∑︂
a

(|∂a| − 1)
]︄

logZq (3.82)

Notice that, on a (undirected) factor graph, the sum of the degrees of variable nodes is equal to
the sum of the degrees of all factor nodes, namely

∑︁
a |∂a| =

∑︁
i di. This allows to simplify the

exponent of Zq as:
(1−N) +

∑︂
a

(|∂a| − 1) =
∑︂
i

di −M −N + 1=̂Ξ (3.83)

where N = |V | and M = |F |.

Stationary points

We now compute the stationary condition of FDC by setting to 0 its derivatives w.r.t. the
Gaussian parameters of each factor node a:

∂FDC

∂γ
(a)
i

= −
∑︂
b/=a

⟨xi⟩q(b) +
∑︂
j

(dj − 1) ⟨xi⟩q̂(j) = 0− Ξ⟨xi⟩q ∀i ∈ ∂a (3.84)

∂FDC

∂Γ(a)
ij

= −
∑︂
b/=a

⟨xixj⟩q(b) +
∑︂
k

(dj − 1) ⟨xixj⟩q̂(k) − Ξ⟨xixj⟩q = 0 ∀i, j ∈ ∂a (3.85)

In the above expression, most of the terms in the two summations refer to expectation values
of variables computed w.r.t. a tilted distribution defined on other factor nodes not connected to
them. For simplicity, we rewrite the first stationary condition to highlight their contribution:

∂FDC

∂γ
(a)
i

= −
∑︂
b/=a
i∈∂b

⟨xi⟩q(b) −
∑︂
b/=a
i/∈∂b

⟨xi⟩q(b) + (di − 1) ⟨xi⟩q̂(i) +
∑︂
j /=i

(dj − 1) ⟨xi⟩q̂(j) − Ξ⟨xi⟩q (3.86)

In particular, the second term represents the sum of expectation values of variable xi computed
over tilted distributions defined on factor node not connected to i. Neverthless, all these moments
can be analytically evaluated by exploting properties of Gaussian integration and we refer to
Appendix A for a more detailed discussion.

Stationarity over fields

In the following, we will show that DC closure equations satisfy Eq. (3.84). The computation
of these “mixed” tilted moments is discussed in Appendix A, we report here the final results for
the first-order moments:

⟨xi⟩q(b) = µi −
∑︂
k∈∂b

[︁
S(∂b∪i)]︁

ik[︁
S(∂b∪i)

]︁
ii

[︁
⟨xk⟩q(b) − µk

]︁
∀b : i /∈ ∂b (3.87)

⟨xi⟩q̂(j) = µi −

[︁
S(j∪i)]︁

ij[︁
S(j∪i)

]︁
ii

(︁
⟨xj⟩q(j) − µj

)︁
∀j /= i (3.88)

where the matrix S(∂b∪i) is the inverse of the sub-block of the covariance matrix of the full
Gaussian measure, namely S(∂b∪i) =

(︁
Σ[∂b∪i,∂b∪i]

)︁−1 (the same holds for S(j∪i)). Inserting Eqs
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3 – Density Consistency

(3.87)-(3.88) into (3.86), and using (3.28)-(3.34a) (respectively, the set of DC condition and the
first moment matching equations) and after some straighforward algebra, we get the following
expression for the stationarity condition (3.86):

∂FDC

∂γ
(a)
i

= −
∑︂

b/=a,i∈∂b

⟨xi⟩q(b) +
∑︂

b/=a,i/∈∂b

∑︂
k∈∂b

[︁
S(∂b∪i)]︁

ik[︁
S(∂b∪i)

]︁
ii

[︁
⟨xk⟩q(b) − µk

]︁
+

(di − 1) ⟨xi⟩q(i) −
∑︂
j /=i

(dj − 1)
[︁
S(j∪i)]︁

ij[︁
S(j∪i)

]︁
ii

(︁
⟨xj⟩q(j) − µj

)︁
+

−

⎡⎣Ξ + (M − di)−

⎛⎝∑︂
j

dj − di − (N − 1)

⎞⎠⎤⎦µi = 0

where we used ⟨xi⟩q = µi as in Eq. (3.8). Notice now that, using the definition of Ξ =
∑︁
i di−M−

N +1, the last term disappears. Finally, using both DC condition and the first moment matching
(resp. Eqs (3.28)-(3.34a)), the above expression becomes identically satisfied. Therefore, given
any set of closure equations satisfying DC condition and the first moment matching, the free
energy (3.82) will be stationary with respect to variations of the linear terms

{︁
γ(a)}︁

a∈F . The
set of stationarity conditions w.r.t. to quadratic terms (3.85) involve similar (but way longer)
calculations, that depend also on the closure equation used to fix 2−points correlations. We
verified that the matching of Pearson correlation coefficient (3.34c) does not imply stationarity of
(3.85). In principle, we expect that the free energy will be stationary by choosing another suitable
consistency condition over 2-point correlations: however, this issue is still an open problem and
we leave it for future investigations.
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Chapter 4

Results : forward problem

This chapter presents a series of numerical and analytic results obtained through Density
Consistency, in comparison to other approximation methods. The whole chapter focuses on the
forward (or direct) problem, i.e. the estimation of marginal probabilities from a known model. In
particular, Section (4.1) presents some results on finite size systems, with a particular focus on
Ising-like models: in this case, Density Consistency is discussed in the simplified setup of pairwise
graphical models. In addition, some preliminar results about combinatorial optimization problems
are discussed in Sec (4.2). Finally, Section 4.3 presents an analytic solution based on Density
Consistency for the Ferromagnetic Ising model on hypercubic lattices in the thermodynamic limit.

4.1 Ising Model
4.1.1 Density Consistency approach

A generic pairwise graphical model of binary spins can always be written in terms of an Ising
Hamiltonian. In this case, it is possible to simplify the derivation of Density Consistency because
the factor graph representation reduces to a simple graph. Therefore, we are going to recall the
main steps of the derivation presented in Chapter 3, that will be extensively used in Sec. 4.3 as
well as in Chapter 5 in the context of the Inverse Ising Problem.
As discussed in Section 1.2, the Ising model can be defined on an arbitrary graph G = (V,E)
with N = |V | nodes and a set of edge links E. On each node a discrete variable is defined, taking
values in {−1,1}. On each edge (ij) ∈ E a real quantity Jij identifies the pairwise interaction
between spin i and j; edges are assumed to be undirected, so that the matrix defined by the
whole set of couplings J = {Jij}i,j∈V is symmetric by construction1. Moreover, a local external
field, denoted with hi, acts on each spin i. At a certain inverse temperature β, the equilibrium
probability distribution is expressed by:

p (x) = 1
Z

exp

⎡⎣β∑︂
⟨i,j⟩

Jijxixj + β
∑︂
i

hixi

⎤⎦∏︂
i

∆i (xi) (4.1)

Notice that where we already defined (4.1) w.r.t. continuous variables xi ∈ R as in (3.3) and we
introduced the constraints ∆i (xi), defined by (3.4), such that the probability distribution has a

1In a matrix notation, a coupling Jij is assumed to be zero for a non-existing edge in the graph, i.e
Jij = 0 ∀ (i, j) /∈ E
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4 – Results : forward problem

non zero-measure only over the binary support {−1,1}N . We rewrite (4.1) in a factorized form

p (x) ∝
∏︂
⟨i,j⟩

ψij (xi, xj)
∏︂
i

∆i (xi) (4.2)

where
ψij (xi, xj) = exp

[︂
βJijxixj + βh

(ij)
i xi + βh

(ij)
j xj

]︂
(4.3)

In this notation, the quantity h
(ij)
i (resp. h

(ij)
j ) denotes a certain fraction of the local field hi

(resp. hj) contained into the factor ψij . In this way, external fields can be distributed among all
the factors corresponding to n.n. pairs, with the following constraints:∑︂

j∈∂i

h
(ij)
i = hi, ∀i (4.4)

The simplest choice is to uniformly distribute the local field hi among its neighbours, i.e. h(ij)
i =

hi/ |∂i|. Although this choice may seem heuristic, notice that, thanks to the weight gauge property
described in Sec. (3.2.3), the way in which local fields are distributed among factors is irrelevant
for DC scheme, as it is always possible to move in and out Gaussian densities from the factors
ψij . This notation will be also be useful in the next chapter.
Density Consistency’s derivation can be carried out in the same way as in Chapter 3, by identifying
each factor node a with the link (ij). In particular, the approximating Gaussian densities are now
defined for each edge (ij) in the graph:

ϕij (xi, xj) = exp
[︃
−1

2 (xi, xj) Γ(ij) (xi, xj)t + (xi, xj) γ(ij)
]︃
∀ (ij) ∈ E (4.5)

Here Γ(ij) is a 2× 2 matrix, γ(ij) is a 2−components column vector defined by:

Γ(ij) =
(︄

Γ(ij)
ii Γ(ij)

ij

Γ(ij)
ij Γ(ij)

jj

)︄
, γ(ij) =

(︄
γ

(ij)
i

γ
(ij)
j

)︄
∀ (i, j) ∈ E (4.6)

For simplicity, we recall the definition of the full Gaussian measure q (x) ,obtained by taking the
product of all the 4.5, and the set of tilted distributions, each one defined on a particular edge
(ij), and denoted with q(ij) (x):

q (x) ∝
∏︂
i<j

ϕij (xi, xj) ∝ exp
[︃
−1

2 (x− µ)t Σ−1 (x− µ)
]︃
, (4.7)

q(ij) (x) ∝
∏︂

(k,l)∈E

(k,l)/=(ij)

ϕklΨij ∝ q (x) Ψij

ϕij
, ∀ (i, j) ∈ E (4.8)

where Ψij = ψij∆i∆j . As described in the previous chapter, each tilted distribution can be
used to estimate marginal densities over the variables (ij), where a correction term arises from
the presence of the Gaussian cavity distribution g\(ij) ∝ q/ϕij . In particular, Eq. 4.8 can be
marginalized over all the set of variables but (xi, xj) by a standard Gaussian integration, leading
to the following marginal density:

q(ij) (xi, xj) =
∫︂
dx\i,jq

(ij) (x) ∝ g\(ij) (xi, xj) Ψij (xi, xj) , (4.9)

where g\ij (xi, xj) is the marginal cavity distribution, defined as follows:

g\(ij) (xi, xj) ∝
∫︂
dx\ij

q (x)
ϕij (xi, xj)

∝ exp
[︃
−1

2 (xi, xj) S(ij) (xi, xj)t + (xi, xj) w(ij)
]︃

(4.10)
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4.1 – Ising Model

with S(ij) being a 2 × 2 matrix, w(ij) being a 2−components vector. Their expression follows
directly from the general expression (3.20)-(3.21):

w
(ij)
i = Σjjµi − Σijµj

ΣiiΣjj − Σ2
ij

− γ(ij)
i (4.11)

w
(ij)
j = −Σijµi + Σiiµj

ΣiiΣjj − Σ2
ij

− γ(ij)
j (4.12)

S
(ij)

ij = −Σij
ΣiiΣjj − Σ2

ij

− Γ(ij)
ij (4.13)

For simplicity, the diagonal elements of S(ij) are not shown, since they do not contribute to the
tilted marginals. The moments of (4.9) can be easily computed by performing a summation over
{−1,1}2:

⟨xi⟩q(ij) = tanh
[︂
a

(ij)
i + atanh

(︂
tanh b(ij) tanh a(ij)

j

)︂]︂
(4.14a)

⟨xj⟩q(ij) = tanh
[︂
a

(ij)
j + atanh

(︂
tanh b(ij) tanh a(ij)

i

)︂]︂
(4.14b)

⟨xixj⟩q(ij) = tanh
[︂
b(ij) + atanh

(︂
tanh a(ij)

i tanh a(ij)
j

)︂]︂
(4.14c)

with
a

(ij)
i = βh

(ij)
i + w

(ij)
i (4.15a)

a
(ij)
j = βh

(ij)
j + w

(ij)
j (4.15b)

b(ij) = βJij − S(ij)
ij (4.15c)

It is even more clear how the cavity distribution modifies the tilted moments by the addition of
an effective coupling −S(ij)

ij (i.e. the off-diagonal term of the coupling cavity matrix S(ij)), as well
as cavity fields w(ij)

i , w
(ij)
j . When neglecting cavity correlations, DC scheme provides BP fixed

points on any graph topology, as discussed in the previous chapter: in this case, the cavity field
w

(ij)
i coincides to the cavity message defined in (2.41) (and similarly for w(ij)

j ).

Weight gauge

Since the Ising Hamiltonian contains only linear and quadratic terms, the Boltzmann measure
4.1 can be written as a Gaussian density in terms of continuous variables. This allows to exploit
the weight gauge property discussed in Sec. 3.2.3. Following that notation, we rewrite the original
probability distribution as follows:

p (x) = 1
Z

Φ (x)
∏︂
⟨i,j⟩

ψ
′

ij (xi, xj)
∏︂
i

∆i (xi) (4.16)

Φ (x) = exp
[︃
−1

2xt (−βJ)−1
x + βhtx

]︃
(4.17)

with ψ′

ij (xi, xj) = 1. The above parametrization allows to apply Density Consistency by moving
all the terms in the Hamiltonian outside the factors ψij and reparametrize the Gaussian and titled
distributions as:

q (x) ∝ Φ (x)
∏︂
⟨i,j⟩

ϕ
′

ij (xi, xj) (4.18)

q(ij) (x) ∝ Φ (x)
∏︂

(k,l)∈E

(k,l)/=(ij)

ϕ
′

ij (xi, xj) Ψ
′

ij (xi, xj) (4.19)
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where Ψ′

ij = ∆i∆j . We remark that running DC in this setup gives the same fixed points as
before, on any graph topology and under any set of closure equations.

Equivalent parametrization by adding univariate factors

Another equivalent parametrization of DC scheme can be performed by moving the local
external fields onto a separate set univariate factors. In this way, the probability distribution of
the Ising model can be expressed in the following form:

p (x) ∝
∏︂
⟨i,j⟩

ψ0
ij (xi, xj)

∏︂
i

ψi (xi)
∏︂
i

∆i (xi) (4.20)

where now the factors ψ0
ij contain only the interaction term, namely ψ0

ij (xi, xi) ∝ eβJijxixj ,
and the local fields are included into ψi (xi) ∝ eβhixi . DC’s derivation follows in the same way as
previously discussed, with the difference that now an additional set of univariate Gaussian density
ϕi is included:

ϕi (xi) ∝ exp
[︃
−1

2Γ(i)x2
i + γ(i)xi

]︃
∀i ∈ V (4.21)

DC scheme is now defined by an equivalent family
(︂{︁
ϕ0
ij

}︁
(ij)∈E , {ϕi}i∈V

)︂
. Also in this case,

the fixed points are the same as in the previous parametrization: the reason is the set of DC
closures is trivially solved in the case of univariate factors. Indeed, consider the DC condition
(3.28) between the marginal tilted distribution defined w.r.t. the single-site factor i and denoted
with q(i):

q(i) (xi) ∝ q (xi)
g\i (xi)× ψi (xi) ∝ g\i (xi)× ϕ(i) (xi)

which is trivially solved by γ(i) = βhi and independently on the additional parameter Γ(i). The
last expression follows directly from the definitions of the tilted distribution and the full Gaussian
measure, both of them marginalized over all the variables but xi.

4.1.2 Results
In this section we show some results for the Ising model on different regimes, by varying the

graph topology and the distribution of couplings and external fields. In order to compare the
results with a ground truth estimate, we performed long Monte Carlo (MC) simulations using
the Gibbs sampling procedure [55] with a total number of sampled configurations M = 106. The
dynamics is run for 2M steps, the first half needed to equilibrate the MC dynamics. We remark
that each “step” here corresponds to N Gibbs-sampling sweeps, each time performed on a random
permutation of the spins. By denoting the set of sampled configurations with {σµ}Mµ=1, the first
and second moments experimental moments can be computed as:

mMC
i = ⟨σi⟩MC = 1

M

M∑︂
µ=1

σµi (4.22)

χMC
ij = ⟨σiσj⟩MC = 1

M

M∑︂
µ=1

σµi σ
µ
j (4.23)

and the connected-correlations are defined as Cij = χij −mimj . All DC simulations have been
performed by using a numerical precision ε = 10−7 on the tilted moments, with a damping
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parameter ρ = 0.95 to improve convergence. A first subset of results is shown in Figure 4.1.
In this case, all of the instances refer to ferromagnetic models with heterogeneous couplings, i.e.
Jij > 0 ∀ (i, j) ∈ E, without external fields; therefore, magnetizations are null and not shown.
In all the four panels we scatter plot the nearest neighbour correlations computed by DC and
BP w.r.t. the Monte Carlo values. As expected, DC turns out to significantly improve BP’s
estimate of correlations in all the cases analyzed. A particular instructive case is the panel (a)
of Figure (4.1), where the model is defined on a Random Regular Graph of fixed degree, with
constant couplings (i.e. Jij = J): since the connectivity of all nodes are the same, BP’s estimate
of correlations is equal for each pair of adjacent spins; neverthless, the graph contains a certain
number of (long) loops, their non-negligible contribution (at finite size) is well captured by DC
thanks to the presence of cavity couplings, as discussed before. Another set of results is shown in
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Figure 4.1: Comparison of DC and BP on single-instances ferromagnetic Ising models with null
external fields. (a) Random Regular Graph (RRG) with N = 300, constant degree k = 4 and
β = 0.3. (b) 2−dimensional square lattice with periodic boundary conditions (PBC), N = 102

and β = 0.35. (c) . Barabasi-Albert graph, N = 100, n0 = k = 2 (the solution is found by
using η∗ = 0.95 and it is divergent for η > η∗). (d) 3−dimensional cubic lattice with PBC,
N = 63and β = 0.21. Except for panel (a), in all the other instances couplings are drawn from a
uniform distribution in (0.5,1.5). All the panels represent the scatter plot of nearest neighoburs
correlations obtained through BP and DC, compared to Monte Carlo estimates.

Figure 4.2 for three spin glass models with binary interactions, so that on each edge the coupling
Jij is sampled in {−1,1} with equal probability. Each of the panels in Figure 4.2 shows a typical
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instance for three different architectures: a scale-free graph generated through the Barabasi-
Albert [8] model (panel a), a random regular graph (panel b) and a 3d lattice (panel c). Again,
each panel shows the scatter plot of the nearest-neighbours correlations against MC estimates
(in zero field). Since there are two values for the couplings, BP will estimate only two possible
correlations between any pair of n.n. spins, equal apart from the sign. On the other hand, DC
estimates take into account the presence of all the loops, giving reasonably good estimates for
the correlations compared to MC. On locally tree-like graphs, we expect the loop contributions
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Figure 4.2: Comparison of DC and BP on single-instances spin glass models with null external
fields. (a) Barabasi-Albert graph, N = 100, n0 = k = 2, β = 0. (b) Random Regular Graph
(RRG) with N = 100, constant degree k = 4 and β = 0.4. (c) 3−dimensional cubic lattice with
PBC, N = 63and β = 0.2. In all the three models, couplings are binary, i.e. Jij ± 1 with equal
probabilty. All the figures represent the scatter plot of nearest neighbours correlations obtained
through BP and DC, compared to Monte Carlo estimates.

encoded by DC through the Gaussian cavities to be non-negligible only for a system with finite
size: on the other hand, by increasing the number of nodes, their effect becomes negligible since the
typical loop length increases as logN , and BP becomes asymptotically exact in the limit N →∞.
This behaviour is confirmed on Figure 4.3, where the cavity couplings S(ij)

ij predicted by DC are
computed for a ferromagnetic Ising model defined on a random regular graph, with increasing size
N . In this regime, independently on the temperature, the cavity couplings display a power-law
decay. The same qualitative behaviour also holds for other tree-like topologies (e.g. Erdos-Reny),
and by choosing different distributions of the couplings (e.g. spin-glass). We conclude the present
section by showing a preliminar set of results where DC is compared against Linear Response
(LR) techniques. In principle, correlations of arbitrary length can be estimated using LR onto
any mean-field like approximation (even in the naif Mean field theory, where correlations are not
taken into account within the trial probability distribution). In particular, we now evaluate LR
correlations computed with respect to the Bethe Approximation: this approach was first derived
by Welling and Teh [138], who designed an iterative message-passsing algorithm defined on cavity
susceptibilities, known as Susceptibility Propagation (SP). The approach we use in the following is
based on an analytic solution to compute the full covariance matrix of a known Ising model w.r.t.
a BP fixed point, first developed in [116]. This approach allows to retrieve LR correlations without
running an iterative algorithm, thus being much faster (it only requires a single matrix inversion)
and free from numerical convergence issues. Moreover, it can be easily extended to infer couplings
and fields from a series of data: for this reason, we will discuss it more in details in Chapter 5 in
the context of the inverse Ising problem. The advantage of SP is that the true covariance matrix is
retrieved whenever the starting graph is acyclic, so that both n.n. and long range-correlations can
be exactly computed. Figure 4.4 shows two example scatter plots by comparing n.n. correlations
(in zero field) computed through Susceptibility Propagation. In particular, the two instances are
the same as Figure 4.1 panel (a) and Figure 4.2 panel (c), respectively. SP is able to significantly
improve the estimation of couplings w.r.t. standard BP, and it estimates an heterogeneous set
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Figure 4.3: Cavity couplings as estimated by DC at fixed point (through (5.56) ) w.r.t. system
size N . The topology is a random regular graph with fixed connectivity k = 4 and constant
couplings Jij = 1 among n.n. spins. The plot shows the average cavity couplings −S(ij)

ij on all
the n.n. pairs of spins, for 4 different values of β (shown in the legend), in log-log scale; mean
and stardand errors are computed over 20 instances, by varying the graph topology.

of n.n. correlations due to the random structure of the graph in the left panel of Figure 4.4,
and because of the random sign of the couplings in the right panel. On spin glass models, SP
gives comparable performances w.r.t. DC (the qualitative behaviour of the right panel in Figure
4.4 is similar also on different graph topologies). On the other hand, on ferromagnetic models it
typically overestimates the magnitute of such correlations, givin worse performances if compared
to DC. On this regard, an additional set of results is shown in Section 4.3.5.
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Figure 4.4: Comparison of DC, BP and Susceptibility Propagation (SP) on two single-instances
Ising models with null external fields. Left panel: random Regular Graph (RRG) with N = 300,
constant degree k = 4 and β = 0.3, constant coupling Jij = 1 among n.n. nodes. Right panel:
3−dimensional cubic lattice with PBC, N = 63and β = 0.2, binary couplings Jij = ±1 sampled
with equal probability. All the figures represent the scatter plot of nearest neighoburs correlations
obtained through BP, DC and SP, compared to Monte Carlo estimates.
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Effect of the interpolation parameter η

As discussed in the previous chapter (section 3.2.2) the DC closures can be modified by intro-
ducing a real parameter η ∈ [0,1] in the Pearson matching equation (Eq. (3.34c)): in particular,
setting η = 0 is equivalent to neglect cavity correlations, so that DC fixed points coincide with
Belief Propagation’s ones, on any graph topology. In many regimes, e.g. at low temperatures for
the Ising model, a full DC closure (η = 1) does not converge: the reason could be that the loop
contributions coming from the cavity make the covariance matrix of the tilted distributions to be
ill-defined. A possible way to solve this issue is to choose a value of η < 1 to help DC in reaching
a fixed point. This issue arises especially in the case of ferromagnetic models close to the critical
temperature, where the contribution of long-range correlations is larger: for instance, the result
in Figure 4.1, panel (c) is obtained for η∗ = 0.95, as for η > η∗ DC did not converge on this
particular model. In general, decreasing η makes the correlations induced by the Gaussian cavity
to be less dominant with respect to the direct link’s contribution between two nearest neighbours
spins.
The top panel of Figure 4.5 shows the behaviour of n.n. correlations in a 3d ferromagnetic Ising
model with constant couplings as a function η ∈ [0,1], evaluated at different temperatures. In par-
ticular the left plot displays the error between DC’s tilted estimates and Monte Carlo, computed
as

∆C =

⌜⃓⃓⎷∑︁⟨i,j⟩
(︁
Cest
ij − C∗

ij

)︁2

|E|
(4.24)

where C∗
ij corresponds to the ground-truth estimate given by Monte Carlo (eventually, it can be

computed by evaluating the exact trace over all the configurations, when possible). Conversely,
the upper-right panel of Figure 4.5 shows the average tilted correlations vs η, normalized to the
value η = 1. It is evident in both cases how at high temperatures the loop contributions induced
by the cavity are unrelevant to estimate correlations, and indeed the corresponding curves are
almost constant w.r.t. η; as soon as the temperature decreases, the loop contribution become
more and more important, and the error decreases by increasing η. Further notice how the tilted
correlations show a high non-linear behaviour w.r.t. η. The lower-left panel shows the scatter
plot of n.n. correlations against MC obtained with different values of η: the instance is the same
of Figure 4.1 (c) for the Random Regular Graph. The lower-right panel shows again the error
over correlations on a spin glass model with binary couplings, on a small 2d lattice of size N = 42:
this time the error over correlations is computed w.r.t. to the exact trace, and averaged over 20
instances. In spin glass models, the effective coupling induced by the cavity on an edge (ij) might
not have the same sign as the direct link’s contribution, depending in general on the particular
instance of the coupling matrix.
The error shows a similar behaviour w.r.t. the ferromagnetic case, i.e. decreasing with η. However,
at small value of the temperature a minimum appears at η = η∗ and DC stops converging for
η > η∗. In principle, one can heuristically choose η as the maximum value at which a DC fixed
point can be found.

Comparison with LCBP

We now present a small set of results where DC is compared against Loop Corrected Belief
Propagation (LCBP), already introduced in Chapter 2. In particular, we used the code provided
in [93] to run LCBP. Figure 4.6, shows the equilibrium magnetizations of two Ising models in the
presence of random external fields hi ∼ ±h0, again plotted against Monte Carlo’s estimates. DC
turns out to give comparable estimates w.r.t. Loop Corrected Belief Propagation (LCBP) [92]
in several cases. We underline that, despite the computational cost per iteration of LCBP on
bounded-degree graphs being O

(︁
N2)︁, the prefactor depends strongly on the degree distribution,
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Figure 4.5: Effect of the interpolation parameter η on tilted moments. The top panel refers to a 3d
lattice Ising model with constant ferromagnetic couplings, N = 63 and Jij = 1. Upper-left panel:
error over n.n. correlations with respect to MC estimates; upper-right panel: tilted correlations
estimated through DC, normalized over the η = 1 value. Each curve shows the behaviour vs
η ∈ [0,1] (η = 0 corresponds to BP, as shown by the vertical line), for different values of β in
the range [0.05,0.22]; the lower-extreme is close to the critical temperature in the thermodynamic
limit. Lower-left panel: scatter plot of n.n. correlations for different values of η, on the same
instance of Figure 4.1 (a). Lower-right panel: error between DC’s estimates of n.n. correlations
w.r.t. the exaustive trace, over a spin glass model with binary couplings Jij ± 1 defined over a
square lattice of size N = 42, averaged over 20 instances.

also the number of iterations required to converge is normally much larger the one required by
DC. In both the instances shown in Figure 4.6, LCBP did not to converge at smaller values of
the temperature (shown in the caption): this could indicate that below a certain temperature
the method is not able anymore to satisfy consistency conditions between the different BP fixed
points.
On the other hand, correlations were not accessible through the code provided in [93]. To have
a fair comparison, we also tried to estimate 2-points correlations with LCBP, by adding set of
“pair” variable nodes xij for each link (i, j) in the original graph: then, imposing constraints on
the probability distribution of xij of the type δxixj ,xij

we can compute the 2-points correlation
by evaluating ⟨xij⟩ = ⟨xixj⟩ at convergence, without modifying the marginal distributions of the
starting model. However, the addition of such pair variables (whose number is simply equal to
the number of edges in the graph, |E|) increases too much the computation time of the algorithm,
which never converged in the cases we analyzed.
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As discussed in the previous chapter, Loop Corrected Belief Propagation (LCBP) works by com-
puting several BP fixed points (one for each cavity distribution in which one node and all the
factors connected to it are removed) and then imposing consistency over single-node beliefs among
them. Therefore, for each cavity distribution it computes fixed points by still assuming a tree-
factorization, i.e. by neglecting correlations coming from other cycles in the (cavity) graph. So it
computes a higher order approximation by relying on lower order ones, on a simplified interaction
graph. In this sense, it can be considered as a first-order correction to BP and indeed it improves
BP estimates of single-node marginals, as shown in 4.6. On the other hand, DC can be considered
as a novel zero-th order approximation in which all 2-points cavity correlations are taken into ac-
count, in a single self-consistent set of equations. In this perspective, LCBP and DC correction
methods are also in some sense orthogonal, and so it is principle possible to design a sort of
’Loop Corrected Density Consistency’ (LCDC) approximation in which each cavity distribution
is computed by DC, and then single-node marginals would be determined in a self-consistent way.
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Figure 4.6: Comparison of DC, BP and LCBP on single-instances of disordered systems. Left:
Magnetization of Ferromagnetic Ising Model on a Random Regular (RR) Graph with N = 300
and constant connectivity k = 4, β = 0.35, constant couplings Jij = 1 and random binary fields of
hi ∼ ±0.3. Right: Magnetizations of AntiFerromagnetic Ising Model on a triangular lattice with
N = 100, |E| = 6N , constant couplings Jij = −1, β = 0.52 and random binary fields hi ∼ ±0.2.

Chess-like plaquette-DC on hypercubic lattices and comparison with Cluster Varia-
tional Method

On regular structures, we discuss a possible way to generalize DC in such a way to take into
account larger regions of the graphs explicitly, in a similar spirit to Cluster Variational Method.
Let us consider a hypercubic lattice in d dimension with size L on each side: the case d = 1
corresponds to a linear chain, d = 2 to a square lattice, d = 3 to a cubic lattice, and so on. DC
can be generalized by grouping together small plaquettes of spins, of size 2d, into a single factor
node (denoted with ψ□), in such a way that we allow only for site-overlaps between adjacent
plaquettes. Figure 4.7 shows this procedure in the case of a two-dimensional square lattice, where
only the gray plaquettes are selected, so that the resulting factor graph has a chess-like structure.
Such a procedure can be applied at any d-dimensional lattice with periodic boundary conditions,
if L is even. In this way, each link in the original lattice appears in exactly 1 plaquette-node □.
To make an equivalence with the notation used in Section (2.3.1), the set of maximal regions R0
must be chosen in such a way that the set of their intersections (R1) contains only single-nodes:
in particular, with this chess-like covering, R1 = V .
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Figure 4.7: Plaquette distributions over a square lattice. The grey plaquettes with only single-site
overlaps are the ones encoded by a generalized Density Consistency scheme.

The probability distribution of the Ising model can therefore be rewritten as:

p (x) ∝
∏︂
□

ψ□ (x□) (4.25)

where the product runs over distinct plaquettes, and each of the compatibility functions ψ□ wil
contain all the interactions inside the plaquette. DC can be now applied by replacing each factor
ψ□ with a certain multivariate Gaussian density of 2d variables, denoted with ϕ□, and repeat-
ing the procedure discussed in the previous chapter. We shall call this approximation plaquette
DC (pDC). The reason why only site-overlaps are allowed is because DC condition (3.28) is con-
structed over single-node marginals. On the other hand, by including “all” the plaquettes in the
original lattice, there would be intersections between adjacent plaquettes on links, rather than
single nodes: in this case, DC cannot be applied as it is and DC condition should be generalized
in order to mimic a density consistency over pairwise marginal distributions. This would allow
to construct an extension of the Cluster Variational method in which all the interactions inside
each plaquette are taken exaclty into account, and the rest is approximated by a Gaussian cavity
distribution, encoding all the correlations in the cavity graph where one plaquette is removed.
Another possible way to include exactly larger regions of the graph exploits the generalization
to multistate variables presented in Section 3.4.1. In this case, the possible strategy would be to
re-define the Ising model w.r.t. to superspin nodes, each one associated to a plaquette of size 2d
with a number of states X = 22d . We leave both issues for future investigations.

We now present some numerical comparisons against the Cluster Variational Method described
in Chapter 2. In particular, we run CVM simulations by using the implemenation discussed in
[42], specifically designed for 2−dimensional square lattices where the maximal regions are chosen
to be plaquettes of 4 spins. In this case, we run both DC and the plaquette version (pDC) just
discussed. Figure (4.8) shows two sets of results on a square lattice with size L = 10 and no
external fields. In both scenarios, we plotted the error over correlations w.r.t. to MC estimates.
The left panel refers to a ferromagnetic model with heterogeneous couplings: DC and pDC show
comparable performances with respect to CVM (black curve) in the high-temperature regime,
and slight improvements towards the transition temperature. All the three methods significantly
improve BP’s estimates, whose poor performances are due to the high number of short loops. The
right panel shows the behaviour on a spin glass with binary couplings, and DC/pDC results are
shown for different values of η (more details in the caption): in this case, CVM seems always to
outperform DC (and its plaquette extension). As one could expect, pDC always (altough slightly)
improves the pairwise implementation in all the simulations we have run, and it typically has less
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convergence issues. We can conclude that on spin glass models on structured graphs the absence of
long-range correlations makes the loop contributions induced by the Gaussian cavity less relevant
to correctly estimate the n.n. correlations, and CVM has to be preferred on such low-dimensional
systems.
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Figure 4.8: Comparison between BP, CVM, DC and pDC on Ising-like models defined over a
square lattice of size L = 10 (with PBC). The two plots show the error over n.n. correlations
w.r.t. MC estimates, at different values of β. In the left panel interactions are ferromagnetic,
sampled in the range

[︁ 1
2 ,

3
2
]︁
, and the MC is carried out using the Wolf algorithm [141]. Both

DC (red) and pDC (green) are run using η = 0.99. The right panel refers to a spin glass model
where Jij ± 1 with equal probability: DC (red curves) and pDC (green curves) are shown for
different values of η ∈ [0.9,1.0], the color intensity being increasing with η. In both panels, results
are averaged over 20 instances, by varying the random seed used to sample the coupling matrix.
Each DC and pDC curve is plotted for all the temperatures where convergence is reached on at
least half of the instances analyzed.

Breakdown scenario

In general, we expect that DC will give reasonably good estimates of marginals as long as the
correlations in the true cavity distribution can be well described by the ones of a Gaussian density.
To be more precise, we analyzed some non-Gaussianity measures of the cavity distribution. For
simplicity, we considered a homogeneous Ising model on a square lattice of size 5× 5 with PBC,
in zero-field: we computed exact marginals on the cavity model in which one link (i, j) was
removed (in such a homogeneous model, the choice of the particular link (ij) is unrelevant since
it is translational invariant). Let us denote with p\(ij) the true probability distribution of the
cavity model, and with g\(ij) (x) the Gaussian distribution whose first two moments match the
magnetization and correlation matrix of the trace just computed. Therefore, by construction,
⟨x⟩p\(ij) = ⟨x⟩g\(ij) and ⟨xxt⟩p\(ij) = ⟨xxt⟩g\(ij) . The coupling matrix of a Gaussian can be

computed from its covariance matrix as J̃ = −
(︂

Σ\(ij)
)︂−1

/β, where Σ\(ij) = ⟨xxt⟩p\(ij) −
⟨x⟩p\(ij)⟨xt⟩p\(ij) . If the true cavity distribution behaves as a Gaussian, we expect the inferred
coupling matrix to have the same structure of the original graph. Therefore, we can define a
measure of non-Gaussian behaviour as the ratio between the sum of inferred couplings which do
not belong to the original graph over the sum of true couplings:

w (β) =
∑︁

(k,l)/∈E J̃kl∑︁
(k,l)∈E Jkl

(4.26)
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Another possible measure of non-Gaussianity is the absolute difference between the 4th-order
moment xixjxkxl computed under the distribution g\(ij) and p\(ij), respectively:

r4 (β) =
⃓⃓
⟨xixjxkxl⟩g\(ij) − ⟨xixjxkxl⟩p\(ij)

⃓⃓
(4.27)

where k, l are chosen in such a way that the tuple (i, j, k, l) forms a plaquette in the original lattice.
We computed these two quantities in a (inverse) temperature range β ∈ [0.1,0.45], together with
the error over the 2-point correlation referred to the link (i, j), the latter being computed between
the trace and DC’s estimate on the full model:

ε (β) =

⃓⃓⃓
ΣDC
ij −Σij

⃓⃓⃓
Σij

(4.28)

Figure 4.9 shows the behaviour of these three quantities vs β. As expected, at large temperatures
the cavity distribution behaves well enough as a Gaussian distribution, and DC’s estimate well
predicts the true correlations. When the cavity distribution deviates from a Gaussian - in partic-
ular, when the fourth-order moment deviates from 0 - DC’s prediction starts to deviate from the
true one, up to a certain point at which the method stops to converge. A physical interpretation
of the lack of convergence on square lattices in the thermodynamic limit (or eventually, other
ferromagnetic models with low average connectivity, i.e. ⟨di⟩ < 4) will be discussed in Sec. 4.3
for the high-dimensional limit.
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Figure 4.9: Plot of the two non-Gaussianity measures r4 and w as a function of β, together with the
normalized error over the two point correlation on the link (i, j). The model is a square lattice Ising with
size N = 52 in zero field. The dashed black line denotes the critical temperature in the thermodynamic
limit [102].

4.2 k-SAT
Satisfiability is a paradigmatic class of constraint satisfaction problems, formulated by a set

of logical inputs whose state is asked to satisfy a number of constraints [95, 99]. An istance
of a satisfiability problem is defined by a set of N Boolean variables {si ∈ {0,1}}i=1:N and a
set of M constraints, also called clauses. Each clause is a logical OR between k literals, each of
them corresponding to one variable si or its negation (represented by the NOT logical operator
and denoted with s̄i = 1 − si). By virtue of the OR operator, each clause is satisfied by all the
configurations where at least one literal is true, so that there is only one configuration where the
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clause is not satisfied, i.e. the one where all the literals are false. We shall define zi as the literal
of node i in a certain clause, so that zi = si or zi = s̄i. In the k-SAT problem, each clause
involves exactly k variables, and it can be written as Ca (si1 , . . . sik ) = zi1 (si1) ∨ . . . ∨ zik (sik )
where ∨ denotes the OR operator. Since in the SAT problem all the clauses need to be satisfied
simultaneously, a k−SAT formula is given by the logical AND (∧) operation over the full set of
clauses:

C (s1, . . . , sN ) =
M⋀︂
a=1

Ca (s∂a) (4.29)

where s∂a = {siα , α = 1 . . . k}. In particular, C = T (true) if the configuration s = (s1, . . . , sN )
satisfies all the clauses, and C = F (false) if at least one of them is false. The k-SAT problem
corresponds to find one (or more) configuration(s) where the C is true.
The above notation allows to easily express any k−SAT instance by using a factor graph repre-
sentation. In the following, we will work with binary spins rather than boolean variables, so to
have a more similar notation w.r.t. the statistical physics language. We denote with V the set of
nodes, each of them corresponding to a binary spin σi ∈ {−1,1}. The factor graph representation
of a k-SAT formula is defined by G = (V,E, F ) where each factor node a ∈ F is associated to one
clause Ca. Notice that all factor nodes have an equal degree |∂a| = k. In terms of spin variables,
each literal zi can be expressed by the product ξiσi, where ξi = 1 if zi = si and ξi = −1 if the
variable is negated (zi = s̄i). To each factor node a, its corresponding check function ψa is just
an indicator function over clause a, provided the mapping between boolean variables and spin
variables. With this parametrization, the (uniform) probability distribution of a random k-SAT
formula can be written using the general expression (3.1) as:

p (σ) = 1
Z

M∏︂
a=1

ψa (σ∂a) (4.30)

ψa (σ∂a) = I

[︄
k∑︂

α=1
ξiασiα > −k

]︄
= 1− I

[︄
k∑︂

α=1
ξiασiα = −k

]︄
(4.31)

where I is the identity function and σ∂a = {σiα , iα ∈ ∂a, α = 1, . . . , k}. Therefore, each clause
defines a hard constraint where ψa = 0 only on one configuration of its neighbours, where all the
literals ξiασiα = −1. The partition function Z counts the number of solutions to the SAT formula.
Each k−SAT instance can be drawn from an ensemble SATk (N,M), by selecting M clauses from
the all

(︁
N
k

)︁
2k possible choices. In the thermodynamic limit where both N,M → ∞ with a

finite ratio α = M/N , a phase transition separates a SAT regime where the probability to have a
configuration satisfying all the constraints is 1, from an UNSAT phase where such probability tends
to 0. The transition occurs at a finite value αc (k) (for instance, αc (k = 3) ≈ 4.27, αc (k = 4) ≈ 9.9
as estimated through the 1RSB cavity method [99]). In addition to the SAT-UNSAT threshold
there exist several other critical points, separating phases in which standard message-passsing
algorithms do not have locally stable fixed points, or condensation phenomena arise (and the
configuration space breaks down into disconnected components). In this regime finding solutions is
much harder and one has to employ message-passing algorithms defined on the replica-symmetric
broken space (such as Survey Propagation [18, 98]).
In the present section, we just want to present a small set of preliminar results by comparing DC
performanges against BP, in small-size k-SAT instances where the exact trace over configurations
is possible. Results are shown in Figure 4.10 for N = 20, k = 3,4, averaged over 40 instances. We
compare BP and DC’s estimates of the first and second-order moments, by computing normalized
errors w.r.t. to the exaustive trace. DC is run for different values of η ∈ (0.85,0.99), and each
curve is plotted up to the value of α at which convergence is reached on more than half the
instances considered. Despite DC is able to better estimate the moments at small values of α,
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4.3 – Thermodynamic limit for the Ising ferromagnet on hypercubic lattices

its performances get worse than BP at higher values of α, especially on the first moments. At
higher values of α DC seems not to converge on most of the instances considered. A possible
explanation is that, in such regimes with small N , it might happen that two nodes appear in
more than one clause, so that DC is not able to satisfy at the same time constraints induced by
clauses overlapping on more than 1 node. In principle, it should be possible to generalize DC to
take into account consistency on two body marginals as already discussed in the previous section
for the plaquette extension. Furthermore, it would be interesting to see if DC could be generalized
in such a way to take into account the disconnected structure of the configuration space arising
close to the SAT-UNSAT transition, similarly to the 1RSB cavity method. We leave this issue
for future investigations.
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Figure 4.10: Comparison between DC and BP on random k−SAT models with N = 20. Top
panel (a) refers to k = 3, bottom panel (b) to k = 4. Each panel shows the normalized over
magnetizations (left) and over correlations (right) w.r.t. the exact trace as a function of α = M/
N . DC runs are shown for different values of η, averaged over 40 instances.

4.3 Thermodynamic limit for the Ising ferromagnet on hy-
percubic lattices

In this section, we exploit Density Consistency to derive a semi-analytic solution for the
homogeneous, ferromagnetic Ising model, defined on a hypercubic lattice in d dimensions with
periodic (toroidal) boundary conditions (PBC), in the thermodynamic limit. The key feature of
such a model, i.e. its traslational invariance, will be exploited by DC in order to provide a finite
set of fixed point equations to be solved, independently on the system size. We denote with L
the number of spins on each side of the lattice, so that the total number of variables is N = Ld.
The Hamiltonian is parametrized by a constant coupling J between nearest neighbours spins and
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a constant field h acting on each variable. For convenience, we rewrite the Boltzmann law (4.1)of
this model in a matrix-vector notation:

p (σ) = 1
Z

exp
[︃
βJ

2 σtA(d)σ + βhσt1
]︃

(4.32)

where A(d) denotes the adjacency matrix of the d−dimensional lattice, and 1is a N−dimensional
vector where each component is equal to 1. The thermodynamic limit is computed by taking
L→∞ ad fixed d. We rewrite again 4.32 as a factorized distribution of continuous variables over
n.n. pairs, in the same way as in 4.2:

p (x) = 1
Z

∏︂
⟨i,j⟩

ψij
∏︂
i

∆i, ψij (xi, xj) = exp
[︃
βJxixj + βh

2d (xi + xj)
]︃

(4.33)

where on each factor ψij the field term acting on each spin is divided by the number of its
neighbours (equal to 2d for a d−dimensional lattice with PBC). Since the model defined by 4.33
is translational invariant, the expectation values of a subset of variables will depend only on their
relative positions in the lattice. As a consequence, magnetizations will be equal for all spins, and
nearest neighbours correlations will be equal among all spins that are connected by a direct link
in the lattice, namely:

⟨xi⟩p=̂m ∀i (4.34)
⟨xixj⟩p=̂χ ∀ (i, j) ∈ E (4.35)

We now apply the machinery of Density Consistency: in this case, the translational invariance of
the model is exploited to construct a family of equivalent approximating Gaussian distribution
ϕij , all of them being parametrized by the same set of quantities as follows:

ϕij (xi, xj) = exp
[︃
−1

2Γ0
(︁
x2
i + x2

j

)︁
− Γ1xixj + γ (xi + xj)

]︃
∀ (i, j) ∈ E (4.36)

The above expression follows directly from (4.5): here Γ0 is the diagonal self-coupling , Γ1is the
approximate pairwise interaction and γ is the Gaussian field. Notice that Eq. (4.36) is invariant
under the exchange xi ↔ xj . In this way, there will be only 3 parameters to be determined to
estimate the equilbrium behaviour of the model, independently on the system size. Taking the
product of all the approximating factors we construct the full Gaussian measure as in (3.7), shown
below in a matrix-vector notation:

q (x) ∝
∏︂
⟨i,j⟩

ϕij (xi, xj) ∝ exp
[︃
−1

2xtK(d)x + 2dγσt1
]︃

(4.37)

where
K(d) = 2dΓ0ILd + Γ1A(d) (4.38)

and IN denotes the identity matrix of size N . In this case, the distribution (4.37) is expressed by a
quadratic form in its exponent, rather than w.r.t. first and second moments. The matrix K(d) is a
combination of a diagonal term (coming from the self-coupling contributions for each neighbour)
and the adjacenty matrix of the lattice A(d), multiplied by the approximate coupling Γ1. To
compute the moments of (4.37), one needs to invert the matrix K(d), whose size will eventually
become infinity as we take the thermodynamic limit. However, the homogeneous structure of
the graph allows for an analytic evaluation of the adjacency matrix’s eigenspectrum, so that the
inverse matrix elements of K(d) can be easily computed even at the thermodynamic limit. Notice
that, in order to apply DC scheme, we are only interested in two types of elements of the inverse
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4.3 – Thermodynamic limit for the Ising ferromagnet on hypercubic lattices

of (4.38), namely the diagonal entries and the terms corresponding to nearest neighbours spins,
denoted respectively with Σ0 and Σ1:

Σ0=̂
[︂
K(d)

]︂−1

ii
∀i Σ1=̂

[︂
K(d)

]︂−1

ij
∀ (i, j) ∈ E (4.39)

A detailed computation of (4.39) is discussed in Appendix (B), we report here the final result in
the thermodynamic limit L→∞:

Σ0 = 1
Γ0
Rd (r) (4.40)

Σ1 = 1
rΓ0

[︃
1
2d −Rd (r)

]︃
(4.41)

with
r = Γ1

Γ0
Rd (r) = 1

2

∫︂ ∞

0
dt
[︁
e−tI0 (rt)

]︁d (4.42)

The parameter r plays the role of a normalized effective coupling: in particular, if |r| < 1 the
matrix K(d) is diagonally dominant and it can be inverted. The function Rd (r) in (4.42) has a
physical interpretation in terms of the return probability of a random walk in the infinite lattice:
more specifically, there is a direct connection between Rd (r) to the Lattice Green Functions
(LGFs) [61], i.e. the probability generating function of a random walk on the lattice. By a
simple inspection of Rd (r), we find that the quantity 1− [2dRd (−1)]−1 is nothing but the return
probability to the origin of a (symmetric) a random walk on the infinite d-dimensional lattice.
Figure 4.11 displays the behaviour of the ratio Σ1/Σ0 as a function of the normalized coupling r.
Σ1 is and odd function of r (on the contrary, Σ0 is even and therefore their ratio is still an odd
function): since in the ferromagnetic model correlations are positive, i.e. two nearest neighoburs
spin prefer to have the same sign, we are interested in the regime r < 0. The regime of positive
values of r corresponds instead to the AntiFerromagnetic Ising model, where Jij = J < 0 for all
n.n. spins.

Duality Ferro-AntiFerro

It is important to remark that in the case of hypercubic lattices there exist an equivalence
between the Ferromagnetic and the Antiferromagnetic model: indeed, the hypercubic lattice is a
bipartite graph and it is characterized by the absence of odd-length loops2 [15]; as a consequence,
the antiferromagnetic model shows the same critical behavior than its ferromagnetic counterpart
(in the absence of external fields) and it is always possible to map one model onto the other by
a simple transformation, i.e by mapping half of the spins (in one of the two disjoint sets of the
bipartite graph). The latter reasoning explains why Σ1 is simply an odd function of r. There
are other regular structures where such equivalence does not hold: for instance, on a triangular
lattice the shortest loops corresponding to triangular plaquettes have an odd length, so that a
geometric frustration arises from the fact that the product of nearest neighbours couplings over
the (triangular) plaquettes is negative [82]. In this case, the behaviour of the anti-ferromagnetic

2The term “bipartite” denotes a generic graph whose vertex set can be divided in two disjoints set A and
B, in a such way that all the edges (i, j) always connect two spins from the two sets A, B. Specifically, the
hypercubic lattice in d dimension with PBC is bi-partite only if L is even (on the other hand, it is always
bi-partite if the boundary conditions are open). Even for odd values of L, the contribution of odd-length cycles
becomes negligible in the thermodynamic limit and therefore the spectrum tends to be symmetric for L → ∞.
Without loss of generality, one could define L = 2L′ so to have always a lattice with an even number of spins
on each side.
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4 – Results : forward problem

model is notably different from the ferromagnetic counterpart [135]. The analytic DC scheme
proposed in this Section can in principle be applied to any lattice with a known eigenspectrum
in the thermodynamic limit, like the already cited triangular lattice or other regular structures
(fcc,bcc [69, 128]): we leave this investigation to future works.
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Figure 4.11: Plot of Σ1/Σ0 vs r for different values of d.

The Gaussian mean vector µ of 4.37 can be easily computed by solving the linear system
K(d)µ = 2dγ1, that has the following trivial solution:

µ = γ

Γ0 + Γ1
= γ

Γ0 (1 + r) (4.43)

Following the derivation of Density Consistency, we define the set of tilted distributions and
Gaussian cavities, one for each link (ij) in the lattice. Their expression follow directly from the
ones described in Sec 4.1.1. In particular, we are interested in the marginal tilted distribution
over (ij), that can be expressed as:

q(ij) (xi, xj) ∝ g\(ij) (xi, xj)ψij (xi, xj) ∆i∆j . (4.44)

The marginal cavity density g\(ij) is parametrized as follows:

g\(ij) (xi, xj) ∝ exp
[︃
−1

2S0
(︁
x2
i + x2

j

)︁
− S1xixj + w (xi + xj)

]︃
(4.45)

and the parameters w and S1 denote respectively the cavity field and coupling, shown below3:

w = µ

(︃
1

Σ0 + Σ1
− (Γ0 + Γ1)

)︃
(4.46)

S1 = − Σ1

Σ2
0 − Σ2

1
− Γ1 (4.47)

3the diagonal term S0 does not enter in the computation of tilted moments and it is not shown for simplicity.

84



4.3 – Thermodynamic limit for the Ising ferromagnet on hypercubic lattices

The marginal tilted moments can be analytically computed and their expression has the same
structure of 4.14:

m = ⟨xi⟩q(ij) = tanh [a+ atanh (tanh b tanh a)] (4.48)
χ = ⟨xixj⟩q(ij) = tanh

[︁
b+ atanh

(︁
tanh2 a

)︁]︁
(4.49)

where
a = βh

2d + w, b = βJ − S1 (4.50)

and w, S are respectively the field and the coupling coming from the marginal cavity distribution,
given by (4.46)-(4.47) respectively. We recall now the expression of the DC closure equations 3.34
in this simplified setup (the interpolation parameter appearing in Eq. (3.34c) is set to 1 from now
on):

m = γ

Γ0 + Γ1

Σ0 = m

atanhm

Σ1 = χ−m2

1−m2 Σ0

4.3.1 Simplified DC equations
At this point, the system of 3 equations 4.51 can be iteratively solved w.r.t. the 3 unknowns

γ,Γ0,Γ1 at a fixed inverse temperature β. In this way, the fixed point equations share the same
structure of the ones discussed in Chapter (3). However, for reasons that will be clear in the
following, we rewrite the fixed points equations and simplify the original system (4.51) in order
to get a self-consistent equation for the magnetization m = M (m (r) , r) at a certain inverse
temperature β = B (m (r) , r). By eliminating the variable γ and using the above definitions of
Σ0,Σ1, w, S,m, χ together with DC closure equations, after some algebra we get:

β = B (m(r),r) = atanh
[︁
kd (r)

(︁
1−m2)︁+m2]︁+

− gd (r) atanhm
m

− atanh
[︃
tanh2

(︃
fd (r) atanhm+ βh

2d

)︃]︃
(4.52)

m = M (m (r) , r) = tanh
[︃
fd (r) atanhm+ βh

2d+

+ atanh
(︃

tanh
(︃
βJ + gd (r) atanhm

m

)︃
tanh

(︃
fd (r) atanhm+ βh

2d

)︃)︃]︃
(4.53)

where we defined for simplicity the following functions:

kd (r) = 1− 2dRd (r)
2drRd (r) (4.54)

gd (r) = kd (r)
1− k2

d (r) + rRd (r) (4.55)

fd (r) = 1
1 + kd (r) − (r + 1)Rd (r) (4.56)

Such equations can be solved at fixed r in the variables β,m, as opposed to the previous fixed
point system (4.51) where r = Γ1/Γ0 is found at fixed β. In particular, for h = 0 the system
reduces to a single fixed point equation for m = M (m (r) , r) while β is fixed by (4.52).
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4.3.2 Paramagnetic phase and critical temperature βp

The paramagnetic solution can be found by eliminating the external field h and setting m = 0
in (4.52)(4.53). As a consequence, Eq. (4.53) becomes an identity and we get the following
expression for β (r) (from now on, we set J = 1 without loss of generality):

βd (r) =atanh
(︃

1
r

[︃
1

2dRd (r) − 1
]︃)︃
− gd (r) (4.57)

The function βd (r) is plotted in Figure 4.12 for different values of d. The right plot corresponds
to value of d ≥ 3: in this regime, the function βd (r) is limited and monotonically in r ∈ [−1,1].
Therefore, under the DC approximation there exists a maximum temperature at which the para-
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Figure 4.12: Plot of β (r) for different values of the lattice dimension d. In particular, we separate
the behaviour for d ≤ 2 (left plot) and for d > 2 (right plot)

magnetic phase exists, and for d ≥ 3 it corresponds to the point r = −1. On the contrary, in
the Bethe Approximation the paramagnetic solution m = 0 always exists, although it becomes
unstable for β > βBP . We can now define the DC critical temperature βp as the limit for r → −1
of Eq.(4.52):

βp =atanh
(︃

1− 1
z

)︃
− z

(︃
z − 1
2z − 1

)︃
+ z

2d (4.58)

where z = 2dRd (−1), and we dropped the d-dependency for simplicity. The values of βp are
shown in Table 4.1, where we compared the DC estimate to the best known values in the literature
(denoted with βc) and to other approximation methods in statistical physics: the Mean-Field (MF)
solution, the Bethe-Peierls Approximation (BP), plaquette Cluster Variational method (PCVM,
[43]), Loop Corrected Bethe (LCB, [91]). For all these methods there exist closed-form expressions
for the critical temperature, depending on the lattice dimension d: in particular, the MF and Bethe
critical temperature have alredy been discussed in Chapter 2. In particular, we found that for
d ≥ 3 the DC result obtained by using (4.58) gives the closest estimate to the best known value βc.
In addition, the paramagnetic fixed point turns out to be stable in the whole interval β ∈ (0, βp)
for d ≥ 3.

4.3.3 Ferromagnetic phase
The ferromagnetic phase can be investigated by solving the system of Eqs. (4.52)-(4.53) at

fixed r. The resulting behaviour of the order parameter m (β) is shown in Figure 4.13 for d = 3.
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d βMF βBP βP CV M βLCB βm βp βc

2 0.25 0.34657 0.412258 - 0.388448 0.37693 0.440687[102]
3 0.16667 0.20273 0.216932 0.238520 0.218908 0.222223 0.221654(6)[9]
4 0.125 0.14384 0.148033 0.151650 0.149835 0.149862 0.14966(3)[54]
5 0.1 0.11157 0.113362 0.114356 0.113946 0.113946 0.11388(3)[107]
6 0.083333 0.09116 0.092088 0.092446 0.092304 0.092304 0.0922530[51]

Table 4.1: Values of the Ferromagnetic Ising Model’s critical temperature obtained with different
approximation schemes, for different lattice dimension d (shown in the first column). The values
of βMF , βBP , βPCVM and βLCB respectively refer to the Mean-Field, Bethe-Peierls, Plaquette
Cluster Variational Method (PCVM, [43],) and Loop Corrected Bethe (LCB,[91]) approximations.
The values of βp are computed by using Eq. (4.58). βm is the minimum value at which a magne-
tized DC solution exists and it is stable. βc indicates the currently best known approximation up
to numerical accuracy (for d = 6 we used the series expansion provided in [51]). Results in bold
indicate the closest value to βc.

Surprisingly, there exist a temperature interval βm < β < βp where two magnetized solution exist,
together with the paramagnetic solution m = 0. However, the lower part of the magnetized phase
turns out to be unstable, and this is the reason why we implemented the simplified DC equations
discussed before: indeed, the unstable ferromagnetic branch cannot be found by iteratively solving
the original system of DC closure equations 4.51. The quantity βm can be considered as another
critical point of DC approximation, and its value can be estimated by computing the minimum
of the function B (m (r) , r) with respect to r; alternatively, one can compute the stability of the
ferromagnetic fixed point m = M (m (r) , r). Both strategies are discussed in details in Appendix
C. We report the values of βm Table 4.1: notice that the difference between the two critical points
decreases for large values of d (in particular, for d ≥ 5 the values coincide up to the numerical
precision shown in Table 4.1). The presence of an unstable ferromagnetic phase makes impossible
to compute critical exponent within DC approximation; moreover, in the interval βm < β < βp
DC approximation has both magnetized and a paramagnetic stable solutions, suggesting a phase
coexistence that should be absent in the real model [79].
In the right plot of Figure 4.13 we compared the DC estimate with other approximations (again,
for d = 3, even if the same qualitative behaviour holds for larger dimensions): the Bethe Approx-
imation, univariate Gaussian EP (discussed in Chapter 2) and Density Consistency obtained by
using the moment matching closure discussed in 3.2.2. A ferromagnetic unstable branch is found
also within univariate EP approximation: this is a signal that the instability might be due to the
Gaussian ansatz for the cavity distribution.

4.3.4 d < 3
For d < 3 the DC solution is qualitatively different w.r.t. the case d ≥ 3 discussed so far,

because the function Rd (r) is not bounded. The reason can be understood by re-calling the
connection with Lattice Green Functions: indeed, for d < 3 the random walk defined on the
lattice is recurrent, i.e the probability of return to the origin is 1, which in turn implies that
the quantity Rd (−1) diverges. In particular, for d = 1 the paramagnetic phase described by the
function β1 (r) in Eq. (4.57) goes to +∞ at r → −1 (as shown in Figure 4.12. This means that
the paramagnetic phase always exist in 1d and no phase transition occurs at finite temperature,
as it happens on the exact solution [66]. In the two-dimensional case the function β2 (r) defined
by Eq. 4.57 has a maximum at a certain rp > −1 and then it diverges to −∞, which has no
clear physical meaning; however, we can still define the critical temperature βp as the maximum
value at which the paramagnetic solution exists (and it is stable), which corresponds to the point

87



4 – Results : forward problem

0.20 0.21 0.22 0.23 0.24
0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

m

c

stable
unstable

0.20 0.21 0.22 0.23 0.24 0.25
0.0

0.2

0.4

0.6

0.8

m

c

EP1
EP2
DC
BP

Figure 4.13: Plot of the order parameter m as a function of the inverse temperature β in the 3-
dimensional case (in zero field h = 0). The left plot shows DC solution: the dashed line represents
the unstable ferromagnetic phase. The right plot shows the DC phase diagram compared to the
Bethe Approximation, univariate EP (EP1, [90, 103]) discussed in Chapter (2), and DC solution
obtained by using the EP closure (EP2) discussed in Sec. 3.2.2

(rp, βp) = (−0.994843,0.37693). On the other hand, the ferromagnetic solution turns out to be
stable for rm < r < 0 with rm = −0.99405, corresponding to βm = 0.388448 . Since βp < βm,
there exists a temperature interval βp < β < βm in which no stable DC solution can be found.
We can conclude that DC is not suited to analyze this kind of low-dimensional models, and one
has to rely to other methods like the already cited Cluster Variational method [43].

4.3.5 Finite size corrections
We conclude the discussion on finite dimension d by showing some results about finite size

corrections w.r.t. the thermodynamic limit. Indeed, as described in Appendix B, the adjacency
matrix of the lattice can be diagonalized exactly even for a finite size L, so that the system of
equations (4.51) can be iteratively solved as previously discussed. Figure 4.14 shows the behaviour
of n.n. correlations as a function of the lattice size L for the two and three dimensional Ising
model, at certain inverse temperatures β close to the transition point. DC solution turns out
to be in good agreement with MC results and it rapidly converges to the infinite dimensional
solution. The same estimation is carried out using BP and Susceptibility Propagation (SP), as
discussed at the end of Section 4.1.2. BP does not take into account at all finite size corrections
because of the local character of the approximation, so that its estimation is independent on the
lattice size L. On the other hand, SP takes implicitly into account the structure of the graph,
but it seems to overestimates the n.n. correlations at all sizes. A possible way to improve it is to
exploit the normalization trick discussed in [116]: once the full correlation matrix C is estimated,
all its elements are rescaled by Ĉij = Cij/

√︁
CiiCjj ; such a rescaling is introduced to heal the

wrong estimation of self-correlations Cii /= 1 occurring in graphs with short loops, and it typically
improves also the estimates of off-diagonal correlations. This is confirmed by the two plots in
Figure (4.14), where the normalized version of SP (labelled as SPnorm) significantly improves the
estimate w.r.t. its un-normalized version, still overestimating correlations if compared to DC/MC.
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Figure 4.14: Plot of n.n. correlations with respect to the lattice size L. Comparison between
DC, BP and SP (both the un-normalized and the normalized version of it) w.r.t. Monte Carlo
simulations (M = 106). Left: 2−d lattice at β = 0.3, with size L2. Right: 3−d lattice at β = 0.2,
with size L3. The black dashed line denotes the DC solution at thermodynamic limit.

4.3.6 Critical temperature scaling in the high dimensional limit
As a final comparison, we compute the series expansion of the critical temperature in the limit

where the number of lattice dimensions d goes to infinity. In this limit, the Mean Field solution for
the ferromagnetic Ising model is exact, and one can compute perturbative corrections in powers
of 1/d. Notice that in this case one has to rescale the couplings by their connectivity, namely
J → J/2d, in order to have a correctly normalized free energy density in the thermodynamic limit.
For what concerns the true critical temperature βc, there is an exact result by Fisher and Gaunt
[51] where the authors perfomed a series expansion by exploting the properties of self-avoiding
walks in the hypercubic lattice. Their expression is exact up to the fifth order in 1/d, and we
report it here for convenience:

1
2dβc

= 1− 1
2d

−1 − 1
3d

−2 − 13
24d

−3 − 979
720d

−4 − 2009
480 d

−5 +O
(︁
d−6)︁ (4.59)

Starting by the analytic expression of the critical temperature of DC given by (4.58), we perform
the same computation by setting x = 1/d and expanding around x = 0. The result is shown
below up to the fifth order:

1
2dβp

= 1− 1
2d

−1 − 1
3d

−2 − 13
24d

−3 − 979
720d

−4 − 2039
480 d

−5 +O
(︁
d−6)︁ . (4.60)

Comparing (4.59) and (4.60) we conclude that DC expansion is exact up to the d−4 order. For
comparison, the Mean Field is exact up to the d0 order; the Bethe Approximation is exact up
to the d−1 order; Loop-Corrected Bethe [91] and Plaquette-CVM [43] are exact up to the d−2

order. Therefore, DC is able to correctly estimate two additional orders of magnitude of the
critical temperature scaling, with respect to other state-of-the-art methods: qualitatively, this is
a signal that, at least in the limit of high d, the loop corrections included by the Gaussian cavity
distribution can better describe the behaviour of long-range correlations arising at the critical
point.
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Chapter 5

The Inverse Ising Problem

In this chapter we discuss the Inverse Ising Problem in statistical physics, providing an approx-
imate closed-form solution for the maximum likelihood parameters through Density Consistency.
After some introductory remarks and background motivations in 5.1, we formulate the Inverse
Ising Problem (IIP) in a standard Bayesian setting in Section 5.2. Section 5.3 summarizes several
state-of-the-art approaches to solve the IIP that will be used to compare our results. Section 5.4
presents the Density Consistency solution and its connection to other approximations. Finally,
results of numerical simulation on syntethic data are shown and discussed in Section 5.5.

5.1 Motivations and applications
Inverse statistical problems attempt to reconstruct microscopic parameters describing effective

interactions among the degrees of freedom of a certain system, starting from a set of measure-
ments. Inverse problems are gaining more and more interest in recent years, thanks to improved
experimental capabilities in several reserach domains and the consequent availability of large-scale
datasets. This class of problems is highly interdisciplinary and applications can be found in many
fields of applied science, from computational biology, neuroscience, finance, sociology, finance,
non-linear optics.
In most cases, the “true” model describing the physical system is not known a priori: as a con-
sequence, it is necessary to define an effective graphical model that tries to capture the relevant
interactions between the degrees of freedom, while being compatible in some way with the ob-
served data. In this context, the most common approach is based on maximum entropy modelling
[68], that allows to construct the “least-biased” probability distribution while constraining it to
reproduce some low-order statistics, observed experimentally.
The Inverse Ising Problem (IIP) represents the simplest - and yet non-trivial - scenario where we
want to reproduce the first and second order statistics of the data (namely, magnetization and
correlations): as shown in Section 5.2, the resulting maximum-entropy distribution takes the form
of the Boltzmann measure for the Ising Hamiltonian, and the parameters to be inferred are the
set of fields {hi} and pairwise couplings {Jij} of the Hamiltonian. This scenario applies whenever
we deal with binary observations: a typical example occurs in neuroscience, where measurements
of neural activity provide - in the simplest setting - a binary information where each unit (neuron)
is firing some signal (+1) or not (measured as 0 or −1 in terms of spin variables), and we want
to recover the underlying structure of the interactions between the set of neurons under study.
More in general, when measurements take values in a finite alphabet with more than 2 states, the
corresponding maximum entropy distribution corresponds to the Potts model [142]. The Inverse
Potts problem has several applications in computational biology, in particular in the inference
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of tri-dimensional protein structures from co-evolutionary sequences: see for instance [36] and
references therein for a review.
From a pure statistical physics standpoint, the IIP can be considered as the “dual” version of
the forward (direct) problem: in the latter, at given Hamiltonian one wants to compute accurate
estimates for the marginal probabilities - as extensively discussed in the previous chapters -, while
on the former the observations are given experimentally and we need to infer the parameters
encoded in the Hamiltonian.
The IIP arises as a general method to infer effective interaction networks between binary units,
and applications can be found in several applied fields of pure and applied science: in neuroscience,
as already cited, to reconstruct neural connections from times series of neuro spikes [35, 133]; in
molecular biology, to reconstruct gene regulatory networks [81, 84]; in econophysics, to analyze
stock market data and predict the behaviour of financial markets [17, 24].
In the rest of the chapter, we will address the IIP as a standard Bayesian inference problem by
defining the posterior distribution over the model parameters (couplings and fields) given the
observed data. However, an exact computation of such quantities scales exponentially with the
system size and it can be carried out only when the number of variables is small. For this reason,
in the statistical physics community several approximation schemes have been developed to esti-
mate model parameters: we will brefly review some of them in section 5.3.
In particular, we will distinguish between a class of mean-field like approximations and other it-
erative methods: the formers allow to compute closed-form expressions for the model parameters
depending only on the first two empirical moments. Among the iterative methods, we will mainly
focus on Pseudolikelihood Maximization [6] that is widely considered as the best algorithmic ap-
proach to solve the Inverse Ising Problem [101].
The purpose of this chapter is to show that Density Consistency allows to approximate the max-
imum likelihood equations for the model parameters, providing a closed-form expression that
resembles a known result found by Sessak and Monasson in [124]: in particular, depending on
the closure condition chosen for the DC update rules, different expressions can be obtained, that
allow to improve the reconstruction quality with respect to other methods, especially in a regime
with a small number of observations.
In this chapter we consider only equilibrium reconstruction, i.e. assuming that observation come
from an equilibrium model where couplings are symmetric and detailed balance holds. In princi-
ple, the Inverse Ising Problem can be exploited to infer a non-equilibrium models from time-series
data: in this case, couplings are expected to be asymmetric and the corresponding dynamics leads
to a non-equilibrium steady state, different from the Boltzmann distribution. See for instance [101]
for an exhaustive review.

5.2 Problem setup
5.2.1 Maximum-entropy modeling

Suppose we are provided with a set of M measurements {σµ}µ=1,...,M , each sample σµ being
a N−dimensional vector of binary variables, σµi ∈ {−1,1}. Data might be provided from exper-
iments or artificially generated from a known model by using Monte Carlo sampling techniques.
We are interested in deriving the maximum-entropy distribution with specified first and second
order statistics. In the following, we will denote with D = {σµ}µ=1,...,M the set of configurations,
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whose first two moments are given by:

mi=̂⟨σi⟩D = 1
M

M∑︂
µ=1

σµi , (5.1)

χij=̂⟨σiσj⟩D = 1
M

M∑︂
µ=1

σµi σ
µ
j (5.2)

where the symbol ⟨·⟩D is understood as the average w.r.t. the empirical distribution pD, formally
expressed as

pD (σ) = 1
M

M∑︂
µ=1

δ (σ − σµ) . (5.3)

In the rest of the chapter, we will denote with m ∈ RN the vector of empirical magnetizations
and with C = χ −mmt ∈ RN×N the (symmetric) matrix of connected correlations. Following
the approach developed by Jaynes [68], we define the following constrained variational entropy:

S [p] = −
∑︂

σ

p (σ) log p (σ) + γ

(︄∑︂
σ

p (σ)− 1
)︄

+
∑︂
i

hi

(︄∑︂
σ

p (σ)σi −mi

)︄
+
∑︂
i<j

Jij

(︄∑︂
σ

p (σ)σiσj − χij

)︄
(5.4)

which is a functional of the distribution p. The parameters γ, {hi} , {Jij} included as Lagrange
multipliers constraint the probability p to be normalized (γ) and to have prescribed first and
second order statistics. By setting to 0 the functional derivative of (5.4), namely δS

δp = 0, it is
straightforward to recover the Boltzmann measure for the Ising model, the Lagrange parameters
playing the role of local fields {hi} and pairwise couplings {Jij}:

p (σ | h,J) = 1
Z

exp

⎡⎣∑︂
i<j

Jijσiσj +
∑︂
i

hiσi

⎤⎦ = 1
Z

exp [−H (σ | h,J)] (5.5)

where H (σ | h,J) = −
∑︁
i<j Jijσiσj −

∑︁
i hiσi is the Ising Hamiltonian and

Z (h,J) =
∑︂

σ

e−H(σ|h,J) (5.6)

is the partition function. There are two important differences to notice w.r.t. Eq. (1.14): first,
the summation over couplings runs over all distinct pairs i < j (again, assuming that the graph
is undirected), because we do not know a priori the interaction network and all couplings need to
be estimated. Secondly, in inverse problems the temperature cannot be determined in general as
a free parameter, since the statistics (5.5) depends on β only through the products βhi and βJij :
for this reason, we will assume β to be implicitly absorbed into the model parameters, namely
βhi → hi and βJij → Jij

1.
This is the simplest setup where topological connection between pairs of degrees of freedom
can be inferred: for instance, constraining only the first moments would result into a factorized

1Neverthless, in Section 5.5 we will still use the parameter β to vary the strenght of couplings/fields in
order to quantify the reconstruction quality with respect to the temperature.
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model over single spins (independent spin model), which is poorly relevant for applications. On
the other hand, one could reasonably think about constraining also high-order statistics. For
instance, matching also 3rd-order moments in the maximum-entropy distribution would result
into an Ising model with 3-body interactions

∑︁
i /=j /=kKijkσiσjσk, and the corresponding number

of parameters to be inferred would scale as O
(︁
N3)︁: as a consequence, a much larger amount

of configurations would be required in order to accurately infer all the parameters, which is not
possible in many experimental setups. On the other hand, in many applications there is no need
of such overparametrization, since third-order experimental moments can be well explained by a
model with pairwise interactions [127]. In addition, a model with third order interactions can be
approximated by retaining only pairwise couplings, especially when the third order couplings are
dense [88]. In this perspective, constraining only 2-body correlations results into the simplest and
yet non-trivial effective model where only pairwise couplings have to be determined.

5.2.2 Bayesian approach
The maximum-entropy approach is used to derive the simplest (in terms of entropy) model

able to explain a set of empirical statistics. In practice, by using the above principle the problem
of finding the best model to describe the dataset turns into the problem of finding the optimal
set of parameters.
From now on, we can equivalently assume that the dataset D has been generated from the distri-
bution (5.5), thus we are left with the pratical problem of estimating the couplings and fields, given
the observed configurations. Following a standard Bayesian approach, the posterior probability
of the model parameters θ = (h,J) given the data is given by the Bayes Theorem:

p (θ|D) = p (D|θ) p (θ)
p (D) (5.7)

where p (θ) is the prior distribution and p (D|θ) = p
(︂
{sµ}Mµ=1 |θ

)︂
is the likelihood function: the

latter represents the probability that the set of configurations {σµ}Mµ=1 has been drawn from
the starting distribution (5.5) with parameters θ, to be interpreted as a function of θ. The
prior distribution can take into account additional information about the model parameters: for
instance, if we know that the underlying graph is sparse, it is possible to enforce this condition
by means of ℓp-norm prior (also known as regularization) [63], so to penalize large values for the
inferred couplings. In the present work we will discard any prior information (i.e. choosing p (θ)
to be uniformly distributed), so that the MAP estimator coincides with the maximum likelihood
(ML) point. In the IIP, under the assumption that samples are independent and identically
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distributed (i.i.d), the log-likelihood function2 can be expressed as:

LD (h,J)=̂ 1
M

M∑︂
µ=1

log p (σµ | h,J)

=
∑︂
i

hi
1
M

∑︂
i

sµi +
∑︂
i<j

Jij
1
M

M∑︂
µ=1

sµi s
µ
j − logZ (h,J)

=
∑︂
i

himi +
∑︂
i<j

Jijχij − logZ (h,J) (5.8)

where Z is the partition function defined in Eq. (5.6). The ML estimator can be iteratively found
by means of gradient-ascent algorithm, a procedure known as Boltzmann Learning [1], whose
update rules are shown below:

ht+1
i = hti + η

∂LD

∂hi
= hti + η (⟨σi⟩D − ⟨σi⟩p) ∀i (5.9)

J t+1
ij = J tij + η

∂LD

∂Jij
= J tij + η (⟨σiσj⟩D − ⟨σiσj⟩p) ∀i /= j (5.10)

where η is the learning rate. The maximum likelihood point is found by setting to zero the
derivatives of (5.8) w.r.t. θ, and it satisfies the following set of moment matching conditions:

mi = ⟨σi⟩p ∀i, (5.11)
χij = ⟨σiσj⟩p ∀i /= j (5.12)

The above formulas imply that the maximum likelihood point (or estimator) θML is found when
the first and second empirical moments coincide with the expectation values over the Boltzmann
measure (5.5), provinding a way to fix the parameters derived through the maximum-entropy
approach. Furthermore, it can be proven that the maximum likelihood estimator converges in
probability to the true value when the number of samples goes to infinity: this property is called
consistency. Computing expectation values over the equilibrium distribution (5.5) scales expo-
nentially with the system size (O

(︁
2N
)︁
) and it can be done explicitly only for very small systems.

In general, one must rely on some suitable approximations to estimate the model parameters,
that will be discussed in the next section.

5.3 Review of methods
In this section, we are going to review some state-of-the-art techniques commonly employed

for the IIP. In particular, we will distinguish between a class of mean-field-like approximations
and other iterative methods; among the latters we will focus on Pseudolikelihood, that is widely
considered as the outperformer for the IIP.
Mean-field like methods can be obtained from suitable approximations of the Ising Free energy.

2(5.8) refers to the logarithm of the likelihood normalized over the number of samples: this choice is typically
more convenient for numerical reasons. Indeed, the likelihood scales exponentially with the number of samples,
while its normalized logarithm is intensive w.r.t. M . Moreover, replacing products with summations thanks to
the logarithm is more convenient to avoid dealing with small numbers. Maximizing the likelihood is equivalent
to maximize its logarithm since the latter is a strictly monotone function.
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In inverse problems, the correct thermodynamic potential to be employed is obtained by perform-
ing a Legendre transform of the Helmoltz free energy, both with respect to magnetizations and
correlations:

S (m,χ) = min
h,J

⎡⎣−∑︂
i

himi −
∑︂
i<j

Jijχij − F (h,J)

⎤⎦ (5.13)

which is nothing but the entropy at fixed m,χ. A simple inspection of (5.13) shows that, apart
from a sign, it gives the maximum likelihood estimator. In this perspective, the potential (5.13)
provides a link between the statistical physics and the Bayesian approach for the Inverse Ising
Problem. Couplings and fields can estimated from (5.13) through the following relations:

hi = −∂S (m,χ)
∂mi

; Jij = −∂S (m,χ)
∂χij

(5.14)

where m and χ are computed from the empirical dataset. Another useful thermodynamic po-
tential can be obtained by from F by transforming only w.r.t. the fields, leading to the so-called
Gibbs free energy:

G (m,J) = min
h

[︄
−
∑︂
i

himi − F (h,J)
]︄

(5.15)

The above expression turns out to be useful in many cases where correlations cannot be easily
derived. In this scenario, while fields can be directly estimated by using hi = −∂G (m,J) /∂mi,
couplings can instead be reconstructed by using Linear response theory [71]:(︁

C−1)︁
ij

= ∂hi
∂mj

= −∂G (m,J)
∂mi∂mj

(5.16)

to be solved w.r.t. Jij at fixed m,C (again, computed from the empirical measurements). All the
mean-field like approximations discussed in the following allow to compute closed-form expressions
for the model parameters in terms of the empirical magnetizations and correlations, so that no
iterative procedure is required.

5.3.1 Naive Mean Field
The simplest approximation in statistical physics is the Naive Mean field (MF) approach, al-

ready introduced in Section 2.1.1. In the context of the Inverse Ising Problem, the first attempt
in using a MF approximation was developed in [71, 111]. Since correlations are not taken into ac-
count by MF, one needs to rely to linear response to estimate the couplings, so that the suitable
thermodynamic potential to employ is the Gibbs free energy (5.15). In particular, the corre-
sponding MF approximation to (5.15) can be obtained using the ansatz (2.12) and performing a
Legendre transform as in (5.15), leading to:

GMF (m,J) =
∑︂
i

[︃
H
(︃

1 +mi

2

)︃
+H

(︃
1−mi

2

)︃]︃
+
∑︂
i<j

Jijmimj (5.17)

where H (x) = −x log x. Using hi = −∂G (m,J) /∂mi, the local fields are computed as:

hi = atanhmi −
∑︂
j /=i

Jijmj (5.18)

Notice that (5.18) coincides with the MF fixed point equation (2.19), this time solved w.r.t. the
local fields hi. By exploiting the linear response relations (5.16) on (5.18), one gets a direct
expression for the inferred couplings under the MF approximation:

JMF
ij = −

(︁
C−1)︁

ij
(5.19)
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Finally, fields can be reconstructed by inserting (5.19) into (5.18) and solving for hi, leading to:

hMF
i = atanhmi −

∑︂
j

JMF
ij mj (5.20)

5.3.2 TAP
TAP equations are named after Thouless, Anderson and Palmer, who derived a Mean-Field

theory for the fully-connected spin glass (SK) model [126, 130]. The TAP formalism can be also
employed for the Inverse Ising Problem, as first carried out in [129]. The TAP free energy can
be obtained starting from the MF expression (5.17) by adding the so-called Onsager’s correction
term [130]:

GTAP (m,J) =
∑︂
i

[︃
H
(︃

1 +mi

2

)︃
+H

(︃
1−mi

2

)︃]︃
+
∑︂
i<j

[︃
Jijmimj + 1

2J
2
ij

(︁
1−m2

i

)︁ (︁
1−m2

j

)︁]︃
(5.21)

Its stationary points satisfy the following set of self-consistent equations:

mi = tanh

⎡⎣hi +
∑︂
j /=i

Jijmj −mi

∑︂
j /=i

J2
ij

(︁
1−m2

j

)︁⎤⎦ ∀i (5.22)

Eqs. (5.22) are the TAP equations: in the forward problem, they can be iteratively solved at
fixed couplings and fields, providing an exact solution in the thermodynamic limit for the fully
connected spin glass. Indeed, for the SK model with random (e.g. Gaussian) couplings, in order
to have an intensive free energy density one needs to rescale the couplings as Jij/

√
N ; in turn, this

implies that the second order terms in J2
ij cannot be neglected in the thermodynamic limit. On the

other hand, in the ferromagnetic case the Onsager’s reaction term goes to 0 (since Jij ∼ 1/N and
the second order correction is negligible), so that one recovers the MF theory. The TAP solution
for the inverse Ising problem follows the same reasoning discussed in the previous section for the
MF inference: starting from (5.22), we rewrite it to isolate the local field hi, so that couplings can
be estimated by solving the Linear response relation (5.16) with respect to Jij . Their expression
is finally put back into (5.22) to reconstruct the fields. The final result is shown below:

JTAPij =

√︂
1− 8mimj

(︁
C−1)︁

ij
− 1

4mimj
(5.23)

hTAPi = atanhmi −
∑︂
j

JTAPij mj +mi

∑︂
j /=i

(︁
JTAPij

)︁2 (︁1−m2
j

)︁
(5.24)

As a final remark, notice that in the limit of zero magnetizations the TAP inference for the
couplings tends to the MF expression (5.19).

A note on the Plefka expansion

A seminal work by Plefka [112] showed how to derive the MF and TAP free energy approx-
imations (and high-order corrections) starting from the thermodynamic potential G (m,J) and
performing a perturbative expansion in small couplings. With no aim of giving any computational
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details and referring to [56, 101, 112] for additional details, such expansion can be performed by
setting Jij → λJij and expanding in powers of λ:

G(λ) (m,J) = G(0) (m,J) + λ
∂G

∂λ

⃓⃓⃓⃓
λ=0

+ λ2

2
∂2G

∂λ2

⃓⃓⃓⃓
λ=0

+ . . . (5.25)

In particular, the 0-th order term of (5.25) corresponds to a non-interacting model where each
magnetization mi is fixed by the conjugate local field hi (this is the independent spin model).
The series expansion can be performed since high-order contributions are computed w.r.t. to
the non-interacting case λ = 0, that can be easily handled. By truncating the expansion to a
certain k-th order and setting λ = 1, one can derive closed expressions for the local fields hi in
terms of the magnetizations and couplings; the latter can instead be reconstructed by using linear
response theory, as previously discussed. In this notation, truncating to the 1-st order gives the
MF inference, while adding the 2-nd order term leads to the TAP approximation. A systematic
way to compute high-order terms of the series was carried out by Georges and Yedidia in [56]:
however, it has been shown that adding high-order contributions does not necessarily improve the
inference w.r.t. to MF/TAP [116].

5.3.3 Independent Pair Approximation
The independent pair approximation (IIP) is one of the easiest approaches to the Inverse Ising

problem, where - as the name suggests - the inference is performed for each pair of spin separately,
as if they were independent on the others. First developed by Roudi et al. [118, 119], it turns out
to be exact if the topology is known and the interaction graph is acyclic (in the limit of infinite
M).
Consider the pair (i, j) where i, j ∈ {1, . . . , N}, their joint probability measure p (σi, σj) defined
over {−1,1}2 can be written in two equivalent ways, either in terms of its indepedent moments
(mi,mj , χij), or in the Boltzmann form (5.5):

p (σi, σj | mi,mj , χij) = 1 +miσi +mjσj + χijσiσj
4 (5.26)

p (σi, σj | hi, hj , Jij) = eJijσiσj+h(ij)
i

σi+h(ij)
j

σj

4 (coshhicoshhjcoshJij + sinhhisinhhjsinhJij)
(5.27)

In latter formula, h(ij)
i (resp. h

(ij)
j ) represents the local field associated to i (resp. j) when

considered only in pair with node j (resp. i). The two sets of parameters are in one-to-one
correspondence: in particular, the expression for the moments in terms of the couplings have
already been used in the previous Chapter (Sec. 4.1.1), to estimate the marginal tilted moments
through Density Consistency. Conversely, the inverse relations are shown below:

JIPij =
∑︂
σi,σj

σiσj
4 log p (σi, σj) = 1

4 log [1 +mi +mj + χij ] [1−mi −mj + χij ]
[1 +mi −mj − χij ] [1−mi +mj − χij ]

(5.28)

h
(ij)IP
i =

∑︂
σi,σj

σi
4 log p (σi, σj) = 1

4 log [1 +mi +mj + χij ] [1 +mi −mj − χij ]
[1−mi +mj − χij ] [1−mi −mj + χij ]

(5.29)

h
(ij)IP
j =

∑︂
σi,σj

σj
4 log p (σi, σj) = 1

4 log [1 +mi +mj + χij ] [1−mi +mj − χij ]
[1 +mi −mj − χij ] [1−mi −mj + χij ]

(5.30)

where at the right-most hand sides the functional form (5.26) is used. (5.28) can be used as
it is to infer the coupling between the two nodes i and j, just in terms of their moments. On
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the other hand, to reconstruct the overall local field hi one needs to sum all the terms (5.29)
for j /= i. As noted in [119], it is necessary to correct the resulting expression by removing the
single-site’s contribution to (5.29) for each pair of spin, that would be overcounted otherwise.
This contribution is equal to atanhmi for each distinct pair, so that the final expression for the
inferred fields under the Independent Pair approximation can be written as:

hIPi =
∑︂
j /=i

h
(ij)IP
i − (N − 2) atanhmi (5.31)

From a statistical physics standpoint, the Independent Pair approximation can be derived by
plugging in the Bethe ansatz on the thermodynamic potential S (m,χ). Indeed, the Bethe ap-
proximation considers exactly the contribution of spin pairs to the entropy, as discussed in Chapter
(2). By plugging in the Bethe ansatz introduced in Eq. (2.24) and using (5.13), we get:

SBethe (m,χ) =
∑︂
i<j

∑︂
σi,σj

H
[︃

1 +miσi +mjσj + χijσiσj
4

]︃
+
∑︂
i

∑︂
σi

(2−N)H
[︃

1 +miσi
2

]︃
(5.32)

Using Eqs. (5.14) on the above formula leads exactly to the same expression for the inferred
couplings (5.28) and fields (5.31). In this case, the second term in (5.31) naturally arises from the
single-site entropy contribution in (5.32).
This method can be also used if the topology is known: in particular, Eq. (5.31) still holds for
those coupling we know to be edges in the graph, and the local field on each spin is computed by
summing only on its neighbours, i.e. by replacing

∑︁
j /=i with

∑︁
j∈∂i and (N − 2) with (di − 1),

di being node i’s degree. The Independent Pair approximation can in principle be improved by
including entropic contributions of clusters with increasing size into (5.32): an iterative approach
to compute these corrections was developed by Cocco and Monasson in [33, 34] and it is known
as the Adaptative Cluster Expansion (ACE).

5.3.4 Susceptibility Propagation
Another way of exploiting the Bethe approximation is to estimate couplings through linear

response. This approach was first developed by Mezard and Mora in [100], specifically for the
Inverse Ising Problem: the authors designed an iterative message-passing scheme defined over
cavity susceptibilities rather than cavity messages, computed by using linear response theory on
the BP messages discussed in Section 2.2. This approach resembles a previous work by Welling
and Teh in [138, 139] for the forward problem and it is known as Susceptibility Propagation
algorithm (SP). The authors of [100] presented an iterative scheme to update also the couplings
at fixed empirical magnetizations, so to provide an approximate solution for the inverse Ising
Problem. It was further noticed in [116] that the Bethe approximation allows to analytically
compute couplings through linear response, with no need of running an iterative algorithm. We
now follow the latter approach. The key point of [116] is that the BP equations on Ising-like
models can be rewritten only in terms of single-node beliefs, without relying on cavity messages.
In this way, we get a set of self-consistent equations for the local magnetizations, similarly to
what derived for the MF and TAP approximations. We just report the final result, and we refer
to [116] for additional details:

mi = tanh

⎡⎣hi +
∑︂
j /=i

tijf (mj ,mi, tij)

⎤⎦ (5.33)
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where

f (m1,m2, t) =
(︁
1− t2

)︁
−
√︂

(1− t2)2 − 4t (m1 − tm2) (m2 − tm1)
2 (m2 − tm1) (5.34)

and tij = tanhJij . Solving (5.33) gives the same fixed points of Belief Propagation on any graph
topology, involving only single-node magnetizations with no need of defining cavity messages.
From the point of view of the Plefka expansion, (5.33) can be derived from by summing all the
2-spin contributions in the Gibbs free energy (5.15), i.e. all the terms like

∑︁
i<j J

k
ij appearing

in (5.25). Indeed, if the graph has no loops, additional terms like JijJjkJki (and higher-order
contributions) do not appear in the Plefka expansion, a further confirmation that the Bethe
approximation is exact on acyclic graphs.
In principle, the fixed point equations (5.33) can be also derived by using the Bethe ansatz
for the free energy and rewriting the nearest-neighbours correlations in terms of the single-site
beliefs. With regard to the Inverse Ising Problem, the advantage of (5.33) is that couplings can
be straightforwardly computed by using linear response theory, analogously to the MF and TAP
inference. First notice that, by applying the LR relations (5.16) to (5.33), any element of the
inverse covariance matrix C−1 can be easily computed:

(︁
C−1)︁

ij
=
[︄

1
1−m2

i

−
∑︂
k

tikf2 (mk,mi, tik)
1− t2ikf2 (mk,mi, tik)

]︄
δij −

tijf1 (mj ,mi, tij)
1− t2ijf2 (mj ,mi, tij)

(5.35)

where
f1 (m1,m2, t) =̂∂f (m1,m2, t)

∂m1
; f2 (m1,m2, t) =̂∂f (m1,m2, t)

∂m2
(5.36)

and mi are the fixed points of (5.33). Eq. (4.4) is the same used to compute LR correlations for
the forward problem in the previous Chapter (in particular, a preliminar set of results is shown in
Figures 4.4 and 4.14). Here instead we are interested in retrieving couplings and fields when both
the magnetizations and the full covariance matrix are known. In order to do that, it is sufficient
to invert Eq. 5.35 and solving it for Jij , i /= j to infer the couplings. Notice that each equations
(4.4) for i /= j can be solved independently on the others. We now report the final expression for
the couplings and fields inferred under the Bethe approximation in Linear Response (which we
will refer to in the following as Susceptibility Propagation, SP):

JSPij = −atanh
[︄

1
2
(︁
C−1)︁

ij

√︃
1 + 4 (1−m2

i )
(︁
1−m2

j

)︁ (︁
C−1)︁2

ij
−mimj−

1
2
(︁
C−1)︁

ij

⌜⃓⃓⎷(︄√︃1 + 4 (1−m2
i )
(︁
1−m2

j

)︁ (︁
C−1)︁2

ij
− 2mimj

(︁
C−1)︁

ij

)︄2

− 4
(︁
C−1)︁2

ij

⎤⎥⎦ (5.37)

hSPi = atanhmi −
∑︂
j /=i

atanh
[︁
tanhJSPij f

(︁
mj ,mi, tanhJSPij

)︁]︁
(5.38)

where, again, the fields are recovered by inserting (5.37) into (5.33). The above formulas provide
the exact expression of the inferred couplings and fields (in the limit of infinite samples) on a tree,
even if the topology is not known a priori, at difference with the Independent Pair approximation.
As noted in [116], both SP and TAP reconstruction suffer of a domain issue: it might happen that,
depending on the particular instance considered, the argument of the square roots of (5.37)-(5.23)
become negative, thus resulting into a non-physical solution. As a final remark, notice that Eq.
(5.37) can be used to estimate long-range correlations for the forward Ising Problem, by inverting
it and solving w.r.t. C at fixed couplings (the same reasoning actually holds for the TAP and
MF approximations as well).
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5.3.5 Sessak-Monasson approximation
Another statistical physic approach for the IIP exploits a small-correlation expansion (SCE) for

the Ising Free energy at fixed magnetizations and correlations, performed by Sessak and Monas-
son in [124]. The idea is similar to the Plefka expansion [112], with the difference that the series
expansion is performed perturbatively with respect to the connected correlation χij −mimj , on
the thermodynamic potential obtained by Legendre-transforming the Ising Free energy both w.r.t.
magnetizations and correlations (5.13): the advantage of such approach is that couplings can be
directly inferred, without relying on Linear Response theory. The authors of [124] presented a
systematic way to compute arbitrary high-order perturbative contributions to the inferred cou-
plings and fields, and showed how to represent each contribution in terms of loop diagrams. We
report below for convenience the expressions for the inferred couplings and fields up to the fourth
order (further details can be also found in [123]):

JSCEij = βKij − 2β2mimjK
2
ij − β

∑︂
k

KjkKkiLk+

+ 1
3β

3K2
ij

[︁
1 + 3m2

i + 3m2
j + 9m2

im
2
j

]︁
+ β3

∑︂
k /= i, j

Kij

(︁
K2
jkLj +K2

kiLi
)︁
Lk

+ β3
∑︂

k /= i, l /= j

KjkKklKliLkLl +O
(︁
β4)︁ (5.39)

hSCEi = atanhmi −
∑︂
j

JSCEij mj + β2
∑︂
j /=i

K2
ijmiLj+

− 2
3β

3 (︁1 + 3m2
i

)︁∑︂
j /=i

K3
ijmjLj − 2β3mi

∑︂
j<k

KijKjkKkiLjLk +O
(︁
β4)︁ (5.40)

where Kij = Cij/ (CiiCjj), C = χ −mmt and β is a perturbative parameter, playing the role
of a fictious temperature: in practice, the small correlation expansion can be easily performed
by setting Cij → βCij , and then expanding over β. In this perspective, the 0-th order term
corresponds to the non-interacting model, that can be easily handled. At any order βk, the
couplings and fields can be estimated by putting β = 1, in the same way as for the Plefka
expansion. Moreover, the authors of [124] were able to sum all the contributions of loop and
2-spin diagrams for the couplings at any order, whose expression was further simplified in [118]
and it is shown below:

JSMij = JIPij −
(︁
C−1)︁

ij
− Cij
CiiCjj − C2

ij

∀i /= j (5.41)

The above formula is a combination of the Independent-Pair approximation JIPij (5.28), that
accounts for all the 2-spin diagrams (i.e. all the terms like Kp

ik in (5.39)), and of the Mean-Field
inference −C−1 (5.19); the last term avoids the overcounting of 2−spin diagrams appearing in
the MF term and it corresponds to the coupling inferred through MF on a system with 2 spins
only. (5.41) is a non-perturbative expression that accounts for certain types of loop contributions
at any order. Clearly, an infinite number of diagrams appearing at higher orders w.r.t. O

(︁
β4)︁

(for instance, all the high-order k−spin diagrams with k ≥ 3) are neglected.
In the literature, with the name “Sessak-Monasson” approximation one refers to the closed-form
result (5.41) for the couplings, rather than the expansion (5.39). Conversely, summing the same
types of loop contribution is not possible for the local fields hi, whose expression it is typically
left in the series form (5.40). However, in Section 5.4.1 we will show that the analogy with the
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Density Consistency inference provides a way to write a closed-form expression for the local fields
obtained by summing up all the loop and 2−spin contributions.

5.3.6 Pseudo-Likelihood
All the methods described so far give analytic expressions for the inferred parameters as

functions of the empirical magnetizations and 2-point correlations and, with the exception of
the Independent Pair Approximation (Setion 5.3.3) all of them require a single inversion of the
covariance matrix C, whose computational cost scales as O

(︁
N3)︁. Notice also that the Boltzmann

learning procedure to maximize the likelihood only involves the first two moments to update
fields and couplings by means of gradient-ascent, as clear from (5.9)-(5.10). An alternative and
powerful approach to the exact likelihood maximization approach, known as Pseudo-likelihood
(PL), allows to exploit all the information encoded in the dataset - i.e. also high-order correlations
- to iteratively compute the model parameters with a polynomial running time, both w.r.t. the
system size N and the number of samples M . It was first introduced in [13] and then re-discovered
in the statistical physics community more recently [6]. The key approximation behind PL is that
the likelihood function (5.8) can be simplified by taking into account the effect of one spin explicitly
and approximate the rest of the degrees of freedom with the empirical distribution. Let us start
from the Boltzmann measure (5.5): for a certain spin i, we can exploit the chain rule to write the
conditional probability of node i, given all the others:

p (σ) = p
(︁
σi,σ\i

)︁
= p

(︁
σi | σ\i

)︁
p
(︁
σ\i
)︁

(5.42)

where \i = {j = 1, . . . , N | j /= i} denotes the set of all degrees of freedom but i, and the depen-
dency on (h,J) is dropped for simplicity. The quantity p

(︁
σi | σ\i

)︁
is the probability distribution

of spin i conditioned on all the others, explicitly given by:

p
(︁
σi | σ\i

)︁
= e

σih̃i

(︁
σµ

\i

)︁
2 cosh h̃i

(︂
σµ\i

)︂ ; h̃i
(︁
σ\i
)︁

= hi +
∑︂
j /=i

Jijσj (5.43)

where h̃i is a local effective field depending on all the σ\i’s states. Exploiting (5.42) and (5.43) it
is possible to express moments of spin i, shown below:

⟨σi⟩p(σi|σ\i)p(σ\i) =
⟨︁
tanh h̃i

(︁
σ\i
)︁⟩︁
p(σ\i) (5.44)

⟨σiσj⟩p(σi|σ\i)p(σ\i) =
⟨︁
σj tanh h̃i

(︁
σ\i
)︁⟩︁
p(σ\i) (5.45)

The above expressions are derived by explicitly performing the summation over σi, so that the
right hand sides still have to be averaged with respect to the distribution of σ\i, requiring 2N−1

operations. So far, (5.44)-(5.45) are exact relations, also known as Callen’s identities [25]. The
key approximation behind PL is to approximate the probability p

(︁
σ\i
)︁

in (5.42)-(5.44)-(5.45)
with its empirical counterpart, denoted with pD

(︁
σ\i
)︁
. In this way, for each spin we consider only

the contribution of its conditional probability to the likelihood, and the rest is approximated by
using the empirical dataset. This allows to define an approximate log-likelihood for spin i as:

L̃i (hi,J i∗) = 1
M

log
M∏︂
µ=1

p
(︂
σµi | σ

µ
\i

)︂
= 1
M

M∑︂
µ=1

log p
(︂
σµi | σ

µ
\i

)︂
(5.46)

Note that L̃i is a function of N parameters, namely the external field hi and the i-th row of the
coupling matrix, J i∗ = {Jij}j /=i. Performing derivatives of (5.46) w.r.t. these parameters one
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finds that the maximum of (5.46) satisfies the following conditions:

⟨σi⟩D =
⟨︁
tanh h̃i

⟩︁
D (5.47)

⟨σiσj⟩D =
⟨︁
σj tanh h̃i

⟩︁
D ∀j /= i (5.48)

that correspond to the Callen identities (5.44)-(5.45), where the average on both sides is here
performed with respect to the data. Since the right hand sides of (5.47)-(5.48) both contain a
non linear-function of all the degrees of freedom, high-order correlations are implicitly taken into
account into the PL maximization, at a difference with the exact maximum likelihood procedure
which only involves the first two moments. The (log)-pseudolikelihood is then defined as the sum
of (5.46) over all spins:

LPL (h,J) =
N∑︂
i=1
L̃i (hi,J i∗) (5.49)

The overall computational complexity to compute
(︂

hPL,JPL
)︂

= arg maxJ,h LPL (h,J) scales as
O
(︁
N2M

)︁
per iteration, and the maximization can be carried out using standard gradient-ascent

algorithms, equivalently to (5.9)-(5.10). However, by construction the optimization algorithm can
be split into N separate procedures, i.e. one for each spin i in which hi and all its couplings Ji∗ are
inferred: as a consequence, the optimization can be easily parallelized by maximizing each single-
site pseudolikelihood Li independently, thus reducing the computational cost by a factor N . The
pseudolikelihood has the same maximum as the exact likelihood in the limit M → ∞ [101]. As
a final remark, note that the inferred coupling matrix is not symmetric by construction at finite
M : the simplest solution, used also in the present work, is to symmetrize it to get a symmetric
matrix, i.e. JPLij ← 1

2
(︁
JPLij + JPLji

)︁
. Alternatively, one might constraint the optimization to

the subspace of symmetric matrices, but in this case a parallel computation would no longer be
possible. Pseudolikelihood can also be implemented by using regularization terms on the model
parameters, in order to penalize large values. However, in the present work we choose not to do
so, in order to have a more fair comparison w.r.t. the other techniques. Further developments
to Pseudolikelihood have been developed in order to design efficient decimation procedures to
iteratively select only the most significant couplings [40]. It should be stressed that PL exploits
in principle all the information contained in the dataset, including all the high-order correlations,
whereas all the previous techniques employ only the first and second empirical moments.

5.4 Density Consistency solution
This section shows how to compute an approximate solution to the Inverse Ising Problem by

using Density Consistency. As discussed in Section 5.2.2, the maximum likelihood point is found
by matching the first two moments of the empirical statistics and the equilibrium expectation
values computed at

(︂
hML,JML

)︂
. The simplest way to exploit DC is to replace the equilibrium

expectation values at the right-hand sides of (5.11)-(5.12) with the DC estimates:

⟨σi⟩DC = ⟨σi⟩D ∀i (5.50)
⟨σiσj⟩DC = ⟨σiσj⟩D ∀i /= j (5.51)

where ⟨·⟩DC is computed by averaging over the tilted distributions introduced in Section 3.1.1.
We now follow the same approach discussed in Section 4.1.1 for the Ising Model. For convenience,
let us start by rewriting the expressions for the moments computed under the tilted distributions
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(already shown in Eqs. (4.14)):

⟨xi⟩q(ij) = tanh
[︂
a

(ij)
i + atanh

(︂
tanh b(ij) tanh a(ij)

j

)︂]︂
(5.52a)

⟨xj⟩q(ij) = tanh
[︂
a

(ij)
j + atanh

(︂
tanh b(ij) tanh a(ij)

i

)︂]︂
(5.52b)

⟨xixj⟩q(ij) = tanh
[︂
b(ij) + atanh

(︂
tanh a(ij)

i tanh a(ij)
j

)︂]︂
(5.52c)

where
a

(ij)
i = h

(ij)
i + w

(ij)
i ; a

(ij)
j = h

(ij)
j + w

(ij)
j ; b(ij) = Jij − S(ij)

ij (5.53)

In the above formulas, h(ij)
i (resp. h

(ij)
j ) represents a portion of the local field hi (resp. hj)

associated to the pair (ij); conversely, w(ij)
i(j), S

(ij)
ij are the fields and couplings coming from the

Gaussian cavity distribution, given by:

w
(ij)
i = Σjjµi − Σijµj

ΣiiΣjj − Σ2
ij

− γ(ij)
i (5.54)

w
(ij)
j = −Σijµi + Σiiµj

ΣiiΣjj − Σ2
ij

− γ(ij)
j (5.55)

S
(ij)

ij = −Σij
ΣiiΣjj − Σ2

ij

− Γ(ij)
ij (5.56)

where γ(ij)
i , γ

(ij)
j , Γ(ij)

ij are the parameters of the approximating Gaussian factor ϕij in Eq. (4.5).
Eqs. (5.52) are essentially equal to (4.14), with the only difference that now tilted distributions
are defined for each pair of spins i < j since the topology is unknown, and β has been adsorbed
into the model parameters. At this stage, the Gaussian moments µ, Σ are not yet specified, and
they will be fixed by choosing a suitable set of closure conditions. A first consequence of using
Density Consistency on all the spin pairs is that all the entries of Σ can be determined; in this
way, by using the definition (5.45) we can replace Γ(ij)

ij with
(︁
Σ−1)︁

ij
. Using Eqs. (5.52), the

approximate maximum likelihood point obtained by using DC will satisfy the following matching
conditions for any pair of spins i < j:

⟨σi⟩q(ij) = mi (5.57a)
⟨σj⟩q(ij) = mj (5.57b)
⟨σiσj⟩q(ij) = Cij +mimj (5.57c)

to be solved w.r.t.
{︂(︂
h

(ij)
i , h

(ij)
j , Jij

)︂}︂
i<j

. In principle, one could use a gradient-ascent algo-
rithm similar to the Boltzmann learning procedure to iteratively update the fields and couplings;
however, in this case Density Consistency needs to be run at each iteration in order to esti-
mate the left-hand sides of (5.57). Such iterative scheme turns out to be unnecessary, since it
is possible to invert (5.57) analytically. First notice that Eqs. (5.57) can be solved using (5.52)
w.r.t.

{︂(︂
a

(ij)
i , a

(ij)
j , bij

)︂}︂
i<j

; by construction, their expression coincide to the Independent Pair
estimates discussed in Section 5.3.3:

a
(ij)
i = h

(ij)IP
i ; a

(ij)
j = h

(ij)IP
j ; bij = JIPij (5.58)

Then, by exploiting the definitions of a(ij)
i , a

(ij)
j , bij we can write a closed-form solution for(︂

h
(ij)
i , h

(ij)
j , Jij

)︂
:
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h
(ij)∗
i = h

(ij)IP
i − w(ij)

i = h
(ij)IP
i − Σjjµi − Σijµj

ΣiiΣjj − Σ2
ij

+ γ
(ij)
i (5.59)

h
(ij)∗
j = h

(ij)IP
j − w(ij)

j = h
(ij)IP
j − −Σijµi + Σiiµj

ΣiiΣjj − Σ2
ij

+ γ
(ij)
j (5.60)

J∗
ij = JIPij + S

(ij)
ij = JIPij −

Σij
ΣiiΣjj − Σ2

ij

−
(︁
Σ−1)︁

ij
(5.61)

At this stage, all the couplings can be inferred using (5.61), after fixing a suitable set of closure
conditions. Conversely, the local external field on spin i will be computed by summing all the
contributions h(ij)∗

i for j /= i:

h∗
i =

∑︂
j /=i

h
(ij)
i =

∑︂
j /=i

(︄
h

(ij)IP
i − Σjjµi − Σijµj

ΣiiΣjj − Σ2
ij

)︄
+
∑︂
j /=i

γ
(ij)
i (5.62)

=
∑︂
j /=i

h
(ij)IP
i −

∑︂
j /=i

Σjjµi − Σijµj
ΣiiΣjj − Σ2

ij

+
(︁
Σ−1µ

)︁
i

(5.63)

= hIPi + (N − 2) atanhmi −
∑︂
j /=i

Σjjµi − Σijµj
ΣiiΣjj − Σ2

ij

+
(︁
Σ−1µ

)︁
i

(5.64)

where the Indepedent Pair expression (5.31) is used in the last line; in the second line, we used(︁
Σ−1µ

)︁
i

=
∑︁
j /=i γ

(ij)
i as in Eq. (3.11).

In order to get an explicit expression in terms of first and second empirical moments (m,C), it is
necessary to fix a set of closure equations. In the following, we exploit both the DC closure (3.34)
and the moment matching (or EP) closure (3.55), for reasons that will be clear in the next section.
Combining the closure equations and the maximum likelihood matching conditions (5.57) we get
the following expressions for the Gaussian moments (µ,Σ) w.r.t. the empirical ones:

µEPi = mi ∀i, (5.65a)
ΣEPii = 1−m2

i ∀i (5.65b)
ΣEPij = Cij ∀i /= j. (5.65c)

µDCi = mi ∀i, (5.66a)

ΣDCii = mi

atanhmi
∀i (5.66b)

ΣDCij = Cij

√︄
ΣDCii
Cii

ΣDCjj
Cjj

∀i /= j (5.66c)

respectively for the EP and DC closures. Note that, despite ΣDCii is not well defined for mi = 0,
it has a finite limit limmi→0 ΣDCii = 1. Finally, by inserting the above formulas into (5.61)-(5.64)
we get the final expression for the inferred parameters under DC or EP approximations, shown
in the next paragraphs.
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EP (moment matching) closure

JEPij = JIPij −
(︁
C−1)︁

ij
− Cij
CiiCjj − C2

ij

∀i /= j (5.67)

hEPi = hIPi + (N − 2) atanhmi −
∑︂
j /=i

Cjjmi − Cijmj

CiiCjj − C2
ij

+
(︁
C−1m

)︁
i

∀i (5.68)

where Cii = 1−m2
i is the variance of spin i.

DC closure

JDCij = JIPij −
[︃(︂

ΣDC
)︂−1

]︃
ij

− Cij
CiiCjj − C2

ij

√︄
Cii

ΣDCii
Cjj

ΣDCjj
∀i /= j (5.69)

hDCi = hIPi + (N − 2) atanhmi −
∑︂
j /=i

ΣDCjj mi − ΣDCij mj

ΣDCii ΣDCjj −
(︁
ΣDCij

)︁2 +
[︃(︂

ΣDC
)︂−1

m

]︃
i

∀i (5.70)

where ΣDCii ,ΣDCij are given by Eqs. 5.66. The above formulas allow to reconstruct the model
parameters in terms of the empirical magnetizations and correlations, by requiring a single matrix
inversion (C or ΣDC , depending on the closure used), in the same way as for all the other mean-
field like methods previously discussed.
It is important to notice that, independently on the closure, the first term equal to the Independent
Pair estimate does not depend on the closure used. This is a contribution coming from the
direct link (ij) and the (approximate) moment matching condition to the empirical moments
(5.57), while all the others depend on the cavity distribution and explicitly depend on the chosen
closure. Another consequence is that, neglecting cavity correlations in the tilted distributions (i.e.
asssuming that the Gaussian covariance matrix Σ is diagonal), the inferred couplings J∗

ij coincide
to the Independent Pair estimates (5.28), independently on the closures. For what concerns the
fields, this is true only by selecting a set of closures satisfiying DC condition (3.28). Indeed,
starting from (5.64) and setting Σij = δijΣii, we get:

h∗
i = hIPi + (N − 2) atanhmi − (N − 2) mi

Σii
(5.71)

The above expression is equal to hIPi only if mi/Σii = atanhmi, which is precisely the DC con-
dition (3.28). Remembering that Density Consistency coincides with the Bethe Approximation
when neglecting cavity correlations, we conclude that the above reasoning is actually equivalent
to solve the maximum likelihood equations by using the Bethe Approximation, so that the cor-
responding inferred parameters coincide with the Independent Pair approximation, as we could
expect.

5.4.1 Relation to Sessak-Monasson approximation
Surprisingly, the expression of the couplings obtained by using EP closure (5.67) is equal to the

Sessak-Monasson expression (5.41). This analogy suggests that also the expression hEPi should
be similar to what we would get by summing the same loop contributions as in (5.41): indeed, we
found that hEPi (5.68) gives the exact series expansion presented in [124] at least up to order β3,
apart from a 0-th order term in the magnetization. Therefore, we can state that the expression
of inferred fields under the Sessak-Monasson (SM) approximation, obtained by summing all the
loop and 2-spin diagrams, can be re-phrased as:

hSMi = hEPi + (N − 2)
[︃

mi

1−m2
i

− atanhmi

]︃
+O

(︁
β4)︁ , (5.72)
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where hEPi is defined in (5.68). The second term in (5.72) is present simply because DC with plain
moment matching (EP closure) is not exact even for a non-interacting model. Since additional
loop contributions not summed up in (5.41) appear at higher orders in β, further investigation
would be needed to verify the correctness of (5.72) at higher orders in the series expansion, and
we leave this point for future works.
The DC closure provides an expression similar in structure to the Sessak-Monassson approxi-
mation: expanding (5.69) for small correlations leads to the same loop expansion presented in
the previous section, but the coefficients multiplying each term (that depend only on the mag-
netizations mi) differ from (5.39) because of the different closure used. This analogy suggests
that Density Consistency might be closely related to the Sessak-Monasson approximation, to be
investigated in future works. Finally, notice that in the limit of zero magnetizations, ΣDC → C
and the expression of the inferred couplings tends to the Sessak-Monasson approximation, namely
JDCij → JEPij = JSMij . Therefore, in order to highlight different reconstruction performances all
the simulations presented in the next section will be performed in regimes where the empirical
magnetizations differ from 0.

5.5 Results
In this final section we provide an extensive comparison between all the inference methods

discussed so far on synthetic generated data. All the simulations are performed by generating
configurations from a known model, defined on a certain graph topology with arbitrary distribu-
tions of fields and couplings; in addition, we will modify the inverse temperature β to tune their
strength.
In section 5.5.1 we first compare the DC performances with the EP closure and the Sessak-
Monasson approximations, in order to establish under which conditions DC improves the other two
(related) approaches. This comparison is carried out on a fully connected spin glass (Sherrington-
Kirkpatrick model [126]) with N = 20 nodes, so that an exact computation of the equilibrium
observables can be performed in a reasonable time.
A second comparison among all the mean-field like methods is carried out in Section 5.5.2 on
sparse topologies and small system sizes, where again the exact trace over all the configurations
is feasible. Finally, in Section 5.5.3 we evaluate the performances of all the methods on larger
systems, where samples are collected by using Monte Carlo Gibbs sampling [55]; this time, the
comparison includes also Pseudo-Likelihood, which is widely considered as the out-performer for
the IIP [101]. In all the cases illustrated hereafter, the inference quality will be measured in terms
of the reconstruction errors of the inferred couplings and fields:

∆J =

⌜⃓⃓⎷∑︁i<j

(︁
J tij − Jij

)︁2∑︁
i<j

(︁
βJ tij

)︁2 , ∆h =

⌜⃓⃓⎷∑︁i (hti − hi)
2∑︁

i (βhti)
2 , (5.73)

where
(︁
hti, J

t
ij

)︁
are the true model parameters. For each scenario, we run n different instances by

varying the seed used to generate the topology and/or the model parameters. As a consequence,
all the following plots show the average and standard error for both measures (5.73):

f̄ = 1
n

n∑︂
α=1

fα δf = 1√
n

⌜⃓⃓⎷ 1
n− 1

n∑︂
α=1

(︁
fα − f̄

)︁2 (5.74)

where f ∈ {∆J ,∆h} and the summation runs over the different instances. From a technical
point of view, a small diagonal regularization ε = 10−10 will be added to the empirical/exact
covariance matrix C to prevent numerical issues arising when inverting it, mainly relevant at low
temperatures.

107



5 – The Inverse Ising Problem

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

J

(a1)

SM3
EP

SM
DC

0.0 0.5 1.0 1.5

10 8

10 5

10 2

101

104

h

(a2)

SM3
EP

SMg
DC

0.1 0.4 0.7

10 3

100

0.0 0.5 1.0 1.5
0.0

0.5

1.0

1.5

J

(b1)

SM3
EP

SM
DC

0.0 0.5 1.0 1.5

10 8

10 5

10 2

101

104

h

(b2)

SM3
EP

SMg
DC

0.1 0.4 0.7

10 3

100

Figure 5.1: Reconstruction quality on a fully connected graph of N = 20 nodes with binary
couplings Jij ∼ ±β/

√
N and uniform fields hi ∼ h0U (0, β). Panel a, left: h0 = 0.1; (b):

h0 = 0.5. For each scenario, we show the error w.r.t the couplings ∆J and the fields ∆h, averaged
on 30 instances. The insets show the log-scale behaviour at high temperatures (low β).

5.5.1 Comparison to Sessak-Monasson approximation
We start from a comparison between SM, EP and DC on a fully connected frustrated model

in the presence of random external fields. As discussed in the previous section, the EP and
SM inference of couplings coincides and it is given by Eq. (5.67); for what concerns the fields’
reconstruction, we compare the EP and DC expressions (resp. Eq. (5.68) and Eq. (5.70)) to
the small correlation expansion up to 3−rd order given by Eq. (5.40) (labelled as SM3) and the
closed-form guess given by Eq. (5.72) (labelled as SMg). We show in Figure 5.1 the reconstruction
performances for a fully connected graph of N = 20 spins, with a binary distribution of couplings,
namely Jij ∼ ±β/

√
N ; conversely, fields are uniformly distributed, i.e. hi ∼ βh0U(0,1) with

a certain scale h0. Figure 5.1 shows the reconstruction error on couplings and fields for two
values of the scale, respectively h0 = 0.1 (left) and h0 = 0.5 (right), averaged over n = 30
instances. At the smaller value of h0 = 0.1, DC and SM have a similar behaviour on ∆J ,
since the magnetizations are relatively small and the DC estimate tends to SM, as previously
discussed. At larger values of h0 (right panel), DC reconstruction improves the estimate of the
couplings, if compared to SM, and the gap between the two increases as the temperature is
lowered. Looking at the fields’ reconstruction, it is evident that the small correlation expansion
truncated to the 3rd order and the EP estimate have poor performances. On the other hand, the
SM reconstruction given by our guess (5.72) gives a good estimate at high temperatures, while
being out-performed by DC at lower temperatures, as it happens for the couplings. The same
qualitative behaviour can be observed by choosing other combination for the fields/couplings’
distributions (e.g. Gaussian/binary, Gaussian/Gaussian, etc.).

5.5.2 Reconstruction using exact statistics
In this section we show results on different sparse topologies, i.e. graphs with low average

connectivity, by comparing DC reconstruction to the other mean-field like methods for the IIP:
model parameters are reconstructed through the Independent Pair (IP) approximation (5.28)-
(5.31), Mean-Field (MF) (5.19)-(5.20), TAP equations (5.23)-(5.24), Susceptibility Propagation
(SP) (5.37)-(5.38), in addition to DC and SM. From now on, Eq. (5.72) is used to reconstruct
the external fields under the SM approximation, since the 3−rd order truncated series typically
gives too large errors.
We performed simulations for several combinations of the couplings and fields distributions (Gaus-
sian N (0,1), uniform positive U(0,1), binary ±1 and constant) and graph topology: we used
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Figure 5.2: Reconstruction in sparse topologies from exact observables. (a) Erdős-Reny graph with
N = 20 and mean connectivity k = 3, Gaussian couplings Jij ∼ N

(︁
0, β2)︁, constant fields hi = β.

(b) 2d square lattice with periodic boundary conditions of N = 42 nodes and dilution coefficient
p = 0.7, uniform positive couplings Jij ∼ U (0, β), binary fields hi ∼ ±0.5β. (c) Random regular
graph with N = 20 and fixed connectivity k = 4, constant couplings Jij = β, constant fields
hi = 0.1β. (d) Triangular lattice with N = 42 anti-ferromagnetic couplings Jij = −β, binary
fields hi ∼ ±0.6β. All the plots show respectively the error over couplings and over fields,
averaged on n = 50 instances. SP and TAP reconstructions are shown as dashed lines when the
number of instance giving physical solution n∗ is n/2 ≤ n∗ < n, and it is not shown for n∗ < n/2.

Erdős-ény and random regular graphs with different mean (resp. fixed) connectivity, regular lat-
tices with a diluition coefficient p ∈ (0,1] 3.
A selected subset of results is shown in Figure 5.2. Each scenario shows the reconstruction errors
averaged over n = 50 instances. We can identify a general behaviour of the different methods: SM
is always better than MF but both of them give large errors at low temperatures. TAP and SP
outperform MF but suffer from numerical problems when the fields are large and the temperature
is low (see for instance the results for the Erdos-Rényi and graph the triangular lattice in Figure
5.2 (a) and (d) respectively). In thes regimes, TAP and SP equations have no fixed points as the
arguments of the square roots appearing in the expressions of the couplings become negative. In
particular, in Figure 5.2 we separate the regimes in which TAP and SP provide physical solutions
on all the n instances (by using both dots and lines), from those in which at least one time they do
not find a solution (here we plot lines, without dots). No result is shown when these methods fail
to provide a physical solution on more than half of the n instances. DC turns out to significantly
outperform SM in almost all cases at low temperatures and it provides comparable estimates to
SP at small β. A different behaviour can be noted in Figure 5.2 (c), where DC performs worse
than other methods for the couplings reconstruction, but it gives a very good estimation for the
fields.

3At p ∈ (0,1), only a random fraction p of the links of the full structure is considered
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5.5.3 Inference using sampled configurations
Finally, we performed another set of simulations on large system sizes where a set of M equi-

librium observables are generated through Monte Carlo Gibbs sampling [55]. In this case, we
compare all the previous methods also against Pseudolikelihood. The MCMC dynamics starts
from a random configuration and it is let to equilibrate for an initial M steps. Then, the same
dynamics is run for other Md steps, and a total M of samples is collected (1 every d). In this way,
in principle we slightly reduce the effect of the autocorrelation time in the Monte Carlo dynamics,
that is relevant especially at low temperatures. We remark that each MC “step” here corresponds
to N sequential Gibbs-sampling sweeps, one for each spin performed on a random permutation
of the indices. In all the simulations, M = 105, d = 102. Pseudo-likelihood maximization is per-
formed up to a numerical precision of 10−4 with no regularization term, using the implementation
available at [105].

Pseudo-count The estimation of the first and the second empirical moments, used by all the
mean-field like methods, is slightly modified by the addition of a small pseudo-count λ ∈ (0,1)
[45]. In general, the effect of the pseudo-count is to modify the distribution of a set of N binary
variables (in this case, the empirical distribution) as a mixture between the starting one and a
uniform density in the range {−1,1}N . The new empirical density, denoted with p(λ)

D is given by:

p
(λ)
D (σ) = (1− λ) pD (σ) + λ

2N (5.75)

As a consequence, adding a pseudo-count λ ∈ (0,1) modifies the expectation values as:

⟨σi⟩(λ)
D = (1− λ) ⟨σi⟩D ∀i (5.76)

⟨σiσj⟩(λ)
D = (1− λ) ⟨σiσj⟩D ∀i /= j (5.77)

and the same holds for higher-order (non-connected) moments. The strength of the pseudocount
is chosen in such a way that its effect becomes negligible as when the number of samples goes to
infinity. We chose λ = 1/M as a reasonably good value. It is important to remark that most of
the methods are slightly affected by the addition of pseudocount: in particular, only MF gives
significantly worse performances when turning off λ, as noted in [10]. We show in Figure 5.3 the
reconstruction error of the couplings and the fields for all the methods on different graph topologies
and different model parameters (see the details in the caption of Figure 5.3). The behaviour is
qualitatively similar to the results shown in Figure 5.2. In particular, SM/EP and MF typically
have a very large reconstruction error at low temperatures; on the other hand, SP and TAP fail to
find physical solutions for the couplings and fields at low temperatures, as previously discussed.
Although PL seems to outperform the other methods in all the regimes considered here, DC gives
comparable performances to PL for small β and it often provides the best estimates among all
the methods that, similarly to DC, use only the information about first and second moments.

Effect of the number of samples on the inference quality

Finally, we test the robustness of the inference methods when the number of samples is lowered:
in the previous section we used M = 105 for all the simulations, which in many applications is a
too optimistic value for the number of available data. The sampling is carried out with the same
setting as in the previous section; then, we select only the first subset of these samples for different
values of M < M ; in this way, the final dataset will be characterized by the same equilibration
and de-correlation time as before.
In this setting, another measure used to compare the reconstruction performances is the area under
the Receiver Operating Characteristic (ROC) curve, denoted with AUC. The latter quantifies how
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Figure 5.3: Reconstruction in sparse topologies using sample averages. (a) Barabasi-Albert [8]
graph with N = 50, n0 = k = 2, binary couplings Jij ∼ ±β and constant fields hi = 0.7β. (b) 2d
square lattice with N = 72 and PBC, binary couplings Jij ∼ ±β and constant fields hi = 0.5β.
(c) Random regular graph with N = 50 and fixed connectivity k = 4, binary couplings Jij ∼ ±β,
binary fields hi ∼ ±0.3β. (d) Erdos-Reny graph with N = 50 and mean connectivity k = 4,
constant couplings Jij = β, uniform fields hi ∼ 0.3U(0, β). All the plots show respectively the
(log-scale) error over couplings and over fields, averaged on 20 instances.

good the detection of present/absent couplings is on a sparse topology, independently on their
strength [48]. Figures 5.4-5.5 show the results on the same instance of Figure 5.3, panels (a) and
(b) respectively, for M ∈

[︁
102,105]︁. We also report as a vertical and dashed line at M∗ =

(︁
N
2
)︁
,

that corresponds to the number of couplings to be inferred. This value can be consider as a natural
threshold which separates a harder (resp. easier) regime in which the number of configuration
used to compute the data statistics is smaller (resp. higher) than the number of unknowns. In the
large temperature regime, all methods show comparable performances with the exception of IP
which provides the best estimates, in terms of both ∆J and AUC when the statistics is extremely
poor, that is for M = 102. Then the accuracy of the predictions deteriorates for large M values.
Here, PL looses its predictive power only for β = 0.4 and M < M∗. In the large β regime, the
fixed-statistics methods outperform PL in a wide range ofM values and, among them, DC seems
to be preferred as suggested by both metrics, ∆J and AUC. Conversely, when the amount of data
is large, PL performances are the most accurate and the error decreases with increasing M: this
is reasonable since PL is the only consistent approach, being exact in the limit M → ∞. At
extreme small values of M <M∗ the Independent Pair approximation has the best performance
if compared to the other fixed-statistics inference methods; this is reasonable since, unlike the
other methods, it requires no matrix inversion. In a large and intermediate range of M, even for
M < M∗, and, especially for large β, DC seems to be preferred among all the methods.
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Figure 5.4: Effect of the number of samples on the reconstruction quality. The model is a
Barabasi-Albert [8] graph with N = 50, n0 = k = 2, binary couplings Jij ∼ ±β and constant
fields hi = 0.7β, i.e the same regime of Figure 5.3 (a). Each plot shows the average error over
the couplings ∆J (top panel) and the AUC (bottom panel) w.r.t. the number of samples M
for different temperatures (values are shown at the top of each subplot). The black dotted line
corresponds to M∗ =

(︁
N
2
)︁
, i.e. the number of couplings to be inferred
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Figure 5.5: Effect of the number of samples on the reconstruction quality. The model is a 2d
square lattice with N = 72 and PBC, binary couplings Jij ∼ ±β and constant fields hi = 0.5β.,
i.e the same regime of Figure 5.3 (b). Each plot shows the average error over the couplings ∆J (top
panel) and the AUC (bottom panel) w.r.t. the number of samples M for different temperatures
(values are shown at the top of each subplot). The black dotted line corresponds to M∗ =

(︁
N
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)︁
,

i.e. the number of couplings to be inferred
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Chapter 6

Conclusions and future
perspectives

The first part of this manuscript presents a new class of iterative schemes to compute marginal
distributions on discrete graphical models, called Density Consistency (DC). A general derivation,
yet restricted to binary degrees of freedom, is carried out in chapter 3. The derivation follows the
same reasoing used for Expectation Propagation (EP) in section 2.4: in this perspective, DC can
be considered as a generalization of the EP scheme where the Gaussian approximation is used
onto each factor node of the original model. This parametrization allows to include approximate
loop corrections into the marginal probabilities, coming from all the cycles present in the graph.
DC is constructed in such a way to give the exact marginals on trees, so to be an extension of the
Bethe approximation: in particular, this is realized by imposing a consistency between the density
values of single-node marginal distributions, that gives the name to the method. The connection
with the Bethe approximation is proven rigorously in Section 3.2.1 on acyclic graphs, thanks to
the DC condition (3.28).
As opposite to other approaches (e.g. the Cluster Variational method) that include larger regions
of the graph while still assuming a factorized probability on these, DC relaxes the factorization
assumption of the cavity distribution in the Bethe ansatz by including pairwise effective interac-
tions, that are computed from a unique multivariate Gaussian distribution: by construction, this
assumption approximately takes into account the effect of loops of any length, whose contribution
is easily included into the marginal tilted distributions. In particular, the Gaussian ansatz for the
cavity distribution takes into account effective pairwise interactions for each pair of neighbours
spin, that corrects the “direct” link’s contribution in the original factor graph. The correlations
induced by each Gaussian cavity are easily incorporated in a self-consistent way, in an iterative
scheme that scales polynomially (in particular, as the 3rd power) with respect to the number of
variables.
Thanks to this correction, DC turns out to give significant improvements to the BP marginal
estimates, as discussed in Chapter 4.1 for the forward problem, and it gives comparable perfor-
mances with other loop corrected schemes. In particular, DC provides very good estimates of the
equilibrium observables especially on models with long-range correlations (e.g. with ferromagnetic
couplings) on several architectures.
The strength of the loop contributions can be tuned by decreasing the value of the interpolation
parameter introduced in Section 3.2.2, that can improve convergence in all those regimes where a
“full” DC solution, obtained by matching the Pearson correlation coefficient, cannot be found. In
this perspective, neglecting at all cavity correlations by choosing a null value of the interpolation
parameter gives the exact fixed points of Belief Propagation on any graph topology, as proven in
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Section 3.2.1.
DC can be also exploited to estimate the equilibrium behaviour of homogenous models in the
thermodynamic limit: in this regard, the analytic solution carried out on the ferromagnetic Ising
model shows how the critical temperature is estimated significantly better than other mean-field
like approximations. Despite the nature of the ferromagnetic phase is not clear yet, due to unstable
branches and phase cohexistence observed in 3 dimensions, the critical temperature estimation
is a signal that the loop corrections induced by the Gaussian cavities can better describe the
long-range correlations arising at the critical point: this feature is further confirmed by the high-
dimensional expansion 4.3.6, that predicts exactly two additional perturbative orders with respect
to other mean-field like approaches.
In general, we expect DC to perform worse on factor graph models with dominant multi-body
interaction terms (e.g. p−spin models), especially in presence of many short loops (this happens
for instance in k-SAT models with a high density of clauses). A first reason is that the approxi-
mating family of distributions is Gaussian: therefore, the cavity distribution will carry explicitly
information just about the first two moments, with higher-order correlations being dependent
on them in a trivial way. Moreover, on these models, if the graph contains short loops it might
happen that two nodes are connected to more than one factor node: if this scenario, we believe
that DC condition needs to be generalized in such a way to require consistency between two-nodes
marginals. By construction, this issue does not arise in pairwise graphical models, but a similar
argument is discussed in 4.1.2, where a first attempt to include larger regions of the graph (pla-
quettes) is discussed for the square lattice Ising model: in this case, DC currently works only if
the regions are chosen in such a way to have only single-nodes intersections.
In this perspective, DC can be in principle extended to include larger regions of the graphs ex-
plicitly (along the lines described in in Section 2.3.1 for the CVM): however, the interesection of
graph regions on more than 1 variable node suggets that DC condition should be generalized in
such a way to guarantee consistency between 2(or more)−body marginals.
In pairwise (Ising-like) models in sparse structured graphs with mean connectivity ≤ 4 DC breaks
down slightly before the transition temperature: indeed, on such systems (like square lattice Ising
model) the Gaussian covariance matrix becomes non-invertible close to the transition point, and
at thermodynamic limit the inverse matrix elements diverge: as discussed in Section 4.3.4, this
phenomenon can be physically interpreted thanks to the analogy with lattice random walks, where
at low connectivity the latter becomes recurrent in the infinite dimensional limit.
In chapter 5 DC is exploited to provide an approximate closed-form solution to the Inverse Ising
problem, where the maximum likelihood estimator is found by using the marginal tilted estima-
tions; the resulting expression shares many similarities to the Sessak-Monasson approximation
[124], depending on the set of closures used to fix DC’s parameters; furthermore, simulations
on synthetic data show how DC provides significant improvemenents to the Sessak-Monasson
approximation in the presence of random external fields on several topologies, and comparable
performances with other methods (even Pseudolikelihood), especially in the presence of small
amounts of data.
The connection to the Sessak-Monasson approximation suggests a more quantitative understading
of the loop contributions encoded by DC which, however, is still to be clarified: future directions
might exploit existing literature on the topic, e.g. the work by Georges and Yedidia [56], or the
loop calculus by Chertkov [31], as a way to go. The comparison with the Sessak-Monasson ex-
pansion suggests that DC could be interpreted as a non-perturbative approximation. This might
explain the lack of convergence at low temperatures, mainly due to the covariance matrix becom-
ing singular and thus non-invertible due to high long-range correlations.
The generalization to non-binary degrees of freedom discussed in Section 3.4.1 opens several
interesting directions to be investigated: for instance, similar analytic calculations for the ferro-
magnetic Ising model could be carried out on other discrete models like Blume-Emery-Griffiths
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[16]. With regard to inference problem, the extension to Potts-like models can be in principle used
to solve the inverse problem, by generalizing the procedure used for the Ising variables in Chapter
5; this direction can provide further developments with interesting applications in computational
biology, in the context of protein structure inference from co-evolutionary sequences [36].
As an overall final remark, the freedom in selecting the set of closure equations might allow for
further developments with better performances and/or convergence properties. In this regard, the
preliminar variational formulation presented in Section 3.4.2 might be helpful in understanding
which set of closure equations should be used, that up to now is chosen heuristically.
With regard to spin glass systems with quenched disorder, another potential future direction
regards the possibility to extend DC at the ensemble level, analogously to the cavity method.
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Chapter 7

Bayesian inference approaches to
epidemic mitigation via digital
contact tracing

7.1 Introduction and motivation
The outbreak of SARS-COV-2 at the beginning of 2020 turned into a world-wide pandemic

that spread rapidly across all countries and, at the time this manuscript is being written, more
than 100 million cases have been confirmed. One of the major issues with this virus is the
possibility to be infected without manifesting any symptoms, so that the detection of infected in-
divuals become harder. One of the many tools national health-care systems and public authorities
currently employ to mitigate the epidemic spreading is the trace-test-isolate strategy: given an
individual who has just been tested positive, her/his recent contacts can be identified, tested and
isolated to prevent further transmission events. However, this strategy turns out to be efficient
only at the very early stage of the epidemic, when the number of new infected people is small
enough to be managed “manually” by public health infrastructures; on the contrary, it cannot
be applied when the epidemic starts to grow, mainly because the average number of contacts of
a typical individual has before he/she is tested positive can be large and not all her/his recent
contacts might be known to the individual; moreover, public health infrastructures and personnel
are tipycally under-dimensioned to perform manual tracing in this regime.
For these reasons, digital contact tracing provides an alternative way to mitigate the epidemic
spreading, and it has been deployed in some countries at the early stage of the outbreak [11]. Dig-
ital contact tracing exploits mobile-phone technology to automatically register proximity events
between individuals, for instance via Bluetooth, so to have access to the time-evolving contact
network within a population; moreover, current technologies allow to estimate both the distance
and the duration of the contact, that can be used to quantify the infection probability. Digital
contact tracing raise several privacy issues, so that a lot of attention has been devoted to design
privacy preserving protocols [29, 32, 115, 132]. On the other hand, less work has been carried
out to quantify the efficiency of these protocols in terms of epidemic mitigation: indeed, most
considered systems use the tracing data simply as a fast and scalable device to identify all recent
contacts, in order to notify and eventually isolate all of them.
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7.1.1 Bayesian Epidemic Tracing
The scope of the project discussed in this chapter is to show that probabilistic inference

techniques allow to exploit the data collected by tracing applications about proximity events (i.e.
contacts) to provide accurate estimates for the probability that a certain individual is infected; we
will refer to this problem as risk estimation in the rest of the chapter. Probabilistic risk estimation
provides a criterion that can be used by public health authorities to implement optimized sanitary
protocols, by suggesting tests and other interventions on the individuals with the highest risk to be
infected: this can be particularly relevant to detect individuals who do not show symptoms, as it
happens with SARS-CoV-2. The Bayesian inference approach discussed in the following is based
on a prior description of the epidemic process in terms of a probabilistic model of propagation, that
is used to define a likelihood function, further conditioned by the additional information provided
by observational data, as a result of tests (e.g. PCR, serology) and/or symptoms appearance.
Risk estimation is carried out approximately by using two different message-passing algorithms:
the most accurate approximation scheme we use is based on Belief Propagation (BP), already
introduced in Sec. 2.2 and presented in Section 7.3 for this application; a simpler approach that
relies on a Mean-Field (MF) heuristics is discussed in Appendix D.
Both of them are based on systems of equations that need to be solved iteratively to provide a
direct estimation of the individual’s risk in terms of marginal probabilities, and require individuals
that have been in contact in the recent past to be able to exchange messages about their risk
level. When two individuals meet, they exchange a small amount of information (typically through
Bluetooth); later on, they exchange messages carrying information about their current status, e.g.
an increased risk due to presence of syndromes or due to their history of past contacts. Notice
that this information is highly more accurate than standard contact tracing implementations,
where the exchanged information is binary (i.e. two individuals have been in contact or not).
Probabilistic inference then concatenates this information from all past contacts locally on the
individuals phones and sends updates of the status to their contacts.
Both approaches have been already developed in the last years: in the present work, we adapt
them to the current intervention scenario. Both methods have and have pros and cons in terms of
efficiency, amount of data exchanged and privacy compatibility, and they differ by the accuracy
of the approximation and on the way observations are encoded into the probabilistic model.

7.1.2 Propagation and epidemic spreading models
In order to apply the probabilistic approaches just introduced, it is necessary to use some

mathematical description of the epidemic dynamics. Epidemic spreading models provide a simple
characterization of the mechanisms behind disease transmission [7], and can be employed to in-
vestigate the sources of large epidemic outbreaks, as well as to analyze the dynamical properties
of disease spreading over networks. Epidemic spreading models are tipycally defined in terms of
a finite set of compartmental states, in such a way that each individual belongs to one of them at
each time-step of the dynamics. One of the simplest and widest used is the so-called Susceptible-
Infected-Recovered (SIR) model [74], that provides an accurate description of all those diseases
where some immunity level to future infections is acquired after recovery (e.g. measles, chicken
pox, influenza) but also for lethal diseases (HIV, Ebola), where the Recovered state is understood
as “Removed”. Apart from epidemiology, the SIR model has been applied to analyze spreading
of viruses over networks of computers, as well as rumors over social networks [117].
The probabilistic approach based on BP/MF is carried out within the SIR description of the
dynamics. In principle, the BP and/or MF equations can be generalized more complex compart-
mental models, provided that the dynamics is irreversible (recovered individuals acquire a long-
lasting immunity and cannot become susceptible again). The latter assumption can be considered
fairly realistic in the case of SARS-CoV-2: despite the presence of a long-term immunization on
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recovered individuals is still under debate, we can assume that the time scale at which an eventual
re-infection occurs (∼ months) is much longer than the time-scale associated with the infection
dynamics in a population (∼ weeks).
On the other hand, the SIR model is unfeasible to capture some of the features observed in
SARS-CoV-2 spreading, e.g. the presence of asymptomatic/symptomatic individuals. The most
accurate mathematical descriptions of SARS-CoV-2 propagation are based on much richer com-
partment models, in which infected individuals are not immediately contagious upon infection,
may be asymptomatic or develop mild/severe symptoms with some delay, and the ages, house-
holds and workplaces are also taken into account. Moreover, additional details about non-trivial
distributions of incubation and recovery times, as well as of time-dependent viral transmission
capacity are included in these models, as observed in SARS-CoV-2 [12, 50, 52, 73].
For these reasons, the quality of the inference protocols will be validated by using a more complex
epidemic spreading model [114], specifically designed to reflect the main features of SARS-CoV-2
dynamics. It is important to remark that the inferential model used to develop risk assestment
is much simpler than the one used to simulate the dynamics, at difference with other recently
proposed approaches [58, 64]; neverthless, some of the ingredients of the realistic epidemic prop-
agation can be included in the BP scheme, such as non-Markovian evolution between states and
time-dependent infectiousness.

7.2 Bayesian inference in the SIR model
This section provides a general description of the Bayesian approach used to perform infer-

ence within the SIR model. Let us consider a graph G = (V,E) representing the time-evolving
contact network for a set of V individuals. Each node is associated to a time-dependent variable
representing its state at each time t and denoted with xti, taking values on a finite set of epidemic
states: in the SIR model, xti ∈ X = {S, I,R}, where the three states refer respectively to Suscepti-
ble (S), Infected (I) and Recovered/Removed (R). In general, if the dynamics is non-Markovian,
the quantity xti will depend on individual i’s state at all previous times, as well as on the states
of all the individuals j that have been in contact with node i in the interval [0, t]. For simplicity,
we here suppose that the dynamics is discretized on a sequence of finite time-steps t ∈ {0, . . . T}
(it is convenient to think to t as a number of days).
The SIR dynamics is fully specified by two sets of parameters: the individuals’ recovery rate
µi, defining the daily probability that the (infected) node i will recover, and the transmission
rates {λk→i}, that represent the probability that i will be infected by another node k at time t.
In general, µi and λi→j might depend on the absolute time t of the dynamics and on the time
elapsed since node i’s infection: the latter dependency can be used to describe a time-dependent
infectiousness (for instance, the initial incubation period of the virus in the organism), as well as
clinical interventions (recovery, treatments, appearance of symptoms and so on, that influence the
time-dependency of the recovery rate). We denote with ti = min {t : xti = I} the infection time of
node i. Depending on the individual’s current state xti, between t and t+ 1 the following events
can take place:

• if node i is susceptible (xti = S), it can be infected by another individual j it has been in
contact with with probability λj→i (tj); if this happens, then xt+1

i = I;

• if node i is infected, it can recover with a probability µi (ti); if this happens, then xt+1
i = R;

If none of these events happen then node i remains in its state, namely xt+1
i = xi: in particular,

recovered individuals will always remain in this state. The above expressions define the transition
rules for the SIR model, whose dynamics is schematized in Figure 7.1. In the following, we
denote with xi =

(︁
x0
i , . . . , x

T
i

)︁
(resp. xt = (xt1, . . . , xtN )) the overall trajectory of node i (resp
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Susceptible (S) Infected (I) Removed (R)

Figure 7.1: Dynamics of SIR model

the state of all nodes at time t). The above rules allow to compute the transition probability
p
(︁
xt+1
i | x0, . . . ,xt

)︁
for node i occurring between time t and time t+ 1:

p
(︁
xt+1
i = S | x0, . . . ,xt

)︁
= I

[︁
xti = S

]︁∏︂
k /=i

(︁
1− λk→i (tk) I

[︁
xtk = I

]︁)︁
(7.1a)

p
(︁
xt+1
i = I | x0, . . . ,xt

)︁
= [1− µi (ti)] I

[︁
xti = I

]︁
+ I
[︁
xti = S

]︁⎧⎨⎩1−
∏︂
k /=i

(︁
1− λk→i (tk) I

[︁
xtk = I

]︁)︁⎫⎬⎭
(7.1b)

p
(︁
xt+1
i = R | x0, . . . ,xt

)︁
= µi (ti) I

[︁
xti = I

]︁
+ I
[︁
xti = R

]︁
(7.1c)

where for simplicity we neglected the dependency on the absolute time t. In the above expressions,
λk→i (t) = 0 if k and i are not in contact at time t, and I [·] denotes the indicator function of
the condition given by its argument. In the simpler setup where µi and λi→j do not depend on
the time since infection, the above dynamics becomes Markovian, so that p

(︁
xt+1
i | x0, . . . ,xt

)︁
=

p
(︁
xt+1
i | xt

)︁
.

Let us denote with X = {xti}
t=0,...,T
i=1,...,N the collective time-trajectory of the epidemy, describing the

status of each individual i at each time t ∈ [0, T ]. For simplicity, we assume that the initial
condition probability p

(︁
x0)︁ is factorized over single nodes, namely p

(︁
x0)︁ =

∏︁
i p
(︁
x0
i

)︁
; the prior

probability associated with a trajectory X is given by:

p (X) =
∏︂
i

p
(︁
x0
i

)︁ T−1∏︂
t=0

p
(︁
xt+1 | x0, . . . ,xt

)︁
, (7.2)

The Bayesian approach allows to easily include the effect of observations, providing some infor-
mation about the an individual’s state at a given time (for instance, given the results of test or
the appearence of symptoms). We denote with O = {Or} the set of observations; assuming that
these are statistically independent, the posterior probability of the trajectory X can be expressed
using Bayes theorem as:

p (X | O) = 1
p (O)p (X) p (O | X)

= 1
p (O)p (X)

∏︂
r

p (Or | X) (7.3)

where one identifies the p (O | X) =
∏︁
r p (Or | X) as the likelihood function. In order to estimate

each individual’s risk to be infected, we need to compute marginal distributions of the posterior:

p
(︁
xti | O

)︁
=

∑︂
t′,j

(j,t′)/=(i,t)

∑︂
xt′

j

p (X | O) (7.4)

and the risk estimate is simply p (xti = I | O). For a comparison, the patient zero problem, i.e.
the detection of the individuals who were infected at time 0 and generated the epidemic cascade,
is mathematically translated into the computation of p

(︁
x0
i = I | O

)︁
.

As extensively discussed in the whole thesis, the evaluation of (7.4) is computationally unfeasible
when the number of variables is large, and one has to rely on suitable approximations. In the next
section, the Belief Propagation approach to inference processes within the SIR model is presented.
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7.3 Belief Propagation Approach to SIR
The Belief Propagation (BP) approach to epidemic spreading models has been developed

in our group and extensively applied to several inference problems [2–5], e.g. the patient zero
problem with noisy/partial observations and the reconstruction of causality chains of disease
transmission. In this work, we adopted the more general continous-time approach developed in
[19]. One of the advantage of the BP approach is that it can deal with non-Markovian processes,
which is fundamental to capture some of the features of the SARS-CoV-2 spreading (as discussed
in the next section). Moreover, the continous-time version can be used whenever interactions
are registered without a prescribed time-frame, as it happens on realistic scenarios. The BP
approach is based on the assumption that an irreversibile epidemic dynamics can be represented
in terms of a static graphical model, defined by a finite number of transition times. In the SIR
model, each individual’s trajectory is uniquely determined by two quantities: the infection time
ti = min {t : xti = I} and the recover time ri = min {t : xti = R}. Indeed, given the full set of
infection and recovery times, respectively denoted with t = {ti}i∈V and r = {ri}i∈V , one can
reconstruct the state of all the nodes at any time t:

p
(︁
xt | t, r

)︁
=
∏︂
i

ξi
(︁
xti, ti, ri

)︁
(7.5)

where
ξi
(︁
xti, ti, ri

)︁
= I

[︁
xti = S, t < ti

]︁
+ I
[︁
xti = I, ti ≤ t < ri

]︁
+ I
[︁
xti = R, t ≥ ri

]︁
(7.6)

The BP approach can be defined on a time-evolving contact network without a prescribed time
window. Each pair of individuals i, j is assumed to interact in a finite set of real times, denoted
with Tij ⊂ R∞ = R ∪ {+∞}; we assume that ∞ ∈ Tij for reasons that will become clear in the
following. Suppose now that, among these contacts, one of these will give rise to an instantaneous
contagion, at a time sij ∈ Tij , that occurs if i is infected and j is susceptible (on the other hand,
j might infect i at a time sji ∈ Tji ≡ Tij). The infection probability is denoted λ

sij

i→j (ti): in
general it can depend on the absolute time sij on the event, and on the infection time ti of the
infector individual i (from now on, we use the short notation λi→j = λij , the directionality of
the contact being understood). Individual i can thus become infected in one instant ti in the set
ti ∈ Ti = ∪j∈∂iTji. In particular, when ti = ∞ means that the individual never gets infected
within the dynamics’ time-frame. The recovery time ri ∈ R∞ is assumed to be drawn from a
continuous distribution: since recovery can happen only if node i gets infected, i.e. for t > ti,
it is useful to define the recovery delay ri − ti as the time interval occurring between infection
and recovery. We denote with Ri (ri − ti) the recovery delay’s distribution. At given infection
and recovery times (resp. ti and ri), the (conditional) probability distribution of the transmission
times sij , denoted with Sij (sij | ti, ri) is given by:

Sij (sij | ti, ri) = I [ti < sij < ri]λsij

ij (ti)
∏︂

ti<s<sij

[︁
1− λsij (ti)

]︁
+ I [sij =∞]

∏︂
s≥ri

[︁
1− λsij (ti)

]︁
(7.7)

Indeed, i will be infectious in the open time interval (ti, ri) and can transmit the disease to j only
for sij ∈ [ti, ri], if the transmission has never occured before. In this representation, transmission
occur independently on node j’s state, while infenfection takes place only if j susceptible at time
sij . The second term in (7.7) is justified by noticing that, if node i recovers at time ri before
a transmission occurs, it will never transmit the disease through that link; as a consequence,
the transmission delay on that link will be nominally sij = ∞. The standard markovian (i.e
memory-less) dynamics of the SIR model is recovered by setting a time-independent infection
probability, i.e. λ

sij

ij (ti) ≡ λij and an exponential distribution for the recovery delay, namely
Ri (ri − ti) = µie

−µi(ri−ti), where µi is the (constant) recovery rate of node i.
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7.3.1 Modelling auto-infections
The approach presented so far represents a closed systems in which infections can occur only

through an existing contact between two nodes, one of them being infected. In order to take
into account the presence of an initial number of infected seeds, it is necessary to introduce a
probability that individuals can infect spontaneously, i.e. without having a contact with other
infected people. Moreover, it will be useful to model the scenario in which a full knowledge of
the contact network cannot be possible, as it happens in realistic situations. A simple solution
is to add a series of contacts with a virtual node who is always infected. In particular, for
each node i and for each time t ∈ Ti\ {∞}, we will add a series of contacts with this always-
infected neighbour ĩt at all times t ∈ Ti\ {∞}, so that with probability pt

(︁
sĩt,i = t

)︁
= γti (resp.

pt
(︁
sĩt,i =∞

)︁
= 1− γti ), node i will spontaneously self-infect at time t with probability γti (resp.

it never gets self-infected at t), provided that it is susceptible at that time. Let us define the
quantity Ai (si∗) = Ai

(︂
{sĩti}t∈Ti

)︂
=
∏︁
t∈Ti\{∞} pt (sĩti), that describes the overall self-infection

probability for node i. For convenience, we also define with ∂∗i the enlarged neighborhood of i
including all virtual nodes

{︁
ĩt
}︁
t∈Ti

. The infection time ti can thus be expressed deterministically
through the following condition:

ti = min
k∈∂∗i

ski, (7.8)

The joint probability distribution of the SIR dynamics can now be rewritten in terms of the
infection times t = {ti}, the recovery times r = {ri} for all nodes, and the transmission times
s = {sij}i,j=1...N :

p (t, r, s) ∝
∏︂
i

δ
(︁
ti, min

k∈∂∗i
ski
)︁
Ai (si∗)Ri (ri − ti)

∏︂
(ij)

Sij (sij |ti, ri) (7.9)

In the above expression, the set of delta functions enforce the constraints (7.8) and the product
over (ij) runs over all the contacts for each pair of nodes (including also the extra-neighbour
interactions).

7.3.2 Factor graph representation
Combining all the previous terms together and adding the observations, the posterior proba-

bility distribution of an epidemic trajectory given the set of observations can be written as:

p (t, r, s | O) ∝
∏︂
i

δ
(︁
ti, min

k∈∂∗i
ski
)︁
Ai (si∗)Ri (ri − ti) pO,i (Oi | ti, ri)

∏︂
(ij)

Sij (sij | ti, ri)(7.10)

where
∏︁
i pO,i (Oi | ti, ri) is the likelihood function. Observations can carry out structured infor-

mation on individual i’s state, for instance about its current infectivity and viral charge, as well
as its symptoms. However, we will restrict to the simplest case where only the “SIR” state of node
i can be detected: therefore, an individual can be observed in one of the three states S, I, R at
any time. In the absence of noise, observations simply put bounds on the infection and recovery
times (for instance, if node i is observed S at time t, its infection time ti must be greater than t).
On the other hand, in the case of noisy observations these constraints are relaxed, depending on
the false/positive negative rates associated to test accuracies.
The factor graph of (7.10) is composed by a set of factors ψi, each one depending on variables
ti, ri, {sij}j∈∂i , {sji}j∈∂∗i. However, such representation contains many short loops, as shown by
the central panel of Fig 7.2: for instance, pairs (ti, sji) , (ti, sij) , (tj , sij) , (tj , sji) share respec-
tively factors with indices i, (ij) , j, (ji) , effectively forming a small cycle. The presence of short
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loops would make BP approach not exact even if the contact network is a tree. However, a simple
solution can be constructed by grouping together variables sij and sji, and consider them as
a single variable (sij , sji): in the resulting factor graph, each variable (sij , sji) has degree two
and lives in the middle of the original edges, while ti, ri have degree 1. In this way, the resulting
topology (shown in Figure 7.2, right panel) closely reflects the one of the original contact network.
With this parametrization, the posterior probability can be written as:

p (t, r, s | O) = 1
Z

∏︂
i

ψi
(︁
ti, ri, {ski, sik}k∈∂∗i , Oi

)︁
(7.11)

where

ψi
(︁
ti, ri, {ski, sik}k∈∂∗i , Oi

)︁
= δ
(︁
ti, min

k∈∂∗i
ski
)︁
Ai (si∗)Ri (ri − ti) pO,i (Oi|ti, ri)

∏︂
k∈∂i

Sik (sik|ti, ri)

(7.12)
Each factor ψi depends on the infection and recovery times of node i, on the set of observa-
tions on it, and on all the transmission times (both inwards and {ski}k∈∂∗i outwards {sik}k∈∂i.
The message-passing equations are then defined over variables (sij , sji), while the equations for
ti, ri can be computed straighforwardly by using (7.8) and the distribution of recovery delays
Ri (ri − ti). The derivation of the message-passing equations follows directly as described in Sec-
tion 2.2, and their explicit form (with further details about the computational complexity) is
discussed in Appendix E.
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Figure 7.2: Factor graph representation of the BP posterior. (a) Simple graph with two nodes:
the edge includes all the contacts between i and j at all times. (b) Naive interpretation of the
posterior with short loops. (c) Adjusted factor graph with variables (sij , sji) paired together, so
that the topology reflects the one of the starting graph.

7.4 Agent Based Model for SARS-COV-2 dynamics
This section provides a detailed description of the propagation model we used to simulate a

realistic spreading of SARS-COV-2 [49, 114]. The Agent Based Model (referred in the following
as ABM) was among the first ones published at the beginning of the european outbreak and it was
designed to quantify and predict the epidemic evolution on an age-stratified population; moreover,
it allows to evaluate the effect of different containment measures, from global lockdowns to local
isolations for symptomatic individuals, as well as standard contact tracing procedures. The ABM
is defined by a more complex infection dynamics w.r.t. the standard SIR model just discussed,
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in order to better take into account for the presence of different infective individuals, namely
the presence of asymptomatic and symptomatic individuals with symptoms of different strenghts,
and it also includes non-trivial distribution of infectiousness and transmission times. The ABM
will be used to simulate a more realistic epidemic spreading onto which the Bayesian inference
prodecure discussed before will be exploited to estimate the individual’s risk to be infected.
The ABM is defined on a fixed population of N individuals, categorized into 9 age-groups by
decade, from (0− 9) to (80 + years); in the following, we will denote with ai ∈ {1, . . . ,9} the
age group of node i. Individual are divided into houses of different sizes, which is necessary to
model one of the three types of interaction domains considered within the model. The distribution
of individuals in the different age group is sampled in such a way to match UK demographics
data (additional information can be found in Table 1 of [114]). Age stratification influences the
households’ composition (for instance, elderly people are more likely to live with other elderly,
while children will preferably live with young adults), the social activity level of individuals, as
well as the viral transmission capacity.

7.4.1 Contact Network
The contact network is constructed as the superposition of three graphs, each one describing

a different interaction domain:

1. Household network: each individual interacts with all the others in the same household, so
that the contact network in each household is fully connected (for each day). The size of each
household runs from 1 (individuals living on their own) to 6. Once again, the distribution
of individuals in houses of different sizes is sampled so to match UK demographics data.

2. Workplace network: each individual is a member to one workplace, that models the in-
teraction inside schools (for children), offices and similar workplaces for adults and recurrent
social activities for elderly people. The interactions within each workplace are generated
by using the Watts-Strogatz small-world network model [137]. Each workplace network
is static, and individuals are assigned to a specific workplace at the beginning: however,
daily interactions are down-sampled, so that an individual interacts with a random fraction
(typically half) of its workplace connections on each day.

3. Random network: this network models spurious interactions that occur once in a while
independently for each day. The number of random contacts for each individual is the same
each day and it is drawn from a negative-binomial distribution. In this way, since this
distribution is over-disperse, the ABM takes into account the presence of super-spreaders in
the network.

Additional details about the parameters used to sample the workplace and random network can
be found in Table 3-4 of [114]. Mean values of the number of daily interactions are fitted according
to recent studies of social interactions [121]. To give an order of magnitude, the mean value of the
daily interactions for an individual with age ai - obtained by summing the workplace and random
contacts - runs from 6 for elderly individuals to 12 young and adult people (without counting
household contacts).

7.4.2 Dynamics
The ABM dynamics is modelled as a discrete-time stochastic process with a temporal resolu-

tion of 1 day and it is schematized in Fig 7.3. At each day, individuals belong to one of the 11
comparmental states. Individuals typically are initialized as suscetible (S) at time (day) 0 (except
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a small number of infective seeds, otherwise there would be no epidemic spreading). Upon infec-
tion, an individual i enters into an irreversible cascade of different infection routes, depending on
its age ai, ending in one of two absorbing states: removed (R) or dead (D). In particular, sup-
pose that at a certain time t individual i get infected (details about the infection probability will
be discussed in the next paragraph), there are three possible infective pathways: it can become
asymptomatic (A), mild-symptomatic (SM) or severe symptomatic (SS), respectively with age-
dependent probabilities ϕA (ai) , ϕSS (ai), ϕSM (ai) 1. These probabilities take into account that
the disease is more likely to affect elderly individuals with severe symptoms, with respect to young
people. The asymptomatic route is the simplest: once infected, these individuals can eventually
recover after a time τA→R drawn from a Gamma distribution with a mean of 15 days. On the
other hand, symptomatic people first enter into a pre-symptomatic state, denoted with pSS and
pSM for severe (resp. mild) individuals, used to describe the starting incubation period of the
virus; neverthless, they are already potentially infective at this stage. In both cases, symptoms
appear after a random characteristic time τsym drawn from a Gamma distribution with a mean of
6 days (equal for mild and severe symptomatics). Mild symptomatic individuals can then recover
after τSM→R days. The infection dynamics for severe symptomatics individuals is more complex:
a fraction of these might get hospitalized (H) with a (age-dependent) probability ϕH (ai) after a
random number of days τH drawn from a shifted Bernoulli distribution (in particular, τH ∈ {5,6}
days with equal probability). The remaining fraction 1 − ϕH (ai) recovers after τSS→R days.
Hospitalized individuals can either recover (after τH→R days), die (after τcrit days) or get to a
more critical state where intensive care unit (ICU) is needed (again, after τcrit days): these tran-
sitions occur respectively with age-dependent probabilities 1−ϕcrit (ai),ϕcrit (ai) (1− ϕICU (ai)),
ϕcrit (ai)ϕICU (ai). Hospitalized individuals can eventually die (with probability ϕD (ai) after τD
days) or recover. Recovery from ICU is modelled in two steps, in order to quantify the occupation
time of a ICU seat in a realistic scenario. In particular, ICU individuals who recover enter first
into a survival state (denoted with HR, i.e hospitalized recovering) with probability 1 − ϕD (ai)
after τsurv days, and then recover definitely after τHR→R days.
The compartmental states describing individuals in hospitals (or ICU) are unrelevant from the
point of view of the infection dynamics, and they are introduced to quantify the amount of hospi-
tal/ICU seats needed by the National Healthcare System as the epidemy grows. We remark that,
with the exception of the waiting time for severe individuals to go to the hospital (τH), all the
transition times are sampled for each individual from different Gamma distributions with fixed
mean and variances. All these parameters (and the age-dependent probabilities ϕ∗ (ai)) can be
found in Table 7 of [114] and they have been fitted from epidemiologic/medical analysis carried
out on the first outbreak in the province of Hubei (China).

Infection probability

The infection spreads from infected individuals through their interactions with other suscep-
tible nodes. Contacts are assumed to be instantaneous and the viral transmission capacity of an
individual starts at the moment it has been infected, denoted with ti. The infectivity rate has
an explicit time dependency, used to model reflect the time-dependent transmission capacity of
SARS-COV-2 and its starting incubation period [77]. In addition, the overall infection probabil-
ity is modelled by taking into account the status of the infector node i, si ∈ {A,SM,SS}, the
susceptibility of the potential infected node j (that depends in turn on its age aj) and the contact
network in which the contact occurs. The daily probability of infection λi→j is computed in the

1for each age group a these probabilities are normalized, namely ϕA (a) + ϕSS (a) + ϕSM (a) = 1
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Figure 7.3: Infection dynamics of the ABM model. All the transition probabilities ϕ∗ are functions
on the individuals’s age ai, but their dependecy has been dropped to avoid cluttering the notation.
The color of each compartment describes how it is considered within the SIR parametrization used
for the inference, according to Figure 7.1.

ABM as follows:

λij (t− ti) = Θ (t− ti) {1− exp [−Λ0 (ai, aj ,Gij , Ii) Λ (t− ti)]} (7.13)

where

Λ (ti) =
∫︂ ti

ti−1
fΓ (z | µI , σI) dz (7.14)

The time dependent part Λ (t) given by (7.14) can be considered as an integrated continuous
infection rate over a 1-day window, where fΓ is a Gamma function with fixed mean and standard
deviation. The behaviour over time of Λ (t) is shown in the right plot of Figure (7.4): the
infectiousness start at 0 at the time some individual is infected, then it reaches a maximum value
and it starts decreasing afterwards. Notice also that the maximum value of Λ (t) is reached, on
average, after the same number of days at which symptomatic individuals start to show symptoms
(the random variable is denoted with τsym in the previous section and it is drawn from a Gamma
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distribution with the same parameters as fΓ). On the other hand, the prefactor Λ0 mainly depends
on the age of the two individuals i and j and the status of the infector node (i), and it is used to
model the susceptibility of the potential attacked node j as a function of its age, as well as the
attack rate of the infector node: for instance, elderly individuals are more susceptible to infection,
and symptomatic individuals typically have a larger transmission capacity w.r.t. asymptomatics.
The explicit formula is not shown here for simplicity and we refer to [114] for further details. The
left plot of Figure (7.4) shows the histogram of a tipycal realization of infective scales Λ0 on a
population of N = 104 individuals, simulated with the ABM. It is important to remark that such
individual’s based information cannot be accessed by standard contact tracing implementations,
mainly for privacy issues. The only information we keep track of is the prefactor depending
on the contact network over which the contact is realized, denoted with Gij : in particular, this
multiplicative term it is equal to 1 if the nodes i and j have a contact in the workplace or in
the random network, and 2 for contacts in the same house. In this way, even if the contacts
are considered istantaneous it is implicitly assumed that household interactions have a longer
duration and the corresponding infection probability is larger (doubled).
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Figure 7.4: Left: normalized histogram for the distribution of Λ0values for a tipycal realization of
the ABM in a population of N = 104 individuals. Right: plot of the time-dependent part of the
infection rate Λ (t), modelled as a (integrate) gamma function with µI = 6 days, σI = 2.5 days.

7.5 Wrapping the ABM onto a SIR model
The ABM dynamics discussed in the previous section is remarkably more complex than the

usual compartmental models used in statistical physics, with a total of 11 states vs the 3 states of
SIR model. However, the purpose of this work is to show that even a simpler description of the
dynamics within the inference procedure is still able to detect the individuals with the highest
risk to be infected, even on top of a complex dynamics that tries to mimic a realistic epidemic
spreading. In this section, we discuss how to map the ABM dynamics onto the SIR procedure used
for the inference within BP; the MF case is discussed in Appendix D. The color map in Figure
7.3 describes the mapping: the 5 infective states of the ABM (A,pSM ,pSS,SM ,SS) are naturally
considered as infected (I) in the SIR model. On the other hand, all the states from Hospitalized to
the absorbing ones (H,ICU ,HR,D,R) are considered as Removed (R): the underlying hypothesis
is that individuals do not have contacts from the time they get hospitalized, which is - or at least,
it should be - a reasonable assumption in a real-case scenario and thefore, from the point of view
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of the SIR, they can be considered as removed2.

Infection probability

As previously discussed, in the ABM the infection probability has a complex structure that
depends both on the information about the two individuals in contact, and on the time elapsed
since node’s i infection. The information about the two nodes cannot be in general accessed by
standard contact tracing information because of privacy issues (for instance, we cannot know the
age of the two nodes i and j). The only two ingredients we use to define the scale factor of the
infection probability is the multiplier Gij of the contact network: we recall that Gij is equal to 2
for intra-house contacts and 1 otherwise. Moreover, the BP scheme allows to take into account
the time-dependency of the infectivity, which we assume to be known from the literature about
SARS-CoV-2. Combining all these effects, the daily infection probability λBPij is given by:

λBPij (t− ti) = ΛBP0 × fΓ (t− ti | µI , σI) ; ΛBP0 = 0.25× Gij (7.15)

where ti is the infection time of node i, as estimated by BP. The numerical prefactor in ΛBP0 is
obtained by averaging the scale factors of a typical realizations of the ABM on a population of
N = 104 nodes. The parameters of the Gamma function fΓ are the same of (7.14).

Recovery time

In the standard SIR model, a constant recovery probability/rate is typically assumed, thus
resulting into a memory-less exponential (or geometric on discrete time) distribution for the
recovery time. However, some of the information about COVID-19 transmission can be exploited
to design a more refined recovery time to be used for the BP inference. Let us denote with
τBPr the averaged recovery time used in BP. From the ABM we can carry out a coarse-grained
estimation for the recovery distribution, by tracing over the different infective routes. In the
ABM there are 4 different infection pathways an individual can enter, as shown by Figure 7.3:
the asymptomatic and mild-symptomatic paths, and the severe symptomatic path, the latter
ending in either a Recovered or Hospitalized state (further transitions are neglected as previously
discussed). For each path, we compute the expected recovery time distribution: then, an averaged
rate is computed by weighting each path by the probability that an individual with age ai will
undergo through that specific path. The resulting probability distribution for τBPr is given by:

p
(︁
τBPr

)︁
=
⟨︁
ϕAp

(︁
τAr
)︁

+ ϕSMp
(︁
τSMr

)︁
+

+ϕSS (1− ϕH) p
(︁
τSSr

)︁
+ ϕSSϕHp

(︁
τSSH

)︁⟩︁
p(a) (7.16)

where

τAr = τA→R (7.17a)
τSMr = τsym + τSM→R (7.17b)
τSSr = τsym + τSS→R (7.17c)
τSSh = τsym + τSS→H (7.17d)

and the + symbol is intended as a sum of 2 random variables, whose p.d.f. is given by the
convolution of the two addends’ densities. Furthermore, since we want to define a single recovery

2In principle, the ABM takes into account the possibility to include interactions among hospitalized indi-
viduals. In that case, in the H state transmissions can still occur and it has to be treated as infective within
the SIR parametrization.
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time independently on the individual’s age, a further average on the age groups distribution
p (a) is performed. The empirical distribution of τBPr (7.16) is then fitted by a Gamma p.d.f.:
indeed, since all the transition times are gamma-distributed (except for τSS→H) it is reasonably
to assume that the averaged recovery time is well described by a Gamma distribution. Therefore,
τBPr ∼ Gamma

(︁
µBPr , σBPr

)︁
with µBPr

∼= 18 days and σBPr
∼= 5.6 days as a result of the fitting.

Finite window approximation

The number of exchanged messages between two individuals grow quadratically with the num-
ber of temporal contacts occurred between them. However, it is reasonably to assume that only
recent contacts are important to determine marginal probabilities at current time: in this per-
spective, we choose to discard past information and keep a short time window (∆t ∼ 2,3 weeks),
in order to obtain quasi-optimal results with a fixed computational cost. Therefore, at each time
step t we apply the BP inference on the time interval t′ ∈ [t−∆t, t]. The information about
contacts and observations at the previous dropped times is included approximately as simple fac-
torized priors applied at the start of the window t −∆t: for each node, the corresponding prior
contains the posterior probability at the first non-dropped time computed only using contacts and
observations at the dropped time (and the prior computed in the previous step). All simulations
have been performed using a ∆t = 21 days time window.
The self-infection probability is chosen as γ0 = 1/N at time t = 0 (k/N where k is the number
of patient zeros would bring slightly better results, but would use inaccessible information) and 0
for t > 0, except for the cases with partial adoption (discussed in Sec. 7.7.3).

7.6 Ranking Strategies and intervention protocol
In this section, we describe the implementation used to run the online mitigation strategy. The

ABM dynamics is initialized by choosing a small number of infected individuals n0 > 1, also called
patient zeros or infective seeds. This setting describes either an early-stage epidemic spreading or
a post-lockdown scenario with several small outbreaks. As time advances, we assume that all the
individuals that develop severe symptoms will immediately be tested and quarantined at the time
symptoms appear. A node i is quarantined at time tqi meaning that it will only have contacts inside
its households for t ∈ [tqi , T ] where T is the simulation window (in practice, since the dynamics is
irreversible, it is sufficient to keep a node quarantined until recovery or hospitalization occurs).
The same protocol is used for a fraction ρSM of mild symptomatic individuals, that are assumed
to self-report symptoms and get tested. For both mild and severe symptomatics, tqi ≡ tsymi

where tsymi is the time at which node i shows symptoms: however, in the time window [ti, tsymi ]
where ti is the infection time, they are still are free to move and spread the disease, and their
detection can be made only by contact tracing. On the other hand, asymptomatic individuals can
be identified only by using the contact tracing based inference. The simulation is run with these
settings in the window [0, tstart] , after which the inference-guided intervention protocol starts.
Every day, we run the inference algorithm (either BP or MF) to estimate each individual’s risk to
be infected: then, we perform a fixed amount nobs of tests to the individuals with the highest risk.
In this framework we ideally suppose that the test’s result is immediately available. Individuals
whose test turns out to be positive are immediately quarantined. In addition to BP and MF, we
implement two other strategies, a random procotol and another one based on standard contact
tracing implementations. We show below the details of each strategy:

• Random Guessing (RG): for each time step t, we randomly select nobs individuals to be
tested, among those who have not been previously tested positive;
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• Contact Tracing (CT): for each time step t, individuals who have not been tested posi-
tive previously according are ranked according to the number of contacts with confirmed
positive individuals during the time interval [t− τCT , t]; then the nobs individuals with the
largest number of contacts are tested. This procedure reflects standard contact tracing
implementations available so far [65]. In all the simulations, τCT = 5 days.

• Mean-Field (MF): we run the MF update equations (discussed in Appendix D) at each day
in order to estimate the marginal probability qti = p (xti = I) for node i to be infected at
time t. Individuals who have not previosly been tested positive are ranked according to
their risk qti , so that the top nobs individuals are tested. The test results are then included
in the observations used to adjust the probabilities of risk on the next time step. In all
the simulations we used constant values for the two algorithmic parameters: δMF = 5 days
and τMF = 10 days. Notice that δMF ≈ τsym where the latter is the typical time at which
symptoms appear in the ABM.

• Belief Propagation (BP): we run the message passing equations described in appendix E in
order to estimate the marginal probabilities qti = p (xti = I) for node i to be infected at time
t. Individuals who have not previosly been tested positive are ranked according to their risk
qti , so that the top nobs individuals are tested. For BP, the rank is computed by summing the
probability of infection in the last δBP days. In this way, we assume that the most recent
infections are more dominant than older ones. The test results are then included in the
observations used to adjust the probabilities of risk on the next time step. The equations
are run for a fixed number of iteration nit each day. In all the trials, nit = 40, δBP = 10
days.

The expected behaviour is that, the better the ranking strategy used, the more effective the
mitigation will be. In this perspective, the random guessing strategy is understood as a worst-case
scenario, as the ranking is performed by random shuffling the list of individuals. The intervention
quality will be measured by considering the number of infected individuals over time. Algorithm
7.1 describes the pseudocode implementation used to run all the simulations presented in the next
section. It is important to remark that all quarantined individuals keep having contacts with their
households: as a stronger intervention protocol, we can choose to quarantine the whole household
once one of its cohabitants is tested positive (this option is shown in Algorithm 7.1 as “HH”, and
its effect will be discussed in Sec. 7.7.1). The main drawback of the method presented so far is
that the test result is immediately available (or at least, in the same day). This is not a truly
realistic option, especially for PCR tests, or when a large number of tests are performed on a
daily basis, with a consequent slow-down of the analysis procedure. However, we can reasonably
assume that individuals who are tested choose to self-isolate until the outcome is available, so
that the dynamics is not severly affected by the waiting time of the test results.

7.7 Results
In this section, we quantify the effect of the different intervention protocols (RG, CT, MF,

BP) on the ABM dynamics. All the simulations are made on a population of N = 500.000
individuals and a time window of T = 100 days. We consider two realistic scenarios in which
the dynamics is initialized with a small number of infected patient zeros n0 and the contact-
tracing based interventions starts after some time tstart (expressed in days). In the scenario
A, n0 = 50, tstart = 10, while in the scenario B, n0 = 20, tstart = 7. All the results shown
in the following are obtained by implementing the quarantination protocol discussed before: for
t > tstart one the 4 ranking strategies (RG, CT, MF, BP) are used to identify the individuals with
the highest probability to be infected at each time step t, by performing nobs daily tests on the
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Algorithm 7.1 Intervention strategy on the ABM dynamics.
Input: n0 (number of patient-zero), T (verall simulation window), nobs (number of daily obser-
vations), ranking strategy
while t < T

evolve the ABM dynamics for 1 time-step (day)
select all (new) SS individuals → quarantine (+HH)
choose a fraction ρSM of the (new) SM individuals → quarantine (+HH)

if t > tstart
run the ranking procedure to estimate the infection risk of each node
rank individuals according to their risk, select the top nobs of them
test: if test positive → quarantine (+HH)

highest risk nodes. On top of that, all the severe symptomatic and a fraction ρSM = 0.5 of mild-
symptomatics individuals are immediately tested and quarantined at the day symptoms appear,
starting from t = 0. Notice that, while the number of medical tests performed on individuals
detected by the inference is fixed for each day, there is no limitation on those performed to the
fraction of symptomatic people. Simulations are run for a number ni of different instances by
varying the random seed used to inizialize the ABM dynamics; in this way, at fixed seed and for
t ≤ tstart the evolution is independent on the ranking strategy applied. For the time being, we
assume that the results of the test is noise-less and the full knowledge of the contact network is
available: the latter conditions mimic an ideal scenario in which all individuals in a population
use the contact-tracing app and the results of the test is 100% reliable. The first results are shown
in Figure 7.5-7.6 respectively for the scenario A and B, for different values of the number of daily
observations (in particular, nAobs ∈ {625,1250,2500,5000} and nBobs ∈ {250,500,1000}.
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Figure 7.5: Effect of the mitigation strategies on the ABM dynamics on scenario A: n0 = 50 and
tstart = 10 (represented by the vertical dotted line). Each panel shows the number of infected
individuals w.r.t. time, for different values (increasing from left to right) of daily obervations
nobs ∈ {625,1250,2500,5000}. In each plot, the thin lines show 3 different instances obtained by
varying the random seed of the ABM dynamics (thin lines), while the thick lines represent their
average.

Results show that, in both scenarios, the intervention protocol guided by MF/BP inference
is able to contain the epidemic spreading with a significant reduction of the overall number of
infected individuals; on the other hand, Contact Tracing’s main effect is to delay the infection peak
with respect to the random guessing protocol. In particular, BP always outperforms all the other
methods, being the only protocol to efficiently mitigate the epidemic spreading in a wide range of
parameters: for instance, in the scenario A for nobs = 1250 or B for nobs = 500. Scenario B is more
interesting because it represents a more feasible situation for a early-growing epidemic spreading,
in which the BP-based inference can be effective in mitigating the spreading with a reasonably
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Figure 7.6: Effect of the mitigation strategies on the ABM dynamics on scenario B: n0 = 20
and tstart = 7 (represented by the vertical dotted line).Each panel shows the number of infected
individuals w.r.t. time, for different values (increasing from left to right) of daily obervations
nobs ∈ {250,500,1000}. In each plot, the thin lines show 3 different instances obtained by varying
the random seed of the ABM dynamics (thin lines), while the thick lines represent their average.

low amount of tests (notice that in the scenario B the number of daily observations is roughly
1 order of magnitude lower than scenario A). For a comparison, we remark that the number of
tests daily performed in Italy during the second wave (October-November 2020) is approximately
2× 105 on a country-wide population of 6× 107 individuals, that gives a comparable fraction of
tests over population size compared to scenario B (i.e. 1/3 × 10−2 vs 10−3 when nBobs = 500).
We can conclude by saying that BP needs the least amount of daily tests to effectively mitigate
the epidemic with respect to the other strategies; in this perspective, MF is generally better than
CT which in turns is still better than the worst-case scenario given by RG. Despite its simplicity,
the MF is able to mitigate the exponential growth when the number of observations is sufficiently
large (for instance, nobs = 2500,5000 in scenario A and nobs = 1000 on scenario B); however, even
in these regimes, a full suppression occurs about 20 days later than BP strategy.

7.7.1 Quarantining the households
We now discuss the effect of a stronger intervention protocol: as soon as an individual gets

tested positive (either if it was detected by the ranking algorithm or if symptoms appear), it
is immediately quarantined together with all its cohabitants, the latters without being tested.
Figure 7.7 shows the results of such procedure for the scenario A (top panel) and B (bottom
panel), for the same number of daily observations used before. In this setting, all the methods
perform quantitatively better than in the previous case: for instance, even Contact Tracing (CT)
is able to efficiently mitigate the spreading when the number of observation is sufficiently large
(as in the top panel of Figure 7.7 for nAobs = 2500,5000 or the bottom panel for nBobs = 1000).
For what concerns the scenario B, BP seems to be able to suppress the spreading even when
the minimum amount of test chosen (the lower-left panel of Figure 7.7 with nBobs = 250) on at
least 5 out of 6 instances (notice that, given the orders of magnitude of the number of infected,
the average is dominated by the only instance where the epidemy grows exponentially). We can
conclude that household contacts are one of the preferred pathways for the disease spreading in a
population, so that the intervention protocol in which all the cohabitants are quarantined at the
same time can be more efficient in a realistic-scenario.
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Figure 7.7: Effect of the mitigation strategies on the ABM dynamics when the whole household
is quarantined once one of its members is tested positive. The top row refers to the scenario A
of Figure 7.5 (n0 = 50, tstart = 10, nobs ∈ {625,1250,2500,5000}). The bottom row refers to the
scenario B of Figure 7.6 (n0 = 20, tstart = 7, nobs ∈ {250,500,1000}). Each plot shows the number
of infected individuals w.r.t. t. The thin lines represent a single instance, thick lines represent
their average.

7.7.2 Effect of noisy observations
In this section, we present a set of results in a more realistic scenario, in which the observations

are affected by some level of noise: indeed, test accuracy is not always 100% effective, and
consequently false positive or false negative results might be detected. We assume for simplicity
that the observation of a recovered individual is not affected by test inaccuracy, so that test noise
will modify the probability of being Suscebtile/Infected. .
A non-zero false positive rate will put a small additional fraction of individuals in isolation, but
it does not lead to deterioration of the epidemic control. For this reason, we only focus on the
influence of false negatives and check how the performance depends on their rate, denoted in the
following with νn: this represents a worse scenario as some individuals will continue to spread the
disease, despite having been tested. The likelihood of observing a Susceptible or Infected node is
modified as follows:

pO,i

[︂(︁
xti
)︁obs = S | xti

]︂
= I

[︁
xti = S

]︁
+ νnI

[︁
xti = I

]︁
(7.18)

pO,i

[︂(︁
xti
)︁obs = I | xti

]︂
= (1− νn) I

[︁
xti = I

]︁
(7.19)

In principle, observations might include additional information, for instance about the individual’s
viral charge or the level of symptoms, but this is the simplest setting. The BP approach allows
to easily included the effect of noisy observations, ad previously discussed; on the contrary, this
information is not included in the MF scheme, to keep it as simple as possible and test its
robustness. Figure 7.8 shows the results of the mitigation protocol for different values of FNR
(νn ∈ [0.09,0.4]), compatible with the observed accuracies of current clinical tests. Results are
shown for a fixed number of daily observations for scenarios A and B, keeping the households
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quarantination protocol. CT controls the spreading up to νn = 0.19 in scenario A, MF up
νn = 0.19 in both scenarios. BP is able to suppress the epidemy up to νn = 0.31, its performance
being remarkably robust in a wide range of FNR and almost unchanged w.r.t. the noiseless case.
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Figure 7.8: Effect of the mitigation strategies on the ABM dynamics in the presence of noisy
observations. The top panel shows the scenario A (n0 = 50, tstart = 10) with nobs = 2500.
The bottom panel refers to scenario B (n0 = 20, tstart = 7) with nobs = 1000. In both cases, the
household quarantine protocol is implemented. Each plot shows the number of infected individuals
w.r.t. t, for different values of the false negative rate νn ∈ {0.09,0.19,0.31,0.4}. The thin lines
represent a single instance, thick lines represent their average.

7.7.3 Effect of a partial app adoption
Finally, we test the robustness of the mitigation protocol when the contact network is not fully

available to the inference methods. Indeed, we reasonably expect that a significant portion of the
population will not use the contact tracing application, so that their contacts cannot be registered.
In the simulations, this is obtained by hiding the daily contacts of a fraction of individuals, so that
they are unknown to the inference algorithms. Let us denote with ρAF the fraction of individuals
who use the app and whose contacts are tracked. Since in this way it is potentially impossible to
reconstruct some infection cascades, in the BP scheme we introduce a small probability of self-
infections at times t > 0, in order to avoid a plain incompatibility between the inference model
and observations due to undetected transmissions. In all the simulations, we used γti = γ = 10−4.
Figure (7.9) shows a set of results of the intervention protocol for the two scenarios A and B,
obtained for different values of the adoption fraction ranging between 0.6 and 0.9. In both cases,
we adopted the households quarantine protocol and the maximum number of daily observations of
Figure 7.5-7.6 (resp. nAobs = 5000, nBobs = 1000). Although the performance is severely affected for
all the methods, one observes that even at AF ∈ [0.6,0.7] inference algorithms allows to delay the
spreading of the epidemic and to flatten the peak of infected individuals, way more efficiently than
the standard contact tracing strategy. Furthermore, it should be noted that app utilization may
be positively correlated to the number of contacts of individuals: for instance, elderly individuals
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who tipycally have less daily interactions are less likely to use the app. Including more detailed
information about mobile application utilization in an age-stratified population might reduce the
impact of low adoption.

0 25 50 75 100
t

100

101

102

103

104

105

# 
I

AF 0.6

RG
CT

MF
BP

0 25 50 75 100
t

AF 0.7

0 25 50 75 100
t

AF 0.8

0 25 50 75 100
t

AF 0.9

0 25 50 75 100
t

100

101

102

103

104

105

# 
I

AF 0.6

RG
CT

MF
BP

0 25 50 75 100
t

AF 0.7

0 25 50 75 100
t

AF 0.8

0 25 50 75 100
t

AF 0.9

Figure 7.9: Effect of the mitigation strategies on the ABM dynamics in the presence of a partial
app adoption. The top panel shows the scenario A (n0 = 50, tstart = 10) with nobs = 5000.
The bottom panel refers to scenario B (n0 = 20, tstart = 7) with nobs = 1000. In both cases,
the household quarantine protocol is implemented. Each plot shows the number of infected
individuals w.r.t. t, for different values of the adoption fraction ρAF ∈ {0.6,0.7,0.8,0.9}. The thin
lines represent a single instance, thick lines represent their average.

7.8 Discussion and outlook
In this Chapter we analyzed an inference-guided mitigation protocol for epidemic spreading

processes from contact tracing data. Probabilistic inference allows to concatenate the informa-
tion about contacts between individuals (registered through digital contact tracing applications)
by using a prior description of the epidemic, additionally constrained by observations related to
test results and/or symptoms appearance. The resulting posterior distribution is approximately
computed using Belief Propagation or a simpler MF heuristic, so that individuals are ranked ac-
cording to a certain probability of being infected at each day; quarantining the individuals with
the highest risk (depending on given test capabilities) can result into a full epidemic suppression
at its early stage, or eventually in a delay of the epidemic peak.
The results presented in the previous section show how these methods - in particular BP - allow
to contain the disease spreading more efficiently than standard contact tracing implementations,
in regimes where the epidemic is growing and the number of observations is relatively small com-
pared to the population size, so to be compatible with real test capacity of many countries.
Belief Propagation has the best performances, because i) the approximation is more accurate than
MF - and more suited on sparse topologies - in inferring the level of risk, and ii) the observations
are correctly included in the posterior distribution. The robustness of BP against high levels of
false negative rates (compatible with real tests capabilities) is one of the main advantages of such
a Bayesian-inference guided mitigation. Another advantage of BP is that it can deal with asyn-
cronous contact events, without a prescribed window, and with a non-markovian dynamics; the
feature is essential to capture some specific properties observed in the SARS-CoV-2 transmission.
On the other hand, Mean-Field heuristics still provides reasonably good risk prediction in several
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regimes (typically for larger number of daily observations) but it is less robust against test noise.
The BP method further allows in principle to learn or adjust online the parameters used for the
SIR inference (i.e. the infection probability and its time dependency and the recovery time),
through an approximate maximum likelihood procedure [5]: we leave this point for future inves-
tigations.
An overall advantage of dealing with inference techniques is that each individual is given a prob-
ability of being infected in time: in principle, the information about its absolute value can be
used to suggest individual-based actions, including reduction of contacts, self-isolation and test-
ing, where each suggested action can be implemented if the infection risk exceeds some specific
thresholds.
On a more computational standpoint, we remark that the volume of daily exchanged messages
per pair of individuals in the two proposed methods is constant with respect to both the pop-
ulation size and time: in particular, for the BP approach this is achieved by defining a fixed
time-window over which the inference step is carried out, as discussed in Section 7.5. A rough
estimation of this volume gives about 1kB for MF and 1MB for BP per individual on each day
(assuming ∼ 10 daily contacts): this volume is negligible when compared with normal data usage,
so that the computational load over the CPU’s phone would remain reasonably small . With
regard to privacy, it is worth emphasizing that the proposed inference methods are in principle
more protective than the manual tracing. On one hand, both can be implemented in a fully dis-
tributed way using point-to-point cryptography without fully centralized processing and storage
of information on infections or contacts. On the other hand, by identifying individuals who have
the largest probability of being infected through a cumulative process by which information is
integrated, the direct attribution of potential infection events to a given individual is made much
harder. Details of such fully privacy preserving implementation, along the lines of [132], are left
for future work.
One of the novelties introduced in this work is the mismatch between the model used to simu-
late the epidemic spreading of SARS-CoV-2 (the ABM [49]) and the one used for the inference.
Therefore, even if the true disease dynamics is not known our results suggest that the epidemic
spreading can be controlled in several regimes using a simpler parametrization of the dynamics,
in terms of a SIR model.
The main drawback of the present approach resides on the knowledge of contact network: indeed,
when a fraction of the population does not adopt the tracing application, none of their contacts
can be detected, the risk inference becomes less effective and so does the mitigation performances
(see Figure 7.9). Despite a delay of the epidemic peak can be observed even at smaller values of
the adoption fraction, currently deployed applications are still far from reaching a significant level
of adoption for these methods to be effective in containing the epidemic spreading.
Finally, we remark that despite the agent-based model used to simulate the epidemic spreading is
very detailed from the point of view of the infection dynamics, it exploits a synthetic-generated
contact network. This choice can be still considered reasonably realistic since the multi-layer
structure allows to distinguish between different interaction domains (households, workplace con-
tacts, and random events). Another potential drawback is that contact duration and distance
between individuals are not taken into account within the ABM, as interactions are considered
instantaneous: this assumption is consistent with an extremely simplified (and thus, more pri-
vacy preserving) contact tracing implementation, where the information acquired via Bluetooth
is binary in nature: namely, two individuals have been in contact or not. However, since contact
tracing protocols currently allow to register also the contact duration and, indirectly, the distance
between the two individuals (that depends on the Bluetooth signal strength [28]), such additional
information could in principle be exploited by the inference algorithms, e.g. in order to better
determine the transmission probability.
As an example, the infection model developed by Hinch et al. [114] simulates the mobility of an
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age-stratified population on a closed region (e.g. a city), where each individual can interact with
others in different aggregation points (e.g. schools, offices, supermarkets, other social places): the
mobility simulation is based on real geographic data that take into account the distribution of
both the population and aggregation points inside a city. For the above reasons, future investi-
gation is needed and will be carried out in order to validate such inference-guided intervention
strategies on different models that do take into account the duration of the contacts and exploit
more realistic contact networks, as well as on real data.
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Appendix A

Mixed tilted moments

In this appendix, we discuss a simple procedure to compute the “mixed” tilted moments needed
to compute the stationary points of the DC free energy in Section 3.4.2. The same reasoning can
be also applied to the EP free energy, as discussed in Section 2.4.2.

A.1 General approach
Suppose to have a multivariate probability distribution ofN variables, expressed as the product

of a Gaussian density - denoted here with ρ (x) - times a non-negative function fa, depending
only on a subset xa = {xk, k ∈ ∂a} of variables:

ζ(a) (x) = 1
Za
ρ (x) fa (xa) (A.1)

The above expression generalizes both the tilted distributions defined in Eq. (3.12) when fa = Ψa,

ρ = g\a and the Gaussian cavities (3.16) defined in (3.16) for ρ = q, fa = (ϕa)−1. We are interested
in computing the moments of an arbitrary variable xi not directely connected to factor node a:

⟨xαi ⟩ζ(a) α = 1,2; ∀i /∈ ∂a (A.2)

In the following, we assume to know the moments of ρ (x), given by

⟨x⟩ρ = ν (A.3)
⟨xxt⟩ρ = Σ + ννt (A.4)

as well as the first moments of all the neighbours of a w.r.t. ζ(a), namely
{︁
⟨xj⟩ζ(a)

}︁
j∈∂a. Since

node i appears in (A.1) only inside a Gaussian term, we can exploit Gaussian integration properties
to write (A.2) as a function of the latter two aforementioned quantities:

⟨xαi ⟩ζ(a) = Ξ(α)
(︂
⟨x⟩ρ, ⟨xxt⟩ρ,

{︁
⟨xj⟩ζ(a)

}︁
j∈∂a

)︂
α = 1,2 (A.5)

The knowlegde of (A.3)-(A.4) allows to marginalize (A.1) with respect to all the variables but
xi ∪ xa:

ζ(a) (xa, xi) ∝
∫︂
dx\(i∪∂a)ζ

(a) (x) ∝ ρ (xa, xi) fa (xa) (A.6)

In particular, the first and second moments of ρ (xa, xi) are given by the blocks of (A.3)- (A.4) on
the [i ∪ ∂a] indeces, respectively. Let us define the matrix S(∂a∪i)=̂

(︁
Σ[∂a∪i,∂a∪i]

)︁−1 ∈ R(|∂a|+1)×(|∂a|+1)
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and isolate all the terms that depend on xi:

S(∂a∪i) =
(︁
Σ[∂a∪i,∂a∪i]

)︁−1 =
[︃
Σ[∂a,∂a] Σ[∂a,i]
Σ[i,∂a] Σii

]︃−1
=
[︃
S[∂a,∂a] S[∂a,i]
S[i,∂a] Sii

]︃
(A.7)

where, at the right hand sides the superscript (∂a ∪ i) is dropped for simplicity. By construction,
S[i,∂a] = {Sik}k∈∂a and S[∂a,i] = St[i,∂a]. After some manipulations, we rewrite the Gaussian
ρ (xa, xi) as

ρ (xa, xi) = θ (xa) η (xa, xi) (A.8)
where

θ (xa) = exp
[︄
−1

2
(︁
x[∂a] − ν [∂a]

)︁t
S[∂a,∂a]

(︁
x[∂a] − ν [∂a]

)︁
− 1

2Siiν
2
i + νi

∑︂
k∈∂a

Sik (xk − νk)
]︄

(A.9)

η (xa, xi) = exp
{︄
−1

2Siix
2
i + xi

[︄
Siiνi −

∑︂
k∈∂a

Sik (xk − νk)
]︄}︄

(A.10)

The two moments we are interested in (A.2) can be computed by first integrating over xi and
then w.r.t. the other variables xa:

⟨xαi ⟩ζ(a) =
∫︁
dxaθ (xa) fa (xa)

∫︁
dxiη (xi,xa)xαi∫︁

dxaθ (xa) fa (xa)
∫︁
dxiη (xi,xa) α = 1,2 (A.11)

The inner integral over xi can be computed using 1−dimensional Gaussian integrals, leading to∫︂
dxiη (xi,xa)xαi =̂Ii (xa)× ξ(α)

i (xa) α = 0,1,2 (A.12)

with

Ii (xa) =
√︃
π

2Sii exp
{︄

1
2Sii

[︄
Siiνi −

∑︂
k∈∂a

Sik (xk − νk)
]︄}︄

(A.13)

ξ
(1)
i (xa) = 1 (A.14)

ξ
(1)
i (xa) = νi −

∑︂
k∈∂a

Sik
Sii

(xk − νk) (A.15)

ξ
(2)
i (xa) = 1

Sii
+
[︁
Siiνi −

∑︁
k∈∂a Sik (xk − νk)

]︁2
S2
ii

(A.16)

Notice now that the product θ (xa) fa (xa) I (xa) is nothing but the marginal of ζ(a) over the
xa, apart from a normalization constant that gets cancelled out with the denominator in (A.11).
Therefore, the moments of i can be expressed as combination the moments w.r.t. ρ and moments
of xa under the same distribution ζ(a):

⟨xαi ⟩ζ(a) = ⟨ξ(α)
i (xa)⟩ζ(a) α = 1,2 (A.17)

A same reasoning can be applied to compute mixed moments of two nodes i, j: when either i ∈ ∂a
or j ∈ ∂a the computation of ⟨xixj⟩ξ(a) is equivalent to what discussed so far; on the other hand,
when both i, j /∈ ∂a one should extend the above reasoning by using 2-dimensional Gaussian
integrals.
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A.2 Tilted moments
We apply now the above formula to compute the moments of xi for a tilted distribution q(a),

defined over a factor node a such that i /∈ ∂a, whose density reads (see Eq. (3.14)):

q(a) (x) ∝ g\a (x) Ψa (xa) (A.18)

Using (A.17) with ρ = g\a and fa = Ψa, we can write the moments of node i /∈ ∂a as:

⟨xαi ⟩q(a) = ⟨ξ(α)
i (xa)⟩q(a) α = 1,2 (A.19)

where

ξ
(1)
i (xa) = µ

\a
i −

∑︂
k∈∂a

S
\a
ik

S
\a
ii

(︂
xk − µ\a

k

)︂
(A.20)

ξ
(2)
i (xa) = 1

S
\a
ii

+

[︂
S

\a
ii µ

\a
i −

∑︁
k∈∂a S

\a
ik

(︂
xk − µ\a

k

)︂]︂2

(︂
S

\a
ii

)︂2 (A.21)

In this notation, µ\a
k = ⟨xk⟩g\a and the quantities

{︂
S

\a
kl

}︂
are the elements of the inverse sub-

block of the cavity correlation matrix, i.e
[︁
S\a]︁(∂a∪i) =

(︂
Σ\a

[∂a∪i,∂a∪i]

)︂−1
. Therefore, the above

expressions depend on the cavity moments computed on variables that do not belong to the
neighborhood of a, so that we can further simplify (A.19) by applying the same reasoning to the
cavity moments µ\a

i , as shown in the next section.

A.2.1 Cavity moments
Let us recall the definition of the cavity distribution g\a (x) as in Eq. (3.16):

g\a (x) ∝ q (x) 1
ϕa (xa)

Applying the same reasoning as before with ρ = q and fa = (ϕa)−1, we get:

⟨xi⟩g\a=̂µ\a
i = µi −

∑︂
k∈∂a

Sik
Sii

(︂
µ

\a
k − µk

)︂
(A.22)

where now µk = ⟨xk⟩q and the elements Sii,{Sik}k∈∂a corresponds to the inverse sub-block of the
full Gaussian measure q, namely S(∂a∪i) =

[︁
Σ[∂a∪i,∂a∪i]

]︁−1. Notice now that, by construction of
the cavity distribution (3.16):[︂

S\a
]︂(∂a∪i)

=
(︂

Σ\a
[∂a∪i,∂a∪i]

)︂−1
= S(∂a∪i) −

[︃
Γ(a) 0

0 0

]︃
(A.23)

where Γ(a) is the inverse covariance matrix of the approximate factor ϕa defined in Eq. 3.3. As a
consequence, all the elements of the type {Sik}k∈∂a - i.e. the only ones appearing in (A.22)-(A.19)
- are equal in the two matrices. Using this result and combining (A.22) with (A.19), we get the
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final expression for the first “mixed” tilted moment ⟨xi⟩q(a) :

⟨xi⟩q(a) = µ
\a
i −

∑︂
k∈∂a

S
\a
ik

S
\a
ii

(︂
⟨xk⟩q(a) − µ\a

k

)︂
= µ

\a
i −

∑︂
k∈∂a

Sik
Sii

(︂
⟨xk⟩q(a) − µ\a

k

)︂
= µi −

∑︂
k∈∂a

Sik
Sii

(︂
µ

\a
k − µk

)︂
−
∑︂
k∈∂a

Sik
Sii

[︂
⟨xk⟩q(a) − µ\a

k

]︂
= µi −

∑︂
k∈∂a

Sik
Sii

(︁
⟨xk⟩q(a) − µk

)︁
(A.24)

which is equal to (3.87). The formula (3.88) in section 3.4.2 is derived in the same way using the
above reasoning with ρ = q and fa ≡ fi = ∆i. We also report the final expression for the second
moment ⟨x2

i ⟩q(a) , that will be used in the following section:

⟨x2
i ⟩q(a) = 1

Sii
+
⟨︄[︄

µi −
∑︂
k∈∂a

Sik
Sii

(xk − µk)
]︄2⟩︄

q(a)

(A.25)

A.3 Stationary points of (univariate) EP free energy
In Section (2.4.2) we have seen how to derive an expression for the EP free energy. Its

stationary points (2.77)-(2.78) depend on the mixed tilted moments ⟨xαi ⟩q(j) , i.e. the expectation
values of node i w.r.t. a tilted distribution defined on j /= i. Therefore, we can apply the procedure
discussed so far to explicitly compute them. In particular, starting from (A.24)-(A.25) and using
a ≡ j, the mixed tilted moments are given by:

⟨xi⟩q(j) = µi + Σij
Σjj

[︁
⟨xj⟩q(j) − µj

]︁
(A.26)

⟨x2
i ⟩q(j) = Σii + µ2

i + 2µi
Σij
Σjj

[︁
⟨xj⟩q(j) − µj

]︁
+

Σ2
ij

Σ2
jj

[︁
⟨x2
j ⟩q(j) − 2⟨xj⟩q(j)µj + µ2

j − Σjj
]︁

(A.27)

where the summation
∑︁
k∈∂a here reduces to a single contribution for k ≡ j, and we also used

the explicit expression for the 2× 2 matrix S(i∪j):

S [j∪i] =
[︃

Σii Σij
Σij Σjj

]︃−1
= 1

ΣiiΣjj − Σ2
ij

[︃
Σjj −Σij
−Σij Σii

]︃
. (A.28)

By inserting (A.26)-(A.27) into the stationary conditions for the free energy (2.77)-(2.78) and
simplifying, we finally get:

0 =
∑︂
j /=i

Σij
Σjj

[︁
⟨xj⟩q(j) − µj

]︁
(A.29)

0 = 2µi
∑︂
j /=i

Σij
Σjj

[︁
⟨xj⟩q(j) − µj

]︁
+
∑︂
j /=i

Σ2
ij

Σ2
jj

[︁
⟨x2
j ⟩q(j) − 2⟨xj⟩q(j)µj + µ2

j − Σjj
]︁

(A.30)

which is satisfied by the moment matching conditions

⟨xi⟩q(i) = µi ∀i (A.31)
⟨x2
i ⟩q(i) = Σii + µ2

i ∀i (A.32)
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Appendix B

Diagonalization of the Adjacency
Matrix of hypercubic lattices

From a graph-theoretical perspective, a hypercubic lattice in d > 1 dimensions can be regarded
as the cartesian product d linear-chains, one for each dimension [120]. As a consequence, the
adiacency matrix of the d-dimensional lattice (denoted in Chapter 4 with A(d)) can be easily
expressed in terms of the adiacency matrices of the single linear chains, by means of the Kronecker
product (denoted with ⊗) [72]:

A(d) =
d∑︂
k=1
P(k)

⎡⎣A(1) ⊗ IL ⊗ ...⊗IL⏞ ⏟⏟ ⏞
d−1

⎤⎦ (B.1)

where P(k) is a permutation operator and IL is the identity matrix of size L. Alternatively, the
above expression can be re-phrased as a recursive relation for d > 1:

A(d) = A(d−1) ⊗ IL + ILd−1 ⊗A(1) d > 1 (B.2)

In Eqs. (B.1) and (B.2) the quantity A(1) is the adiacency matrix of a closed linear chain of size
L:

A(1) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 1 0 · · · 0 0 1
1 0 1 · · · 0 0 0
0 1 0 · · · 0 0 0
...

...
... . . . ...

...
...

0 0 0 · · · 0 1 0
0 0 0 · · · 1 0 1
1 0 0 · · · 0 1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(B.3)

Eqs. (B.1) or (B.2) allow to compute the spectral decomposition of A(d) by knowing the spectrum
of the adiacency matrix of the linear chain. The matrix A(1) is a simple case of a circulant matrix
[60] and it can be diagonalized exactly. Its eigenvalues and eigenvectors are shown below:

λ(1)
x = 2cos

(︃
2π
L
x

)︃
(B.4)

ν(1)
x = 1√

L

(︁
1, wx, w2

x, . . . , w
L−1
x

)︁t
wx = ei

2π
L x (B.5)
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where i is the imaginary unit and x ∈ {0, ..., L− 1} is an integer index referring to the eigenvalue
(or eigenvector), that can be thought as a site coordinate on the linear chain.
Exploiting the properties of the Kronecker product [72], it is possible to compute the eigenspec-
trum of A(d). In the following, we denote respectively with λ(d) and ν(d) the eigenvalues and the
eigenvectors of A(d), given by:

λ
(d)
(x1,...,xd) =

d∑︂
k=1

λ(1)
xk

= 2
d∑︂
k=1

cos
(︃

2π
L
xk

)︃
(B.6)

v
(d)
(x1,...xd) = �d

k=1v(1)
xk

(B.7)

In this notation, the vector x⃗ = (x1, . . . , xd) can be considered as a vectorial index that identifies a
certain site in the hypercubic lattice with coordinate x⃗. The precision matrix of the full Gaussian
measure (4.37), denoted in Chapter (4) with K(d) and defined by (4.38), is nothing but a linear
combination between the identity matrix and A(d). Therefore, the expression of its eigenvalues
follows directly from (B.6):

λx⃗ = 2dΓ0 + 2Γ1

d∑︂
k=1

cos
(︃

2π
L
xk

)︃
(B.8)

where the parameters Γ0,Γ1 are defined in (4.36). From now on, we refer to λx⃗ as the eigenvalues
of the precision matrix K(d); the set of its eigenvectors is the same as (B.7) since an identity matrix
always commutes with A(d). In this way, we can exploit the known eigenspectrum to compute
any element of the inverse matrix of K(d), that holds at any size L. In particular, by denoting
with U the matrix obtained by stacking column-wise all the eigenvectors, and using the vectorial
notation of indeces (x⃗, x⃗′) to indicate a generic element of the matrix, we get:[︃(︂

K(d)
)︂−1

]︃
(x⃗,x⃗′)

=
∑︂

y⃗,y⃗′∈{0,...,L−1}d

U(x⃗,y⃗)
[︁
Λ−1]︁

(y⃗,y⃗′) U
†
(y⃗′,x⃗′)

=
∑︂

y⃗,y⃗′∈{0,...,L−1}d

U(x⃗,y⃗)
δ(y⃗,y⃗′)

λy⃗
U†

(y⃗′,x⃗′)

= 1
Ld

∑︂
y⃗∈{0,...,L−1}d

exp
[︂
i 2π
L

∑︁d
k=1 yk (xk − x′

k)
]︂

λy⃗
(B.9)

where Λ is the diagonal matrix of the eigenvalues, i.e. Λ(x⃗,y⃗) = δ(x⃗,y⃗)λx⃗, and in the last line we
use the explicit expression of the elements of U that follows from Eqs. (B.7)-(B.5):

U(x⃗,y⃗) = 1
Ld/2 exp

[︄
i
2π
L

d∑︂
k=1

xkyk

]︄
(B.10)

As discussed in Chapter 4, in order to apply Density Consistency to the homogeneous Ising model,
we are interested in computing only two types of elements: the diagonal terms (where x⃗ = x⃗′),
denoted with Σ0, and the ones corresponding to nearest neighbours spins, denoted with Σ1. The
latters correspond to indeces x⃗, x⃗′ that differ only on one direction, namely (x⃗− x⃗′)k = ±δkk∗ for
a certain k∗ ∈ {1, . . . , d}. At fixed size L, their expressions read:

Σ0 =
[︃(︂
K(d)

)︂−1
]︃

(x⃗,x⃗)
= 1
Ld

∑︂
y⃗∈{0,...,L−1}d

1
λy⃗

(B.11)

Σ1 =
[︃(︂
K(d)

)︂−1
]︃

(x⃗,x⃗′)
= 1
Ld

∑︂
y⃗∈{0,...,L−1}d

1
λy⃗

exp
[︃
±i2π

L
yk∗

]︃
k∗ ∈ {1, . . . , d} (B.12)
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Eqs (B.11)-(B.12) can be used to apply Density Consistency for a homogenous Ising model at finite
size L as in Section 4.3. However, we are mainly interested in taking the thermodynamic limit
L→∞: in this case, by defining a continuous set of coordinates sk = 2πxk

L ∈ [0,2π) , k ∈ {1, . . . , d}
and replacing the summations with a multidimensional integral, we get:

Σ0 =
∫︂ 2π

0

d∏︂
k=1

dsk
2π

1
2dΓ0 + 2Γ1

∑︁d
k=1 cos sk

(B.13)

Σ1 =
∫︂ 2π

0

d∏︂
k=1

dsk
2π

exp [±sk∗ ]
2dΓ0 + 2Γ1

∑︁d
k=1 cos sk

(B.14)

The integrals (B.13)-(B.14) can be easily performed by using the Laplace representation of the
Heaviside step function 1/x =

∫︁∞
0 e−txdt. We report below their final expression, valid for any

d ≥ 1:

Σ0 = 1
Γ0
Rd (r) (B.15)

Σ1 = 1
rΓ0

[︃
1
2d −Rd (r)

]︃
(B.16)

where r = Γ1/Γ0 and the function Rd (r) is given by:

Rd (r) = 1
2

∫︂ ∞

0
dt
[︁
e−tI0 (rt)

]︁d (B.17)

with I0 being the modified Bessel function of the first kind of order 0:

I0 (x) = 1
2π

∫︂ 2π

0
ex cos θdθ (B.18)

The function Rd (r) is strictly related to the Lattice Green Functions (LGFs) [61], i.e. the prob-
ability generating function of a random walk on the lattice. In particular, by a simple inspection
of Rd (r), we find that the quantity 1− 1/ [2dRd (−1)] is nothing but the return probability of a
symmetric random walk on the infinite d-dimensional lattice. The integral (B.17) can be analyt-
ically computed for d ≤ 3 (in particular, we refer to [69] for the d = 3 case) and we report their
expressions below:

R1 (r) = 1
2
√

1− r2
(B.19)

R2 (r) =
K
(︁
r2)︁

2π (B.20)

R3 (r) = 2
3π2

√︄(︃
1− 3

4a
)︃
K
(︁
l2+
)︁
K
(︁
l2−
)︁

1− a (B.21)

where

l2± = 1
2 ±

1
4q
√︁

4− q − 2− η
4
√︁

1− q

q = a/ (a− 1)

a (r) = 1
2 + r2

6 −
1
2
√︁

1− r2

√︃
1− r2

9
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and K (m) denotes the complete elliptic integral of the first kind with modulus m [59].
Finally, we report below the series expansion of Rd (−1) in the infinite dimensional limit d→∞,
that is used in Section 4.3.6 to derive the corresponding expansion for the Density Consistency’s
critical temperature:

Rd (−1) = 1
2d

−1 + 1
4d

−2 + 3
8d

−3 + 3
4d

−4 + 15
8 d

−5 + 355
64 d

−6 + 595
32 d

−7 +O
(︁
d−8)︁ (B.22)
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Appendix C

Computation of βm and stability
of fixed points

In this appendix, we brefly discuss how to compute the minimum of the ferromagnetic solution
to the homogeneous Ising model within DC approximation, presented in Sec. (4.3), denoted with
βm. The fixed points equations (given by (4.52)-(4.53)) are solved at fixed r with respect to
the magnetization m and the inverse temperature β. Therefore, (4.52)-(4.53) implicitly define
a function m (r) such that M (m (r) , r) = m and β (r) = B (m (r) , r). The quantity βm can
be computed by finding the point m∗ = m (r∗) such that dβ

dr (m (r∗) , r∗)
⃓⃓⃓
r∗

= 0, so that βm =
B (m∗, r∗). Taking the total derivative of B (m (r) , r) we get the following equation to be solved:

0 = dβ

dr
= ∂B

∂r
+ ∂B

∂m

dm

dr
(C.1)

To compute dm
dr we use its implicit definition given by M :

0 = d

dr
[M (m (r) , r)−m (r)]

= ∂M

∂m
(m (r) , r) + ∂M

∂r
(m (r) , r)− dm

dr

=
[︃
∂M

∂m
(m (r) , r)− 1

]︃
dm

dr
+ ∂M

∂r
(m (r) , r) (C.2)

which gives
dm

dr
=

∂M
∂r (m (r) , r)

1− ∂M
∂m (m (r) , r)

(C.3)

By plugging (C.3) into (C.1) and using the fixed point equation for the magnetization, we get a
2× 2 system to be solved w.r.t. m, r:

M (m, r)−m = 0 (C.4)
∂B

∂r
(m, r)

(︃
1− ∂M

∂m
(m, r)

)︃
+ ∂M

∂r
(m, r) ∂B

∂m
(m, r) = 0 (C.5)
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C.1 Stability

The stability of a fixed point m∗ = m (r∗) can be analyzed by computing dM
dm

⃓⃓⃓⃓
m∗

. In particular,

starting from the system (4.52)-(4.53), the instability occurs when dM
dm

⃓⃓⃓⃓
m∗

= 1. Writing the

original system where r is implicitly defined as r = R (β,m) , we get m = M (m,R (β,m)) and
β = B (m,R (β,m)). The equation we want to solve is

1 = dM

dm
= ∂M

∂m
+ ∂M

∂r

∂R
∂m

(C.6)

To compute ∂R
∂m we can use again its implicit definition. Starting from the fixed point equation

for the temperature, β = B (m,R (β,m)), we get:

0 = dB

dm
= ∂B

∂m
+ ∂B

∂r

∂R
∂m

∂R
∂m

= −∂B
∂m

/
∂B

∂r
(C.7)

Putting together (C.7) and the fixed point equation for the magnetization we get the following
system of equations to be solved w.r.t r,m:

M (m, r)−m = 0 (C.8)
∂M

∂m
− ∂M

∂r

∂B
∂m
∂B
∂r

= 1 (C.9)

For d ≥ 3, the paramagnetic solution is stable in the full range r ∈ [−1,0], i.e β ∈ [0, βp], while
the ferromagnetic solution becomes unstable exactly at the point (rm, βm) computed through
C.4-C.5.
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Appendix D

Mean-Field heuristiscs on the SIR
model

The Mean-field method for the inference in the SIR model introduced in Chapter 7 can be
derived as a limiting case of the dynamical message passing (DMP) framework, developed in [85,
86], in the limit where the transmission probabilities are small. Moreover, by construction it can be
only applied for a Markovian evolution. The first assumption is therefore p

(︁
xt+1
i | x0, . . . ,xt

)︁
=

p
(︁
xt+1
i | xt

)︁
in the SIR dynamics (7.2), that is valid when the recovery rate and the transmission

probabilities do not depend on the time since infection. MF assumes that the joint probability
distribution at each time can be factorized over nodes, namely p (xt) ≈

∏︁
i p (xti) ∀t ∈ [0, T ]. This

allows to rewrite the marginal probability of the individual i’s state at time t as:

p
(︁
xt+1
i

)︁
≈
∑︂
xt

i
,xt

∂i

p
(︁
xti | xt∂i, xti

)︁ ∏︂
j∈{∂i∪i}

p
(︁
xtj
)︁

(D.1)

where ∂i (t) denotes the set of node i’s neighbours at time t, and xt∂i =
{︁
xtj
}︁
j∈∂i(t). The

transition probabilities p
(︁
xt+1
i | xt∂i, xti

)︁
are computed starting from Eqs. (7.1) in the limit

where the infection probabilities {λk→i} are small. This allows to approximate the products∏︁
k∈∂i (1− bk→i) ≈ 1 −

∑︁
k∈∂i bk→i, which in turn gives the following expressions for the SIR

dynamics:

p
(︁
xt+1
i = S | xt∂i, xti

)︁
= I

[︁
xti = S

]︁⎛⎝1−
∑︂
k /=i

λk→iI
[︁
xtk = I

]︁⎞⎠ (D.2a)

p
(︁
xt+1
i = I | xt∂i, xti

)︁
= (1− µi) I

[︁
xti = I

]︁
+ I
[︁
xti = S

]︁∑︂
k /=i

λk→iI
[︁
xtk = I

]︁
(D.2b)

p
(︁
xt+1
i = R | xt∂i, xti

)︁
= µiI

[︁
xti = I

]︁
+ I
[︁
xti = R

]︁
(D.2c)

Then, combining Eqs. (D.2) with (D.1) one gets the update equations for the individual’s
marginal probabilities at each time:

p
(︁
xt+1
i = S

)︁
= p

(︁
xti = S

)︁⎛⎝1−
∑︂
k /=i

λk→i (t) p
(︁
xtj = I

)︁⎞⎠ (D.3a)

p
(︁
xt+1
i = I

)︁
= (1− µi) p

(︁
xti = I

)︁
+ p

(︁
xti = S

)︁∑︂
k /=i

λk→i (t) p
(︁
xtj = I

)︁
(D.3b)

p
(︁
xt+1
i = R

)︁
= µip

(︁
xti = I

)︁
+ p

(︁
xti = R

)︁
(D.3c)
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Equations (D.3) determine a Markovian evolution of the single node probabilities from a suitable
initial condition

{︁
p
(︁
x0
i = α

)︁}︁α∈{S,I,R}
i=1,...,N . The effect of observations can be included by using a

simple heuristic: given a certain observation of node i at time tobs, the Mean-field equations are
propagated back in time in order to update the risk estimate for individual i to be infected at time
t > tobs. Under the assumption that observations are noiseless, at each time t the Mean-Field
equations are run starting at a time t−τMF such that tobs ∈ [t− τMF , t] by imposing the following
conditions:

if xtobs
i = S → P

(︂
xt

′

i = S
)︂

= 1 for t′ ∈ [t− τMF , tobs] (D.4a)

if xtobs
i = I → P

(︂
xt

′

i = I
)︂

= 1 for t′ ∈ [tobs − δMF , tobs] (D.4b)

if xtobs
i = R→ P

(︂
xt

′

i = R
)︂

= 1 for t′ ∈ [tobs, T ] (D.4c)

where T is the simulation’s time window. These equations have a simple interpretation: if an
individual is observed S at time tobs, it has been susceptible at all previous times; if it is observed
as Recovered, it will continue to be as such for all future times; finally, if it is tested Infected at
time tobs, we assume that it has been infected in a time window between tobs−δMF and tobs, where
δMF is a measure of the typical time between infection and the test, consecutive to symptoms
appearance. Therefore, the Mean Field algorithm is parametrized by two quantities, τMF (the
window time used to back-propagate the equations) and δMF just defined. In the MF approach
marginal probabilities can be estimated in a fully distributed way on the individual’s cell phones,
by exchanging at the marginal probabilities its contacts at each day, without a central storage
system.

MF parameters from ABM
As previously discussed, the MF inference can only deal with markovian dynamics, so that the

time-dependency of the infective rate cannot be taken into account. We therefore implement an
extremely simplified hypothesis of a constant infection probability λMF

ij (t) = λMF
0 × Gij , where,

again, only the information about intra-household contacts is encoded by Gij (defined in section
7.4). By averaging over a typical realization of the ABM we find λMF

0 = 0.02. Notice that this
parameter is reasonably small to justify the approximation presented at the beginning of this
section, valid for small transmission probabilities.
The recovery time is parametrized by a memory-less exponential distribution, with a recovery
rate µMF = 1/ (12 days). As a final remark, notice that the MF approach presented here is not -
strictly speaking - a Bayesian inference method, since the effect of the observation is included only
heuristically to propagate back in time the MF equations. In principle, a better MF approach
could be designed by using the factorization assumption directly on the posterior distribution
(7.3) rather than on the prior. This issue is left for future investigations.
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Appendix E

BP equations for the SIR model

The message passing equations are derived following the approach discussed in Section 2.2.1
on the factor graph model (7.11). Before writing them, notice that the distribution of recovery
times Ri (ri − ti) needs to be discretized. All the terms in (7.10)-(7.11) except Ri are constant
functions w.r.t. ri in any interval (r̂i, r̂′

i) of consecutive times in Ti: in other words, besides the
natural discretization imposed by the transmission times sij , the only thing that can happen in
between is the recovery of a certain individual. For this reason, for each node we define a new
discrete variable r̂i so that ri = r̂i + ui, where r̂i = max {r ∈ Ti : r < ri}. Then, by integrating
out the uis we obtain a fully discretized model on the variables t, s, r̂, whose functional form is
identical to (7.11), with the following replacements:

ri → r̂i

Ri (ri − ti)→ R̂i (r̂i − ti) =
∫︂ r̂′

i−ti

r̂i−ti
R (u) du.

In the following, the symbols ·̂ are dropped to simplify the notation. The update equations for
the factor-to-node message mψi→(ij) (sij , sji) is given by:

mψi→(ij) (sij , sji) ∝
∑︂
ti

∑︂
ri

pO,i (Oi | ti, ri)Ai (si∗)Ri (ri − ti)Sij (sij | ti, ri)×

×
∑︂

{ski}

∑︂
{sik}

δ
(︁
ti, min

k∈∂∗i
ski
)︁ ∏︂
k∈∂∗i\j

Sik (sik | ti, ri)mψk→(ik) (ski, sik)(E.1)

Similarly, the marginals for ti and ri, denoted with bi (ti) and bi (ri) respectively read:

bi (ti) ∝
∑︂
ri

pO,i (Oi | ti, ri)Ai (si∗)Ri (ri − ti)Sij (sij | ti, ri)× (E.2)

×
∑︂

{ski}

∑︂
{sik}

δ
(︁
ti, min

k∈∂∗i
ski
)︁ ∏︂
k∈∂∗i

Sik (sik | ti, ri)mψk→(ik) (ski, sik) (E.3)

bi (ri) ∝
∑︂
ti

pO,i (Oi | ti, ri)Ai (si∗)Ri (ri − ti)Sij (sij | ti, ri)× (E.4)

×
∑︂

{ski}

∑︂
{sik}

δ
(︁
ti, min

k∈∂∗i
ski
)︁ ∏︂
k∈∂∗i

Sik (sik | ti, ri)mψk→(ik) (ski, sik) (E.5)

In the above equations the computational cost scales exponentially with the number of neighbours
of node i. A more efficient computation can be achieved by decoupling the summation over ski,
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sik. Using the identity

δ
(︁
ti, min

k∈∂∗i
ski
)︁

=
∏︂
j∈∂∗i

I [ski ≥ ti]−
∏︂
j∈∂∗i

I [ski > ti] (E.6)

and defining

G0
k (ti, ri) =

∑︂
ski≥ti
sik>ti

Sik (sik | ti, ri)mψk→(ik) (ski, sik) (E.7)

G1
k (ti, ri) =

∑︂
ski>ti
sik>ti

Sik (sik | ti, ri)mψk→(ik) (ski, sik) (E.8)

The above BP equations (E.1)-(E.2)-(E.4) can be rewritten as:

mψi→(ij) (sij , sji) ∝
∑︂
ti

∑︂
ri

pO,i (Oi | ti, ri)Ai (si∗)Ri (ri − ti)Sij (sij | ti, ri)× (E.9)

×
∑︂

{ski}

(︄ ∏︂
l∈∂∗i

I [sli ≥ ti]−
∏︂
l∈∂∗i

I [sli > ti]
)︄ ∏︂
k∈∂∗i\j

Sik (sik | ti, ri)mki (ski, sik)

∝
∑︂
ti<sji

∑︂
ri≥ti

pO,i (Oi | ti, ri)Ri (ri − ti)Sij (sij | ti, ri)× (E.10)

×
∏︂
t<ti

(︁
1− γti

)︁{︃ ∏︂
k∈∂i\j

G0
k (ti, ri)−

(︁
1− γtii

)︁ ∏︂
k∈∂i\j

G1
k (ti, ri)

}︃
+

+
∑︂
ri≥sji

pO,i (Oi | sji, ri)Ri (ri − sji)
∏︂

k∈∂i\j

G0
k (sji, ri)

where in addition, we explicitly wrote the messages from the “virtual” neighbours ĩt (that accounts
for the auto-infections) as

mi∗ti (si∗ti, sii∗t) =
{︄
γti si∗ti = t, sii∗t =∞
1− γti si∗ti =∞, sii∗t =∞

(E.11)

Notice that the summation over ri has non-zero contributions only for ri ≥ ti (by construction,
recovery can occur only if node i is already infected) and the summation over ti runs only for
values ti ≤ sji, by virtue of Eq. (7.8). Analougsly, for the beliefs, we get:

bi (ti) ∝
∑︂
ri

pR,i (ri − ti) pO,i (Oi | ti, ri)× (E.12)

×
∏︂
t<ti

(︁
1− γti

)︁{︃ ∏︂
k∈∂i

G0
k (ti, ri)−

(︁
1− γtii

)︁ ∏︂
k∈∂i

G1
k (ti, ri)

}︃
(E.13)

bi (ri) ∝
∑︂
ti

pR,i (ri − ti) pO,i (Oi | ti, ri)× (E.14)

×
∏︂
t<ti

(︁
1− γti

)︁{︃ ∏︂
k∈∂i

G0
k (ti, ri)−

(︁
1− γtii

)︁ ∏︂
k∈∂i

G1
k (ti, ri)

}︃
(E.15)

The above implementation of the update equations for of all the messages in factor ψi has a
computational cost O

(︂
|Ti|

∑︁
j∈∂i

(︂
|Ti|+ |Tij |2

)︂)︂
.
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In practice, the simulations are run for a fixed number of iterations, starting from the beliefs
computed at the previous time step.
Once the beliefs are found, the marginal probabilities to be in one of the SIR states at any time
t can be computed as follows:

p
(︁
xti = S

)︁
=
∑︂

t′∈Ti
t′≥t

bti (t′) (E.16)

p
(︁
xti = R

)︁
=
∑︂

t′∈Ti
r′≤t

bi (r′) (E.17)

p
(︁
xti = I

)︁
= 1−

∑︂
t′∈Ti
t′≥t

bti (t′)−
∑︂

t′∈Ti
r′≤t

bi (r′) (E.18)

The simplest estimation for the individual’s infection risk would be equal to its probability of being
infected at the current time, namely p (xti = I), given by (E.18). However, given the infective
features of SARS-CoV-2 included in the ABM we found more convenient to adopt a criterion that
gives higher priority to most recent infections, i.e those that are more likely to be relevant for the
infection dynamics. As a consequence, the infection risk within the BP scheme is computed as
the sum of the beliefs in the window

[︁
t− δBP , t

]︁
:

qti =
∑︂

t′∈[t−δBP ,t]⊂Ti

bi (t′) (E.19)

In all the simulations, we used δBP = 10 days.
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