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Abstract: We propose a machine learning based approach to predict control signals for a
photonic switching system. This solution is topology and technology agnostic and it can be
employed in real-time switch control planes. © 2021 The Author(s)

1. Introduction
Photonic switching is a fundamental functionality both for core optical networks and data-centers, to allow dy-
namic provisioning to satisfying connection requests. The key components to enable such operations are the pho-
tonic integrated circuits (PICs) enabling spatial and wavelength optical routing. In recent years, silicon photonics
emerged as a promising technology for low-cost and energy efficient solutions.

PIC based components internally rely on switches (optical micro-ring resonators or Mach-Zehnder modulators)
to route optical inputs to output ports, and this is achieved by varying electrical control signals [1,2]. Each control
signal is a binary set driving each individual switch in cross or bar condition. The considered generic structure and
application is depicted in Fig. 1a: N input signals at different wavelengths are sent to input ports and by varying
M control signals we can route any wavelength to any output port.

Properly connecting the M internal switches the goal of the N×N switching can be achieved. Many topological
solutions have been proposed [3], each characterized by special properties: collision avoidance among the input
channels, minimization of optical losses, reduction of the circuit footprint and of the operation power consumption.
Among the mostly considered configurations are the butterfly networks (which requires M = N2/2 switches), the
Beneš network (a Clos network with 2× 2 switches, M = N log2 N −N/2) and arbitrary-sized Beneš , where N
is not constrained to be a power of 2. Beneš solutions are particularly suitable for the PICs integration due to
the reduced number of switches required [4]. For all the non-blocking network topologies, the variation of the M
control signals generates a total combination of 2M , whereas N! is the number of distinct permutations of the N
input signals as shown in Fig. 1a. So, the control plane is required to define the control signals to set the N ×N
switches in the required condition.

Many deterministic algorithms can efficiently (O(N logN) for the Beneš network case [5]) calculate the control
state of the internal switches to obtain the requested wavelength permutation. Unfortunately each algorithm is
specifically designed for the internal topology of the network , and no general algorithm exists [3].

In this work, we propose to train a topology agnostic machine learning (ML) agent to predicting control signals.
Given a N×N photonic switch with arbitrary, and potentially unknown, internal structure, the proposed technique
assumes it as a black-box component, as illustrated in Fig. 1b, and it efficiently allows to determine control states
with accuracy exceeding 98%.

(a) (b)
Fig. 1: (a) Example of full optical routing with micro-ring based switches, (b) 8×8 Beneš network as a particular
case of a the generic black box model with N inputs, N outputs and M control signals.



Table 1: Dataset Statistics

Benes size
N ×N

Permutations
N!

Number of
switches M

Combinations
2M Dataset Train Set Test Set

8×8 40,320 20 1,048,576 100,000 70,000 30,000
10×10 3,628,800 26 67,108,864 300,000 210,000 90,000
15×15 1,307,674,368,000 49 562,949,953,421,312 1,000,000 700,000 300,000

2. Results & Conclusion
To generate the ML training and testing dataset, we considered a N × N Beneš network. To demonstrate the
scalability of the proposed, approach we addressed three cases: N = 8,10,15; corresponding to the configurations
with M = 20,26,49 internal switches, respectively. A subset of the total 2M control combinations is used for the
generation of the dataset, as reported in Tab. 1.

The datasets are used to train a supervised learning neural network. The proposed ML model, explicitly a deep
neural network (DNN), is developed by using TensorFlow© platform: it incorporates 2 hidden-layers along with
20 neurons for each hidden-layer, having ReLU as activation function. The proposed DNN model is evaluated by
mean square error (MSE) as loss function. The DNN model is configured for training-steps of 1,000 and learning-
rate of 0.01. The train set for each N ×N mode of Beneš topology consists of 70% of the dataset, while the test
set consists of 30% of dataset as reported in Tab. 1. In the proposed ML agent we use as features the different
combination of wavelengths at the output ports and as labels the M control signals.

Promising results are achieved for each considered Beneš size, as shown in Fig. 2a and Fig. 2b. In Fig. 2a the
effect of training data size is shown. The trend shows that the prediction ability of ML model improves when
increasing the training data size, but already with a 50% or training size good results are obtained. The rate of
correct prediction is summarized for all three considered Beneš sizes by the blue bars in Fig. 2b. We observe an
excellent level of accuracy (> 86%) but with a trend to reduce the effectiveness of the prediction when increasing
N: correct predictions reach 99.84%, 89.39% and 86.22% for N equal to 8, 10 and 15, respectively.

To improve the prediction capabilities of the ML approach, we added an auxiliary step based on a simple
heuristic that we derived from observing wrong configurations. In most of the cases failing to determine the
correct control state there was a single switch element in an incorrect state. The heuristic we propose is to simply
try the correction of single ring error by flipping one switch at a time and comparing the output sequence against
the desired output. For Beneš 8×8, 10×10 and 15×15, using ML assisted by heuristic the accuracy improves to
100%, 99.89%, 98.02% respectively.

In conclusion, we have demonstrated that a ML approach can effectively determine control states for a generic
N ×N photonic switch without any knowledge required on the topology. The ML is scalable to large N as we
show high level of accuracy with limited size data-set.
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Fig. 2: Correct prediction vs. normalized training size (a), and with and without heuristic correction (b).
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