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A B S T R A C T   

The optimal sizing of stand-alone renewable H2-based microgrids requires the load demand to be reliably 
satisfied by means of local renewable energy supported by a hybrid battery/hydrogen storage unit, while 
minimizing the system costs. However, this task is challenging because of the high number of components that 
have to be installed and operated. In this work, an MILP optimization framework has been developed and applied 
to the off-grid village of Ginostra (on the Stromboli island, Italy), which is a good example of several other insular 
sites throughout the Mediterranean area. A year-long time horizon was considered to model the seasonal storage, 
which is necessary for off-grid areas that wish to achieve energy independence by relying on local renewable 
sources. The degradation costs of batteries and H2-based devices were included in the objective function of the 
optimization problem, i.e., the annual cost of the system. Efficiency and investment cost curves were considered 
for the electrolyzer and fuel cell components in order to obtain a more detailed and precise techno-economic 
estimation. The design optimization was also performed with the inclusion of a general demand response pro-
gram (DRP) to assess its impact on the sizing results. Moreover, the effectiveness of the proposed MILP-based 
method was tested by comparing it with a more traditional approach, based on a metaheuristic algorithm for 
the optimal sizing complemented with ruled-based strategies for the system operation. Thanks to its longer-term 
storage capability, hydrogen is required for the optimal system configuration in order to reach energy self- 
sufficiency. Finally, considering the possibility of load deferral, the electricity generation cost can be reduced 
to an extent that depends on the amount of load that is allowed to participate in the DRP scheme. This cost 
reduction is mainly due to the decreased capacity of the battery storage system.   

1. Introduction 

Immediate and worldwide changes are necessary to meet the main 
sustainable energy goals [1]. Renewable energy sources (RES) are ex-
pected to play a key role in guaranteeing a clean and sustainable 
development, and in counteracting the effects of climate change [2]. 
Variable RES, such as solar and wind, have recently shown dramatic 
growth trajectories, cost reductions and technological improvements 
[3]. However, the fluctuating and unpredictable nature of RES compli-
cates their integration with power systems [4]. This issue can be 
addressed by adopting electrical energy storage (EES) devices, which 
enable any excess renewable energy to be stored for later use [5,6]. As 
far as remote areas are concerned, the market for off-grid renewable 
energy systems is expected to increase in the short- to medium- term, 

through the hybridisation of already existing diesel generators with local 
RES-based power systems [7]. As a result of their increasing perfor-
mance and declining costs, batteries are currently the first choice as EES 
options to make the RES-based energy supply more reliable and effec-
tive. However, when energy storage is required for long periods and for 
large loads, batteries become expensive and their hybridization with 
other storage typologies may result in a cost-effective solution [8]. In 
this context, hydrogen can represent an effective storage option, thanks 
to its long-term storage capability [9]. 

The optimal design of off-grid hybrid renewable energy systems 
(HRESs) is a critical process that must be faced to make the energy 
supply reliable, cost effective and less polluting. Similarly to the litera-
ture on MESs (multi-energy systems) and CHP systems [10,11], two- 
layer (TL) models are used largely for HRES design optimization. 
Design and dispatch problems are decoupled in the TL formulation: the 
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outer loop iteratively generates a potential design solution, whereas the 
inner one deals with the system dispatch and estimates the operational 
expenses of that given system configuration. Design optimization is 
usually performed by employing metaheuristic algorithms, whereas 
ruled-based strategies (RBS) or optimization algorithms are considered 
to manage operation of the system. Particle swarm optimization (PSO) 
and genetic algorithms (GAs) are among the most frequently used 
metaheuristic techniques to cope with the design optimization problem. 
Maleki et al. [12] found that PSO is better performing and more robust 
than other optimization methods. The GA technique has also been re-
ported to be highly effective, especially when dealing with multi- 
objective optimization [13]. With reference to the dispatch problem, 
ruled-based (RB) energy management strategies (EMSs) consist of a set 
of pre-defined priority rules that are used to control the system based on 
the status and characteristics of the installed equipment. More advanced 
methods, used to deal with the second-layer scheduling problem, may 
rely on mixed integer linear programming (MILP) techniques [14–17], 
which offer the advantage of being able to handle the optimization of the 
on/off status and operating power of the units [18]. On the other hand, 
MILP-based approaches can lead to increased computational burden 
compared to RBSs. Li et al. [14] combined a GA-based sizing algorithm 
with an MILP-based scheduling algorithm to perform the optimal sizing 
of a hydrogen/battery power-to-power (P2P) system. In order to limit 
the simulation time to a reasonable value, they used average weekly 
data as input for the bi-level optimization process. For the comparison 
purposes, they also formulated the same problem by means of a more 
traditional approach based on a ruled-based strategy. A similar bi-level 
procedure was then applied by Li et al. [15] to a more complex system to 
deal with cooling, heat and power loads. However, the authors consid-
ered only 12 reference days in order to avoid long simulation times. 
Rullo et al. [16], who also suggested a bi-level framework, employed a 
GA approach for the outer sizing loop and a rolling horizon MILP 
technique for the inner scheduling loop. They compared their predictive 
sizing methodology with a more common procedure based on a ruled- 
based EMS, and they showed that cost savings could be achieved by 
adopting the MILP-based approach. Fioriti et al. [17], who also carried 
out comparisons of priority- and MILP-based operational strategies, 

performed the outer optimization loop by means of PSO. They observed 
that the predictive approach based on MILP allowed a slightly lower 
system cost to be obtained, but at the expense of increased computa-
tional requirements. 

HRES design optimization can also be tackled by means of a single- 
layer (SL) MILP formulation, which allows the system design and 
dispatch to be jointly optimized. Unlike the two-layer methodology, the 
SL approach is able to impose constraints over specific time spans, e.g., 
yearly system reliability or CO2 emissions over the year (in TL models, 
instead, this can only be done by a posteriori penalizing the fitness 
function of the design solutions that do not satisfy the considered global 
constraints) [19]. The optimal sizing and scheduling of isolated mini- 
grids, based on RES coupled with batteries and diesel by means of a 
single-layer MILP, was investigated in Refs. [19–22]. By applying the 
MILP-based methodology, Malheiro et al. [20] observed that RES hy-
bridization leads to lower energy costs and that the presence of diesel 
generators is necessary to limit the system costs and to avoid battery 
over-sizing. Moretti et al. [19] developed an MILP-based algorithm for 
the predictive design and dispatch optimization of microgrids, 
comparing it with a previously developed heuristic methodology. The 
authors formulated the SL MILP by considering four representative 
weeks to simulate the entire year. They showed that the MILP-based 
approach leads to lower electricity costs, improved reliability and 
greater RES penetration. A single-layer MILP formulation was also 
developed by Alberizzi et al. [21,22], who performed the HRES sizing 
problem with limited time spans of 1 day and 1 month. Novel MILP 
methodologies may be required when dealing with the design of more 
complex energy systems, especially when seasonal storage devices are 
included. Gabrielli et al. [23] developed an SL MILP formulation based 
on the coupling of typical days with the aim of reducing the number of 
binary variables and thus the complexity of the problem. Clustering 
approaches, such as k-means, k-medoids and hierarchical clustering 
[24], are commonly used to select typical periods for the optimal system 
design. Novel clustering formulations can also be found, such as the one 
developed by Zatti et al. [25], which is able to find both the most 
representative days of the year and the extreme days. 

The present study focuses on the optimal design of a stand-alone 

Nomenclature 

AC Annual cost 
BOP Balance of plant 
BSS Battery storage system 
BT Battery 
BTch Battery charging 
BTdc Battery discharging 
CT Curtailment 
CTF Cycles-to-failure 
DC Direct current 
DOD Depth-of-discharge 
DRP Demand response program 
EES Electrical energy storage 
EL Electrolyzer 
EMS Energy management strategy 
FC Fuel cell 
GA Genetic algorithm 
HRES Hybrid renewable energy system 
HSS Hydrogen storage system 
HT Hydrogen tank 
KPI Key performance indicator 
LCOE Levelized cost of energy 
LHV Lower heating value 
LOH Level of hydrogen 

LPSP Loss of power supply probability 
LT Lifetime throughput 
MES Multi-energy system 
MILP Mixed integer linear programming technique 
NPC Net present cost 
NS Not satisfied 
OF Objective function 
PEM Proton exchange membrane 
P2P Power to power 
PSO Particle swarm optimization 
PV Photovoltaic 
PVGIS Photovoltaic geographical information system 
PWA Piecewise affine 
RB Ruled based 
RBS Ruled based strategy 
RH Rolling horizon 
SA Storage autonomy 
SCADA Supervisory Control and Data Acquisition 
SL Single-layer 
SOC State of charge 
STC Standard test condition 
TL Two-layer 
TMY Typical meteorological year 
TOU Time of use  
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HRES that includes photovoltaic panels, batteries and hydrogen (i.e., 
electrolyzer, H2 storage tank and fuel cell). The optimization framework 
was applied to the off-grid village of Ginostra (on the island of Strom-
boli, Italy), which is representative of many other isolated insular lo-
cations. A single-layer MILP method was formulated to deal with both 
the design and the scheduling of the system. A year-long time horizon, 
with an hourly resolution, was considered to account for the seasonality 
of RES production and electrical demand, and thus to size seasonal en-
ergy storage devices (which are key components for off-grid commu-
nities that rely on local RESs) more accurately. The wear costs of 
batteries and H2-based devices were considered, in terms of operating 
costs included in the objective function of the optimization problem, in 
order to preserve as much as possible their state-of-health. Piecewise 
affine approximations of the efficiency curves of the electrolyzer and 
fuel cell were also included for a more detailed modelling of their per-
formance. This is particularly suited when analyzing energy systems that 
involve intermittent renewable energy sources. To the best of our 
knowledge, no studies have been published that have dealt with single- 
layer MILP methods with 1-year time horizon and with the inclusion of 
degradation costs of the P2P components. Moreover, the effect of the 
demand response program (DRP) on the optimal size of the components 
was investigated by means of the time of use (TOU) approach [26,27]. 
An increasing number of studies have addressed the problem of demand 
response strategies for an optimum power management [28]. However, 
the literature about DRP applied to the design optimization problem is 
scarce [29,30]. The investigation of how DRP can affect the overall 
system costs, and hence the component sizes, is therefore of great 
interest. 

The paper is structured as follows: Section 2 introduces the selected 
case study and the related problem that has to be solved. Section 3 de-
scribes how the various components are modelled within the MILP 
formulation and presents the objective function that has to be mini-
mized. Section 4 reports the main results and the related discussion 
about the optimal sizing problem. A comparison with a more traditional 
metaheuristic-based sizing approach, based on RB operational 

strategies, is also performed. Finally, the conclusions of the work are 
presented in Section 5. Additional information about how the MILP 
problem is formulated is shown in the Appendix, together with main 
input data used for the selected case study. 

2. Problem statement 

The design optimization methodology was applied to the case study 
of Ginostra [8,31], a village on the island of Stromboli in the South of 
Italy. This small remote island community is completely off-grid and its 
electric load, of approximately 172 MWh per year, is covered entirely by 
means of diesel generators. The cost of energy is at present very high 
(around 0.86 €/kWh) because of the expensive operating costs of the 
gensets. The difficult fuel supply logistics of isolated off-grid areas 
inevitably result in high fuel transportation costs: the diesel price in 
Ginostra is about 2 €/L [8] (which is in line with that assumed by Gracia 
et al. [32] and Alberizzi et al. [21]). The energy needs are also highly 
seasonal, ranging from around 10 MWh/month in winter to 30 MWh/ 
month in summer. This is mainly due to tourism, which causes the 
number of inhabitants to increase to about 200 people during sum-
mertime (the village has only 40 people who live there throughout the 
rest of the year). Reducing the current fuel consumption, by exploiting 
local renewable sources, is therefore of great interest for the village in 
order to lower the cost of electricity, decrease local pollution and make 
the island energy independent. However, an effective EES solution also 
needs to be integrated to cope with the RES intermittency and load 
highly seasonal behavior. 

The input data for the Ginostra site (the hourly profiles of meteoro-
logical and load data over the year) are reported in Appendix B. PVGIS 
was used to derive the ambient air temperature and solar irradiance 
values, referring to a typical meteorological year (TMY) [33]. The 
electrical load data were instead taken from [8]. 

Fig. 1. Schematic diagram of the HRES.  

P. Marocco et al.                                                                                                                                                                                                                                



Energy Conversion and Management 245 (2021) 114564

4

3. Methodology 

A single-layer MILP problem was developed, considering a time 
horizon (T) of one year with a time step discretization of one hour. The 
model enables the optimal sizing of the renewable P2P system to be 
obtained together with its optimal hourly dispatch strategy throughout 
the entire year. 

The considered input data for the optimization problem are:  

1. Meteorological data (i.e., site-specific temperature and irradiance 
data) ∀ t ∈ T  

2. The electricity demand ∀ t ∈ T 
3. Performance and cost data of the various components, i.e., photo-

voltaic panels (PV), electrolyzer (EL), fuel cell (FC), hydrogen tank 
(HT) and battery (BT). 

The following decision variables were computed:  

1. The sizes of the various components (i.e., PV, EL, FC, HT and BT), 
which were treated as continuous variables and allowed to vary over 
a certain size range.  

2. The on/off status of EL and FC ∀ t ∈ T 
3. The input and output power of EL and FC and the charging/dis-

charging power of BT ∀ t ∈ T  
4. The energy stored in the HT and BT ∀ t ∈ T  
5. The curtailed power and load that is not satisfied ∀ t ∈ T  
6. The amount of load increase/decrease in the case of DRP ∀ t ∈ T 

The stand-alone HRES is composed of the following components: PV 
panels, a battery storage system (BSS) and a hydrogen storage system 

(HSS), which includes an electrolyzer, pressurized H2 tanks and a fuel 
cell. All the elements are connected to a direct current (DC) bus by 
means of power converters. The general scheme of the HRES is shown in 
Fig. 1. 

The power balance that has to be satisfied at any time step on the DC 
bus is represented by the following equation: 

PRES(t)+ PBT,dc(t)+ PFC(t)+ PNS(t) = PLD(t)+ PBT,ch(t)+ PEL(t)+PCT(t)
(1)  

where PRES(t) is the power produced by the installed renewable gener-
ators (i.e., PV in this study), PBT,dc(t) and PBT,ch(t) correspond to the 
discharging and charging power of the battery, respectively, PFC(t) is the 
fuel cell operating power, PEL(t) is the electrolyzer operating power, 
PLD(t) is the total power required by the load, PNS(t) is the load that is not 
satisfied (i.e., the fraction of load not satisfied by the renewable P2P 
system) and PCT(t) is the curtailed power. 

The sizing methodology, by means of the MILP approach, is outlined 
in Fig. 2. The various steps of the optimal sizing procedure are described 
in the following subsections. 

3.1. Modelling of the components 

The size of each component of the renewable P2P system is imposed 
to lie between a minimum and maximum value, according to the 
following constraints (with j = PV, FC, EL and i = BT, HT): 

Pj,rated,min ≤ Pj,rated ≤ Pj,rated,max (2)  

Capi,min ≤ Capi ≤ Capi,max (3)  

where Pj,rated (in kW) corresponds to the rated power of the j-th 
component and Capi (in kWh) represents the rated storage capacity of 
the i-th component. More specifically, PEL,rated is the gross inlet rated 
power of the electrolyzer (gross of BOP losses) and PFC,rated is the net 
outlet rated power of the fuel cell (net of BOP losses). 

The lower size limit of each technology was set to zero. A certain 
component is thus selected, within the system configuration, whenever 
the MILP simulation returns a value of its size greater than zero. 

3.1.1. PV panels 
The power produced by the PV generator was computed as in 

[14,34,35]: 

PPV(t) = fPV⋅PPV,rated⋅
G(t)
GSTC

⋅
[
1+ γ⋅

(
Tcell(t) − Tcell,STC

) ]
(4)  

where G(t) (in kW/m2) is the total irradiance incident on the PV array, 
GSTC (in kW/m2) is the incident irradiance under standard test condi-
tions (STC), PPV,rated (in kW) is the rated PV power, Tcell (in ◦C) is the PV 
cell temperature, Tcell,STC (in ◦C) corresponds to the PV cell temperature 
under standard test conditions, fPV is the derating factor and γ (in 1/K) is 
the temperature coefficient. 

The PV cell temperature was derived according to the relationship 
reported in [36]. The total irradiance G(t) was computed based on the 
direct normal irradiance and the diffusive and total irradiance on the 
horizontal surface [37,38]. These values were obtained from the 
Photovoltaic geographical information system (PVGIS) software [33], 
considering a typical meteorological year (TMY). 

3.1.2. Electrolyzer and fuel cell 
In order to define the minimum and maximum operating power of 

the electrolyzer and fuel cell, the following auxiliary variable should be 
defined (with j = EL, FC): 

Pj,rated,aux(t) = Pj,rated⋅δj(t) (5)  

where Pj,rated (in kW) is the EL/FC rated power and δj(t) is a binary 

Fig. 2. Sizing methodology of the P2P system by means of the SL 
MILP technique. 
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variable that is equal to 1 when the EL/FC device is operating, and 
0 otherwise. The auxiliary variable allows the product of the two deci-
sion variables to be transformed into the following set of linear in-
equalities: 

Pj,rated,aux(t) ≤ Pj,rated −
(
1 − δj(t)

)
⋅Pj,rated,min (6)  

Pj,rated,aux(t) ≥ Pj,rated −
(
1 − δj(t)

)
⋅Pj,rated,max (7)  

Pj,rated,aux(t) ≤ Pj,rated,max⋅δj(t) (8)  

Pj,rated,aux(t) ≥ Pj,rated,min⋅δj(t) (9) 

It is thus possible to impose a constraint on the minimum and 
maximum operating power of the electrolyzer and fuel cell as follows 
(with j = EL, FC): 

yj,min⋅Pj,rated,aux(t) ≤ Pj(t) ≤ yj,max⋅Pj,rated,aux(t) (10)  

where the terms yj,min and yj,max represent the lower and upper bound-
aries of the EL/FC modulation range. Pj(t), as shown in Fig. 1, is defined 
at the AC bus level (it corresponds to the gross inlet electrical power for 
the electrolyzer and to the net outlet electrical power for the fuel cell). 

A piecewise affine (PWA) approximation was implemented to 
describe the detailed nonlinear performance curve of the electrolyzer 
and fuel cell devices (i.e., the relationship between the input and output 
operating power). The curves were described by means of n line seg-
ments, and the positions of the related n + 1 breakpoints were found by 
resolving an optimization problem [39], whose procedure is detailed in 
Appendix A. 

The PWA approximation of the performance curve was then imple-
mented in the MILP formulation. This was performed by applying the 
following relationship for each i-th line segment of the curve (with j =
EL, FC): 

Pj,out(t) ≤ αj,i⋅Pj,in(t)+ cβj,i ⋅Pj,rated,aux(t) (11)  

where Pj,in(t) and Pj,out(t) correspond to the inlet and outlet power of the 
EL/FC device, respectively. The αj,i term is the slope of the i-th segment; 
whereas cβj,i is a coefficient that refers to the intercept of the segment. 
Additional details are provided in Appendix A. The inlet and outlet 
power of the fuel cell correspond to the inlet hydrogen power (LHV 
basis) and the generated electrical power (net value), respectively. The 
inlet and outlet power of the electrolyzer instead represent the absorbed 
electrical power (gross value) and the produced hydrogen power (LHV 
basis). 

3.1.3. Battery storage system 
The battery component was modelled by introducing an energy 

balance in the form of the following linear in [14,34,35]equation: 

EBT(t) = EBT(t − 1)⋅(1 − σBT)

+Δt⋅ηBT,conv⋅ηBT,ch⋅PBT,ch(t − 1) −
Δt⋅PBT,dc(t − 1)

ηBT,dc⋅ηBT,conv

(12)  

where EBT(t) (in kWh) is the amount of energy stored in the battery, σBT 
is the battery self-discharge coefficient, ηBT,conv is the efficiency of the 
battery converter, ηBT,ch is the battery charging efficiency and ηBT,dc is the 
battery discharging efficiency. 

A certain energy content was imposed in the battery at the beginning 
of the simulation: 

EBT(tin) = CapBT⋅SOCin (13)  

where SOCin corresponds to the initial state of charge (SOC) and CapBT 
(in kWh) is the battery rated capacity. The battery SOC is here defined as 
the ratio of the energy stored in the battery to the battery rated capacity. 

The following equality constraint was also introduced to enforce that 

the state of charge of the battery at the end of the year was equal to the 
initial one, thus guaranteeing the sustainability of the BSS: 

EBT(tend)⋅(1 − σBT) + Δt⋅ηBT,conv⋅ηBT,ch⋅PBT,ch(tend) −
Δt⋅PBT,dc(tend)

ηBT,dc⋅ηBT,conv

= CapBT⋅SOCin

(14) 

The energy stored in the battery should lie between a minimum and 
maximum value at each time step: 

CapBT⋅SOCmin ≤ EBT(t) ≤ CapBT⋅SOCmax (15)  

where SOCmin corresponds to the minimum SOC below which the battery 
should not operate in order to avoid a significant decrease in the number 
of cycles before being replaced. SOCmax is instead the state-of-charge 
value that is reached by the battery when it is fully charged. The 
values chosen for SOCin, SOCmin and SOCmax are reported in Table C2. 

Unlike Refs. [14,15], the definition of binary variables that specify 
whether the battery is charging or discharging is not required here, with 
a consequent saving of computational time. This is because the 
charging/discharging efficiency of the battery is lower than 1, and the 
energy lost by charging and discharging the battery at the same time 
instant has a greater influence than the chosen MIP gap [40]. Therefore, 
the optimization process is able to automatically select the most 
appropriate operating mode of the battery at each time step. 

3.1.4. Pressurized hydrogen storage tank 
Pressurized tanks are employed to store the hydrogen produced by 

the electrolyzer. A compression step may be required, depending on the 
electrolyzer output pressure and the maximum pressure reachable 
within the tank. In this study, a direct connection between the electro-
lyzer outlet and the pressurized hydrogen tank is considered, i.e., no 
compression is necessary [8]. 

Analogously to the BSS, the energy that is stored in the tank in the 
form of hydrogen (i.e., EH2 (t) in kWh) was computed at each time step 
using the following energy balance: 

EH2 (t) = EH2 (t − 1)
+PEL,out(t − 1)⋅Δt − PFC,in(t − 1)⋅Δt (16)  

where PEL,out (in kW) is the electrolyzer outlet power (corresponding to 
the generated H2 power on an LHV basis) and PFC,in (in kW) is the fuel 
cell inlet power (corresponding to the consumed H2 power on an LHV 
basis). 

The related H2 pressure can then easily be derived by employing the 
ideal gas law. The equality constraints (17) and (18) were employed to 
impose the same storage level at the beginning and at the end of the year 
in order to guarantee the energy self-sufficiency of the HSS: 

EH2 (tin) = CapH2
⋅LOHin (17)  

EH2 (tend) + PEL,out(tend)⋅Δt − PFC,in(tend)⋅Δt
= CapH2

⋅LOHin
(18)  

where LOHin corresponds to the level of hydrogen at the beginning of the 
simulation and CapH2 (in kWh) is the hydrogen storage rated capacity. 
The LOH parameter can be defined as the ratio of the hydrogen pressure 
to the maximum storage pressure. 

The energy content of the hydrogen tank should be between a min-
imum and maximum value, which are related to the hydrogen tank rated 
capacity and the LOH boundaries: 

CapH2
⋅LOHmin ≤ EH2 (t) ≤ CapH2

⋅LOHmax (19) 

In order to allow hydrogen to be supplied to the fuel cell, the H2 
pressure in the tank should not fall below a certain value (corresponding 
to a certain LOHmin), which depends on the constraint on the FC supply 
pressure imposed by the manufacturer. The LOHin, LOHmin and LOHmax 

values are shown in Table C3. 
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3.2. System reliability 

The loss of power supply probability (LPSP) index was used to 
quantify the reliability of the stand-alone renewable P2P system [41]. 
This index represents the ratio of the energy shortage to the total energy 
demand over the whole simulation period T (i.e., 1 year): 

LPSP =
∑T

t=1

PNS(t)⋅Δt
PLD(t)⋅Δt

(20) 

The following constraint was applied: 

LPSP = LPSP* (21)  

where LPSP* is the LPSP target value that has to be satisfied. A value of 
0 was considered to make the off-grid system completely energy 
autonomous. 

3.3. Sizing cost function 

The objective function (OF) of the optimization problem is given by 
the total annual cost of the system CAC,tot (in €/yr) that is not discounted. 
It is composed of the following three contributions: 

CAC,tot = CAC,inv +CAC,OM,fix +CAC,op,var (22)  

where CAC,inv is the initial annual investment cost, CAC,OM,fix corresponds 
to the yearly fixed costs related to maintenance and operation, which do 
not depend on the energy management strategy, and CAC,op,var represents 
the yearly operating costs that depend on the EMS. 

The annual investment cost was defined as (with i = PV, HT and j =
EL, FC, BT): 

CAC,inv =
1

LPR
⋅

(
∑

i
Cinv,i +

∑

j
yBOP,j⋅Cinv,j

)

(23)  

where LPR (in yr) corresponds to the lifetime of the project, Cinv,i/j is the 
investment cost of the i/j-th component and yBOP,j represents the fraction 
of the investment cost that is due to the balance of plant (BOP). The costs 
related to the battery module and to the stack of the EL/FC devices are 
not included in the above equation since they are already accounted for 
in the CAC,op,var term. These costs in fact depend on the number of times 
the BT module and EL/FC stacks are bought during the lifetime of the 
project (i.e., at the beginning of the project period and potentially one or 
more times due to replacements). This number of purchases depends on 
the lifetime of the BT module and of the EL/FC stack, which is a 
consequence of their size and degradation pattern related to the yearly 
dispatch profile. This also implies a linear depreciation of the compo-
nents, meaning that their salvage value is directly proportional to their 
remaining life. 

As far as the electrolyzer and fuel cell are concerned, the power cost 
functions from Marocco et al. [31] were considered for Cinv. The PWA 
approach was used to approximate these cost functions. The positions of 
the various breakpoints, related to the line segments of the PWA 
approximation, were computed by carrying out an optimization process 
analogous to the one developed for the performance curves. However, 
when implementing the PWA approximation in the MILP problem, since 
the investment cost has to be minimized and the cost function is 
concave, the introduction of a binary variable is necessary for each of the 
n line segments in order to identify the active one. A continuous variable 
should also be added for each line segment. Details of the methodology 
used to implement the size dependency of the investment cost are re-
ported in Appendix A. 

The fixed operating and maintenance cost term (CAC,OM,fix) is given 
by the sum of the fixed O&M costs of all the components of the system, 
which are expressed as a fraction of their investment cost (EL, FC, HT) or 
as a function of their rated size (PV, BT). The variable operating term 

(CAC,op,var) was instead expressed as follows (with i = BTch, BTdc, EL, FC): 

CAC,op,var =
∑8760

t=1

∑

i
Cop,var,i(t) (24)  

where the term Cop,var,i(t) corresponds to the variable operating cost 
associated with the i-th system operation mode during time step t. 

3.3.1. Battery operating cost 
The battery operating cost was treated as a degradation cost, which 

can be defined as the cost of the energy flowing through the battery 
bank. It was hypothesized that the battery component will be replaced 
once its overall throughput becomes equal to its lifetime throughput 
(LT). The lifetime throughput was computed starting from the lifetime 
curve in which different depth-of-discharge (DOD) values are reported 
together with the related cycles-to-failure (CTF) values [42]. The LT (in 
kWh) is given by: 

LT =
∑n

i=1

2⋅CapBT⋅DODi⋅CTFi

n
(25) 

where DODi and CTFi represent the DOD and CTF values of the i-th 
point of the lifetime curve and n is the number of CTF-DOD points of the 
lifetime curve. 

The battery operation cost during charging (in €/h) can then be 
described as [15]: 

Cop,var,BTch(t) =
CBT,mod

LT
⋅PBT,ch(t)⋅ηBT,ch⋅ηBT,conv (26)  

which, once rearranged, becomes: 

Cop,var,BTch(t) =
cBT,mod⋅ηBT,ch⋅ηBT,conv

2⋅(DODi⋅CTFi)avg
⋅PBT,ch(t) (27)  

where CBT,mod (in €) is the battery module cost, whereas cBT,mod (in €/kW) 
is the specific battery module cost. 

Similarly, the operating cost during battery discharging is: 

Cop,var,BTdc(t)

=
cBT,mod

2⋅(DODi⋅CTFi)avg⋅ηBT,dc⋅ηBT,conv
⋅PBT,dc(t)

(28)  

3.3.2. Electrolyzer and fuel cell operating costs 
The cost incurred in operating the electrolyzer and the fuel cell (in 

€/h) can be defined as (with j = EL, FC) [15]: 

Cop,var,j(t) =
(

Cj,stack

Nh,tot,j
+COM,var,j

)

⋅δj(t)+Cj,start(t) (29)  

where Nh,tot,j (in h) represents the total number of life hours of the de-
vice, Cj,stack (in €) is the EL/FC stack cost and COM,var,j (in €/h) is the 
variable hourly O&M cost. As can be seen in Eqs. (27) and (28), the 
variable O&M cost of the battery was neglected, as commonly adopted 
in the literature [14,15]. 

Considering the auxiliary variable Pj,rated,aux(t), the above expression 
can be rearranged as follows: 

Cop,var,j(t) =
(

cj,stack

Nh,tot,j
+ cOM,var,j

)

⋅Pj,rated,aux(t)

+Cj,start(t)
(30)  

where cj,stack (in €/kW) is the specific stack cost of the electrolyzer and 
fuel cell and cOM,var,j (in €/kW/h) is the specific variable hourly O&M 
cost. 

The total O&M cost of the electrolyzer and fuel cell (set to 4% of the 
investment cost) was supposed to be divided into 1/3 fixed and 2/3 
variable costs [43]. The variable costs are proportional to the operating 
time of the device: 
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cOM,var,j =
2
3
⋅

4
100

⋅
cinv,i

8760
(31) 

The variable Cj,start(t) (in €/start-up) corresponds to the start-up cost 
associated with the electrolyzer and fuel cell. It is described, in the MILP 
formulation, by the following two linear constraints: 

Cj,start(t) ≥ 0 (32)  

Cj,start(t) ≥
cj,stack

Nstart,tot,j
⋅
(
Pj,rated,aux(t) − Pj,rated,aux(t − 1)

)
(33)  

where Nstart,tot,j is the total number of start-ups that the device can un-
dergo during its lifetime. 

The stack cost, as reported in Table C3, was defined as a fraction of 
the investment cost. In order to avoid the introduction of new auxiliary 
variables, which would make the problem more complex, the invest-
ment cost that appears in Eq. (30) (in the cj,stack, cOM,var,j and Cj,start(t)
terms) was linearly approximated. 

3.4. Demand response program 

The aim of a demand response program is to reduce the overall costs 
by varying the load consumption patterns. Various techniques can be 
applied to include the DRP in an optimization problem. In the present 
study, the time-of-use (TOU) rate of DRP [26,27,44] is considered. The 
load curve over a defined time horizon is changed by shifting a certain 
percentage of load from expensive periods to other cheaper periods, 

thereby allowing a reduction of the total cost to be achieved. 
The new electrical load thus becomes equal to the base load plus a 

variable power term, which can be either positive or negative: 

PLD,DRP(t) = PLD(t)+ PTOU
LD (t) (34) 

The amount of the load increase/decrease should be less than a 
certain percentage of the base load (DRPMAX), as described by the 
following constraint: 

− PLD(t)⋅DRPMAX ≤ PTOU
LD (t) ≤ PLD(t)⋅DRPMAX (35) 

The overall load over a certain time (TDRP) remains fixed, as the DRP 
mechanism is just a translation of a certain amount of load from some 
periods to others to achieve a cost reduction. This can be expressed by 
the following constraint: 

∑TDRP

t=1
PTOU

LD (t) = 0 (36) 

A daily time horizon (i.e., TDRP=24) is considered in this study. 
As can be seen in Eq. (35), the maximum capability of load shifting is 

limited: the DPRMAX parameter was set to 20% in Refs. [27,44], where 
the optimal scheduling of a grid-connected hybrid system was per-
formed. The DPRMAX parameter was varied in the 0–30% range by 
Majidi et al. [26] for a similar system. Sensitivity analyses in the 0–15% 
and 0–20% ranges were instead performed in Refs. [45,46], where the 
energy management of off-grid renewable systems was analyzed. In our 
study, a sensitivity of DPRMAX in the 0–30% range is considered to better 

Fig. 3. a1) & b1) Normalized output power as a function of the normalized input power: detailed model and PWA approximation. a2) & b2) Relative error as a 
function of the normalized input power for the PWA approximation method. 
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evaluate the influence of a demand-side management mechanism on the 
optimal microgrid sizing. 

A practical implementation of the DRP could involve sending online 
signals to consumers in order to modify their consumption pattern, but 
leaving the daily energy demand constant (as imposed by Eq. (36)) 
[45,46]. This can be done, for example, by means of a Supervisory 
Control and Data Acquisition (SCADA) approach, as described by Palma- 
Behnke et al. [47]. 

3.5. Techno-economic data 

The techno-economic parameters of the various components of the 

Table 1 
PWA approximation parameters of the EL/FC performance curves.  

[ − ] z1  z2  z3  z4  z5  

PEM EL 0.100 0.273 0.483 0.725 1.000 
PEM FC 0.058 0.278 0.517 0.759 1.000 

[ − ] η1  η2  η3  η4  η5  

PEM EL 0.391 0.535 0.545 0.534 0.516 
PEM FC 0.442 0.574 0.533 0.481 0.425  

Table 2 
PWA approximation parameters of the EL/FC cost functions. The maximum 
rated power is set to 200 and 100 kW for the EL and FC, respectively.  

[ − ] z1  z2  z3  z4  

PEM EL 0 0.105 0.430 1 
PEM FC 0 0.120 0.450 1 

[€/kW] cinv,1  cinv,2  cinv,3  cinv,4  

PEM EL 0 6.232∙103 3.805∙103 2.832∙103 

PEM FC 0 3.737∙103 2.514∙103 1.978∙103  

Table 3 
Main sizing results of the renewable P2P system for the SL MILP-based and TL 
metaheuristic-based models.  

Parameter  SL model (DRP 0%) TL model 

Photovoltaic modules [kW] 185 211 
Electrolyzer [kW] 3 7 
Fuel cell [kW] 10 34 
Hydrogen tank [kWh] 3092 (40.4 m3) 3505 (45.8 m3) 
Battery [kWh] 613 595 
NPC [€] 981,558 1,104,660 
LCOE [€/kWh] 0.455 0.512  

Fig. 4. Breakdown of the LCOE for the renewable P2P system derived by a) the SL MILP (DRP 0%) and b) the TL metaheuristic methodologies.  

Table 4 
Main technical KPIs of the renewable P2P system for the SL MILP-based and TL 
metaheuristic-based models.  

Parameter SL model (DRP 0%) TL model 

EL operating hours per year [h] 4739 1655 
EL on–off per year [–] 175 312 
EL lifetime [y] 7 10 
FC operating hours per year [h] 686 214 
FC on–off per year [–] 49 46 
FC lifetime [y] NR* NR* 
BT lifetime [y] 13 13 

NR*: No replacement 

Fig. 5. Profile of the energy stored through batteries and hydrogen over the 
year (SL MILP-based model). 

Table 5 
Main sizing results of the renewable P2P system for different values of the DRP 
percentage.  

Parameter  DRP 0% DRP 10% DRP 20% DRP 30% 

PV modules [kW] 185 184 190 185 
Electrolyzer [kW] 3 3 3 4 
Fuel cell [kW] 10 9 8 9 
Hydrogen tank [kWh] 3092 3092 2946 3065 
Battery [kWh] 613 580 524 454 
NPC [€] 981,558 945,729 911,369 867,350 
LCOE [€/kWh] 0.455 0.439 0.423 0.402  
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renewable P2P system are listed in Tables C1–C4 in Appendix C. They 
are mainly based on data reported in [31]. 

Four line segments, corresponding to 5 breakpoints, were chosen for 
the efficiency curves of the electrolyzer and fuel cell since they were 
found to accurately describe the EL and FC performance, as shown by 
the relative error graphs in Fig. 3. The performance curves were taken 
from [31], where the electrochemical models were validated using 
experimental data from Refs. [48,49]. 

The main parameters of the PWA approximation of the performance 
curves of the electrolyzer and fuel cell devices are reported in Table 1. 
The ηk and zk terms correspond to the efficiency (on an LHV basis) and 
the fraction of the rated inlet power in correspondence to the k-th 
breakpoint. It can be noted that z1 is 0.1 for the PEM electrolyzer, which 
corresponds to the lower boundary of the EL modulation range (see 
Table C.3). The z1 value reported in Table 1 for the PEM FC is instead 
slightly different from the minimum fuel cell power fraction (i.e., 6% of 
the rated net outlet power) since z1 refers to the rated inlet power, i.e., 
power in terms of hydrogen for the FC. 

The scale dependency of the EL and FC system investment cost was 
modelled by means of a power function [8]: 

cinv =

(
Prated

Prated,ref

)n

⋅
cinv,ref ⋅Prated,ref

Prated
(37)  

where cinv (in €/kW) is the specific investment cost of the EL/FC 
component, whose rated size is Prated (in kW), and cinv,ref (in €/kW) 
represents the reference specific investment cost of the same component 
with a reference rated size Prated,ref (in kW). The term n stands for the cost 
exponent of the power function. 

The parameters of the PWA approximation of the investment cost 
curve are shown in Table 2 for both the electrolyzer and the fuel cell. The 
terms zk and cinv,k represent the fraction of the maximum rated power (i. 
e., PEL,rated,max and PFC,rated,max) and the specific investment cost (in €/kW) 
with reference to the k-th breakpoint of the cost curve. Three line seg-
ments (i.e., four breakpoints) were considered to obtain a good repre-
sentation, while limiting the number of binary variables. 

3.6. Post-processing 

After performing the full year MILP process to optimally size the 
system, another full year MILP simulation was carried out with fixed 
component sizes. In this second MILP formulation, the investment and 
replacement-related costs were calculated using the power function of 

Eq. (37) without PWA approximation (since sizes of the installed tech-
nologies are already known). This was done to obtain a more accurate 
estimate of the various techno-economic parameters. The levelized cost 
of energy (LCOE) was then derived as follows (with i = PV, EL, FC, BT, 
HT; k = EL, FC, BT and z = EL, FC): 

LCOE =

∑
iCinv,i,0 +

∑LPR
j=1

∑
k
Crep,k,j+

∑
z
COM,var,z,j+

∑
i
COM,fix,i,j

(1+d)j −
∑

k
Csal,k,LPR
(1+d)LPR

∑LPR
j=1

Etot,j

(1+d)j

(38)  

where Cinv,i,0 is the investment cost of the i-th component performed at 
the beginning of the analysis period, COM,var,z,j is the variable O&M cost 
of the z-th component for the j-th year (this term is only considered for 
EL and FC), COM,fix,i,j is the fixed O&M cost of the i-th component for the 
j-th year, Crep,k,j is the replacement cost of the k-th component for the j-th 
year (related to battery module and/or EL/FC stack replacement), 
Csal,k,LPR is the salvage term of the k-th component at the end of the 
lifetime of the project (LPR), Etot,j is the total amount of energy provided 
by the renewable P2P system to the final user over the j-th year and, 
finally, d is the real discount rate. 

The real discount rate (d) was derived based on the nominal discount 
and inflation rates, according to the relationship outlined in [8]. The 
salvage value, which depends on the replacement cost, was assumed to 
be directly proportional to the remaining life of the component and to 
occur at the end of the lifetime of the project (it was considered for 
devices that could need replacement, i.e., BT, EL and FC). 

The BT, EL and FC lifespans need to be computed to know when the 
replacement cost occurs. The battery lifetime is given by the ratio of the 
replacement cost to the yearly degradation cost as follows: 

LBT = min

(
Crep,BT

∑8760
t=1 Cop,var,BTch(t) + Cop,var,BTdc(t)

,LPR

)

(39) 

Similarly, the lifetime of the electrolyzer and fuel cell stack is defined 
as (with j = EL, FC): 

Lj = min

(
Crep,j

∑8760
t=1 Cop,var,j(t) − COM,var,j⋅

∑8760
t=1 δj(t)

,LPR

)

(40) 

The variable O&M term (COM,var,j) is removed from the denominator 
of Eq. (40) since it does not account for component degradation. Eqs. 
(39) and (40) are equivalent to the relationships reported in Ref. [31]. As 
shown in the above formula for the lifetime estimation, when the 
computed lifetime value is higher than the duration of the project, the 
lifetime of the component is set equal to LPR. 

It should be noted that the LCOE was derived in the post-processing 
phase (as also shown in Fig. 2). This economic parameter is often 
considered in the literature when performing techno-economic analysis 
of HRES. Its estimation may therefore be useful for comparison with 
other studies dealing with off-grid energy systems. In the present work, 
the LCOE was not used as objective function in the single-layer MILP, 
due to the impracticability of discounting the cash flows related to the 
replacement costs of the P2P components (whose lifetime is not known 
a-priori, but defined by the MILP optimization). As reported in Eq. (22), 
the OF is thus given by the total annual cost (which is undiscounted). 

The storage autonomy (SA) was also computed in the post-processing 
step. It is defined as the ratio of the maximum useful energy that can be 
stored to the daily average load: 

SA=
CapBT∙(1 − SOCmin)∙ηBT,dc⋅ηBT,conv

Lavg,day
+

CapH2∙(1 − LOHmin)∙ηFC,avg

Lavg,day

(41)  

where ηFC,avg (with inclusion of BOP losses) is the average fuel cell effi-
ciency and Lavg,day (in kWh/day) is the daily average load. 

Fig. 6. Breakdown of the LCOE for the different DRP cases.  
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3.7. Metaheuristic algorithm with a ruled-based control strategy 

For comparison purposes, a design optimization of the RES + P2P 
system was also performed by employing the PSO algorithm (for the 
system sizing) with the implementation of a ruled-based EMS (for the 
system operation), as described in Ref. [31]. PSO is one of the most 
widely used metaheuristic techniques to deal with the optimal sizing of 
renewable energy systems [50], due to its good performance and high 
level of robustness [12]. 

The ruled-based EMS that is adopted in the present study has 
frequently been used in the literature [31]. Priority of operation is given 
to the battery device, which acts as a short-term energy storage device to 
smooth the RES intermittency and limit the number of start-ups and 
shutdowns of the electrolyzer and fuel cell. Surplus energy, if present, is 
used to charge the battery and then converted into hydrogen through the 
PEM electrolyzer when the maximum battery SOC has been reached. 
Instead, during renewable power shortages, the battery first intervenes 
to cover the load until the minimum SOC is reached (and the fuel cell is 
switched on). 

Eqs. (12) and (16) were used to compute the energy content in the 
battery and H2 tank at each time step, respectively. Like the MILP 
methodology, the LPSP index was considered to assess the reliability of 
the stand-alone energy system. A sustainability constraint was also 
introduced to guarantee that the SOC and LOH values at the end of the 
reference year were no lower than the ones at the beginning of the 
simulation. The techno-economic data reported in Appendix C were 
used as input for the simulation. The LCOE, computed through Eq. (38), 
was considered as objective function of the optimal sizing problem. 

4. Results and discussion 

The optimization problem was formulated in the MATLAB environ-
ment employing IBM CPLEX as the solver. A relative MIP gap of 1% was 
imposed. Simulations were performed on a desktop computer with an 
Intel(R) Core(TM) i7-4770 CPU of 3.4 GHz and with 32 GB RAM. 

4.1. Main sizing outcomes 

The main results, referring to both the single-layer (SL) MILP-based 
algorithm and the more traditional two-layer (TL) approach (with a 
metaheuristic algorithm for the optimal design and ruled-based strate-
gies for the system operation), are shown in Table 3. It can be noted that 
the LCOE computed by means of the SL technique is around 11% lower 
than the one derived when employing the TL methodology (0.455 
€/kWh compared to 0.512 €/kWh). PV panels and hydrogen-based 
components are in fact smaller in size when the MILP-based technique 
is applied (the battery capacity is instead slightly higher). 

The contribution of the various components to the overall LCOE is 
depicted in Fig. 4. With reference to the MILP-based approach (Fig. 4a), 
the BSS accounts for almost half of the LCOE, whereas the HSS accounts 
for approximately 17%. Batteries in fact operate daily as short-term 
storage devices and their rated capacity should be sufficient to cover 
most of the power shortages that can occur throughout the year. 
Hydrogen, instead, intervenes less frequently; however, because of its 
longer-term storage capability, its presence is essential to provide a cost- 
effective and reliable power supply service. 

The main technical KPIs are summarized in Table 4. A battery 
duration of approximately 13 years was derived, which is in line with 
the lifetime values commonly employed in the literature for Li-ion 
batteries [8]. The lifetime of the PEM electrolyzer was found to be 
lower for the MILP-based method, due to the higher number of operating 
hours in the reference year (4739 h for the SL technique compared to 
1655 h for the TL method). However, the size of the electrolyzer 
computed by the MILP-based approach is less than half that obtained 
when using the metaheuristic approach. This results in lower electro-
lyzer costs over the lifetime of the project for the SL model (despite the 

lower EL lifetime). No necessity of replacement of the fuel cell stack was 
observed for either of the optimization methodologies. In fact, fuel cell 
operation is not required over the whole year, and is mainly focused on 
the summer period to cope with the increase in load. 

Despite its advantages, the MILP-based approach presents some 
limitations that should be pointed out. Unlike the TL method, the MILP 
formulation requires all of the non-linear equations to be linearized, 
which results in increased problem complexity. Moreover, the proposed 
SL method needs more time to be solved: approximately 4 h are neces-
sary to solve the MILP problem, whereas just a few minutes are sufficient 
for the other sizing technique. However, the CPU time of the SL method 
can still be considered reasonable. 

The yearly profiles of the energy stored in the form of electro-
chemical energy (battery) and chemical energy (hydrogen) are shown in 
Fig. 5 for the MILP approach. It can be noted that the battery component 
absorbs and desorbs energy on a short-term basis, thereby smoothing the 
RES intermittency. The profile of the energy stored through hydrogen is 
instead less variable and shows a seasonal trend. The H2 tank installed 
capacity is around 5 times higher than that of the battery (3092 kWh of 
HT compared to 613 kWh of BT). The resulting total storage autonomy, 
defined by Eq. (41), is almost 4 days. The small-size electrolyzer in-
tervenes at full power almost every time there is a surplus of RES energy 
(4739 h per year). Its size is sufficient to gradually produce hydrogen 
during the spring and fill the pressurized tank, which is then quickly 
emptied in summer because of the increased energy consumption in 
Ginostra. The fuel cell operates mainly in summer (686 h per year) and 
its size, which is around three times higher than that of the electrolyzer, 
is required to fully cover the peak demand. 

A stand-alone system with only batteries as storage medium was also 
analyzed to further highlight the role of hydrogen. The LCOE of this 
HRES configuration (of around 0.544 €/kWh) is higher than the LCOE of 
the hybrid storage case (i.e., 0.455 €/kW for the SL MILP). This is due to 
the higher PV rated power (291 kW) and BT capacity (941 kWh). Thus, 
hydrogen becomes crucial to avoid the over-dimensioning of the battery 
size and to better exploit the local solar source. 

Local renewables, together with batteries and hydrogen, therefore 
represent a cheaper solution than the current diesel-based power system 
(whose LCOE is 0.86 €/kWh [8]). The renewable P2P system is also an 
environmentally friendly option since, unlike diesel engines, no carbon 
dioxide or local contaminants are released during its operation. 

4.2. The impact of the demand response program on sizing 

A demand response strategy was implemented in the MILP-based 
problem in order to decrease the cost of energy and assess its influ-
ence on the sizes of the components. The time of use (TOU) rate of the 
DRP approach (Section 3.4) is considered in the present study. A 
sensitivity of the DRPMAX parameter in the 0–30% range was also 
performed. 

Table 5 reports the main sizing results for the various DRP scenarios. 
The total system cost is observed to decrease as a result of implementing 
a demand management program. Moreover, the cost reduction becomes 
more relevant as the amount of the load that is allowed to participate in 
DRP is increased (i.e., a higher value of the DRPMAX parameter). The 
LCOE drops from 0.455 €/kWh, for the base case without DRP, to around 
0.402 €/kWh when a DRPMAX equal to 30% is applied. This cost 
reduction has mainly been ascribed to the decrease in the Li-ion battery 
capacity, which moves from 613 to 454 kWh when the DRPMAX value 
changes from 0 to 30%. Almost no changes in size are noticed for the 
other system components (i.e., PV panels and HSS) when considering the 
demand response. The main contribution of the battery component to 
lowering the cost of energy in the presence of DRP can also be observed 
by looking at the LCOE breakdown for the various DRP cases shown in 
Fig. 6. As previously reported, the battery device works mainly as a daily 
energy buffer to cope with renewable energy surplus and shortages. In 
the presence of DRP, the load is generally deferred from night hours to 
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the period of the day during which there is excess renewable energy 
(from the PV system). A smaller amount of energy therefore needs to be 
provided by the BSS, due to the increased direct consumption of solar 
energy, with a consequent decrease in the battery capacity that has to be 
installed. Instead, the hydrogen storage system, which acts mainly as a 
long-term storage device (to deal with the seasonal variations of the 
electrical demand), is almost not influenced by the adoption of DRP. 

The effectiveness of load deferral in reducing the LCOE, thanks to the 
reduction in the required energy storage capacity (of the BSS in the case 
study under analysis), is thus shown. The adopted DRP formulation 
could be made more specific if more detailed information about the 
electrical load composition were available. In case the individual ap-
pliances that contribute to the electrical demand are known, it would be 
possible to choose those that are given the flexibility of load deferral and 
those that require immediate coverage. 

5. Conclusions 

The optimal design and yearly dispatch of a stand-alone renewable 
P2P system has been investigated by developing an MILP-based opti-
mization methodology. For comparison purposes, the optimal design 
was also carried out by means of a metaheuristic technique together 
with ruled-based operational strategies. The optimization framework 
was applied to the off-grid insular village of Ginostra. 

The proposed MILP-based approach was shown to be more per-
forming than the alternative metaheuristic method since it allows a 
cheaper system configuration to be identified. However, because of the 
larger number of decision variables, greater computational resources 
were required for the resolution of the MILP problem. 

Concerning the case study of Ginostra, the electricity generation cost 
is currently very high (approximately 0.86 €/kWh), mainly because of 
the high operating costs related to the consumption of fossil fuel. Relying 
on local renewables, coupled with batteries and hydrogen, was found to 
be economically more competitive than the current diesel-based power 
system. In fact, a levelized cost of energy of around 0.455 €/kWh was 
computed by the MILP methodology for the renewable hydrogen-battery 
system (0.512 €/kWh when employing the metaheuristic technique). 
Especially, the hydrogen storage system is necessary in the optimal 
HRES configuration thanks to its cost-effective long-term capability, 
which reduces the required battery capacity and leads to a better 

exploitation of the local RES. 
Demand side management was also applied to evaluate its impact on 

the sizing optimization. By improving the balance between RES supply 
and demand, it has been shown that the DRP leads to a reduction in the 
cost of the system: the LCOE moves from 0.455 €/kWh for the base case 
with no DRP to around 0.402 €/kWh when the DRPMAX parameter is set 
equal to 30%. This cost reduction is mainly due to the decreased ca-
pacity of the battery storage system, which drops from 613 kWh to 454 
kWh. 

In conclusion, the proposed MILP-based methodology has proved to 
be effective in coping with the design of reliable and cost-competitive 
off-grid HRESs. Future works will further investigate this topic by 
analyzing poly-generation systems with a greater number of technolo-
gies and different loads, e.g. as a fuel for clean mobility. 
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Appendix A 

PWA approximation of the electrolyzer and fuel cell performance curves 

A piecewise affine (PWA) approximation was implemented to describe the EL and FC performance curve by means of n line segments. The position 
of the related n + 1 breakpoints {(x1, y1), … (xn+1, yn+1)}, was obtained through an optimization procedure. The optimization procedure was carried 
out considering specific cell inlet/outlet power values (pin/out), i.e., normalized to the number of cells composing the stack and to the cell area. The 
outlet power of the electrolyzer corresponds to the generated hydrogen power (on an LHV basis), whereas it represents the net generated electrical 
power for the fuel cell. 

First, a discretized performance curve, composed of M points {(pin,model,1, pout,model,1), … (pin,model,M, pout,model,M)}, was generated, starting from the 
detailed electrolyzer/fuel cell model. The optimal positions of the n + 1 breakpoints were then computed by minimizing the sum of the squares of the 
difference between the approximated and model values of the electrolyzer/fuel cell outlet power: 

min

(
∑M

m=1

(
pout,approx,m − pout,model,m

)2

)

(A1)  

where pout,approx,m and pout,model,m (in kW/cm2) represent the approximated and model specific outlet power, respectively. The term pout,approx,m was 
derived from the following relationship: 

pout,approx,m = αi⋅
(
pin,model,m − xi

)
+ yi (A2)  

where the slope of the i-th line segment is: 
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αi =
yi+1 − yi

xi+1 − xi
(A3) 

and pin,model,m lies within the following operating range: 

xi ≤ pin,model,m ≤ xi+1 (A4) 

The following constraint was also added to the fitting problem: 

xi+1 ≥ xi (A5) 

Unlike [39], the first and last breakpoints were imposed to coincide with the first and last points of the original curve, similarly to what performed 
by Gabrielli et al. [40]: 

x1 = pin,model,1 (A6)  

y1 = pout,model,1 (A7)  

xn+1 = pin,model,M (A8)  

yn+1 = pout,model,M (A9)  

MILP implementation of the PWA approximation of the performance curves 

The PWA approximation of the EL and FC performance curves was implemented in the MILP formulation by employing the following relationship 
for each i-th line segment of the performance curve (with j = EL, FC): 

Pj,out(t) ≤ αj,i⋅Pj,in(t)+ βj,i⋅δj(t) (A10)  

where Pj,out(t) and Pj,in(t) correspond to the outlet and inlet power of the EL/FC device, respectively. The term αj,i is the slope of the i-th segment, 
whereas βj,i is its intercept. The αj,i term was computed in the following way: 

αj,i =
ηj,i+1⋅zj,i+1 − ηj,i⋅zj,i

zj,i+1 − zj,i
(A11) 

The intercept, βj,i, was instead derived as: 

βEL,i =

(

zEL,i⋅ηEL,i +

(
zEL,i+1⋅ηEL,i+1 − zEL,i⋅ηEL,i

)
⋅zEL,i

zEL,i − zEL,i+1

)

⋅PEL,rated (A12)  

βFC,i =

(

zFC,i⋅ηFC,i +

(
zFC,i+1⋅ηFC,i+1 − zFC,i⋅ηFC,i

)
⋅zFC,i

zFC,i − zFC,i+1

)

⋅
PFC,rated

ηFC,n+1
(A13)  

where ηj,k and zj,k represent the efficiency and the fraction of the rated inlet power (H2 power for the FC and electrical power for the EL), respectively, 
for the k-th breakpoint of the performance curve. The n term stands for the number of line-segments of the curve. 

By grouping the various terms of Eqs. (A12) and (A13) in the cβj,i coefficient (except for the Pj,rated term), Eq. (A10) can be rearranged as follows: 

Pj,out(t) ≤ αj,i⋅Pj,in(t)+ cβj,i ⋅Pj,rated,aux(t) (A14)  

where Pj,rated,aux(t) is an auxiliary variable defined by Eq. (5). 
Constraints were also added to impose the lower and upper boundaries of the operating map: 

z1⋅PEL,rated,aux(t) ≤ PEL,in(t) ≤ zn+1⋅PEL,rated,aux(t) (A15)  

z1

ηn+1
⋅PFC,rated,aux(t) ≤ PFC,in(t) ≤

zn+1

ηn+1
⋅PFC,rated,aux(t) (A16)  

MILP implementation of the PWA approximation of the cost curves 

Since the investment cost should be minimized and the cost function is concave, the introduction of a binary variable Bi is required for each of the n 
line segments in order to identify the active one. A continuous variable was also added for each line segment of the cost curve. 

The rated power of the electrolyzer and fuel cell is given by (with j = EL, FC):  

Pj,rated =
∑n

i=1
Pj,rated,i (A17)  

where Pj,rated,i represents the continuous variable associated with the i-th line segment, which needs to fulfil the following constraint: 
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zj,i⋅Pj,rated,max⋅Bj,i ≤ Pj,rated,i ≤ zj,i+1⋅Pj,rated,max⋅Bj,i (A18) 

The following constraint should also be introduced to ensure that no more than one binary variable Bj,i is equal to 1: 

∑n

i=1
Bj,i ≤ 1 (A19)  

which means that the electrolyzer/fuel cell is installed when the sum of all the Bj,i variables is equal to 1. 
The electrolyzer/fuel cell investment cost for a certain rated power was then computed as follows: 

Cinv,j =
∑n

i=1

(
αj,i⋅Pj,rated,i + βj,i⋅Bj,i

)
(A20)  

where αj,i and βj,i represent the slope and the intercept of the i-th segment, which are defined as follows: 

αj,i =
cinv,j,i+1⋅zj,i+1 − cinv,j,i⋅zj,i

zj,i+1 − zj,i
(A21)  

βj,i =

(

zj,i⋅cinv,j,i +

(
zj,i+1⋅cinv,j,i+1 − zj,i⋅cinv,j,i

)
⋅zj,i

zj,i − zj,i+1

)

⋅Pj,rated,max (A22)  

where cinv,j,k and zj,k represent the specific investment cost (in €/kW) and the fraction of the maximum rated power, respectively, when referring to the 
k-th breakpoint of the investment cost curve. 

Appendix B 

The input data used in this work for the Ginostra site, namely the hourly profiles over the year of the solar irradiance on the PV plane (in kW/m2), 
ambient temperature (in ◦C) and electrical demand (in kW), are shown in Fig. B1. 

Fig. B1. Input data (meteorological and load) for the MILP simulation of the Ginostra site: temperature, solar irradiance and electrical load [31].  
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Appendix C 

Tables C1–C4 report the main techno-economic input parameters of the components considered in the renewable P2P system (mainly taken from 
[31]). 
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Table C1 
Techno-economic input data for the PV system.  

PV power plant 

Investment cost 1,547 €/kW [8] (monocrystalline silicon) 
Lifetime Project lifetime 
Fixed O&M cost 24 €/kW/y [8] 
Derating factor,fPV  0.86 
Nominal operating cell temperature 44 ◦C [51] 
Temperature coefficient,γ  − 0.003 1/K [51] 
PV surface slope 34◦ [33] 
PV surface azimuth 18◦ [33] 
Albedo of the ground 0.2 [37] 
Incident irradiance at STC,GSTC  1 kW/m2 

PV cell temperature at STC,Tcell,STC  25 ◦C  

Table C2 
Techno-economic input data for the BSS.  

Li-ion battery 

Investment cost (system) 550 €/kWh [8] 
Module cost,cBT,mod  275 €/kWh (50% of Inv. cost [52]) 
Lifetime of the battery bank DOD-CTF [53] 
BOP lifetime Project lifetime 
Fixed O&M cost 10 €/kWh/y [54] 
Charging efficiency, ηBT,ch  0.95 [54] 
Discharging efficiency, ηBT,dc  0.95 [54] 
Self-discharge,σBT  5%/month [32] 
Minimum SOC,SOCmin  0.2 [32] 
Maximum SOC,SOCmax  1 
Initial SOC,SOCin  0.5  

Table C4 
Other techno-economic data.  

Other assumptions 

Nominal discount rate 7% [8] 
Inflation rate 2% [8] 
Project lifetime,LPR  20 years [31]  

Table C3 
Techno-economic input data for the HSS.  

Hydrogen tank 

Investment cost 470 €/kg [43] 
Fixed O&M cost (% of Inv. cost) 2% [43] 
Lifetime Project lifetime 
Minimum pressure,pmin  3 bar [8] 
Maximum pressure,pmax  28 bar [8] 
Minimum LOH,LOHmin  pmin/pmax 

Maximum LOH,LOHmax  1 
Initial LOH,LOHin  0.5 

PEM electrolyzer 

Ref. specific investment cost,cinv,ref  4600 €/kW [55] 
Ref. rated size,Prated,ref  50 kW [55] 
Cost exponent,n  0.65 [55] (from fitting) 
Stack cost (% of Inv. cost) 26.7% [56] 
Fixed O&M cost (% of Inv. cost) 1/3∙(4%) [43] 
Variable O&M cost (% of Inv. cost) 2/3∙(4%) [43] 
Operating temperature 60 ◦C [31] 
Operating pressure 30 bar [31] 
Minimum power of the system (% of rated gross inlet 

power) 
10% [31] 

Efficiency Efficiency curve from  
[31] 

BOP lifetime Project lifetime 
Operating hours,Nh,tot,EL  40,000 h [43]  

Table C3 (continued ) 

Hydrogen tank 

Number of on–off cycle,Nstart,tot,EL  5,000 [57] 

PEM fuel cell 

Ref. specific investment cost,cinv,ref  3947 €/kW [58] 
Ref. rated size,Prated,ref  10 kW [58] 
Cost exponent,n  0.7 [59] 
Stack cost (% of Inv. cost) 26.7% [56] 
Fixed O&M cost (% of Inv. cost) 1/3∙(4%) [43] 
Variable O&M cost (% of Inv. cost) 2/3∙(4%) [43] 
Operating temperature 60 ◦C [31] 
Operating pressure 1 bar [31] 
Minimum power of the system (% of rated net outlet 

power) 
6% [31] 

Efficiency Efficiency curve from  
[31] 

BOP lifetime Project lifetime 
Operating hours,Nh,tot,FC  30,000 h [14,16] 
On-off cycle number,Nstart,tot,FC  10,000 [60]  
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[49] Corrêa JM, Farret FA, Canha LN, Simoes MG. An electrochemical-based fuel-cell 
model suitable for electrical engineering automation approach. IEEE Trans Ind 
Electron 2004;51(5):1103–12. 

[50] Mokhtara C, Negrou B, Bouferrouk A, Yao Y, Settou N, Ramadan M. Integrated 
supply–demand energy management for optimal design of off-grid hybrid 
renewable energy systems for residential electrification in arid climates. Energy 
Convers Manag 2020;221:113192. 

[51] LG, LG NeON® R solar module. [Online]. Available: <https://www.lg.com/us/bus 
iness/solar-panels/lg-LG365Q1C-A5>. [accessed: 11-Mar-2021]. 

[52] Tsiropoulos I, Tarvydas D, Lebedeva N. Li-ion batteries for mobility and stationary 
storage applications. 2018. 

[53] Zia MF, Elbouchikhi E, Benbouzid M. Optimal operational planning of scalable DC 
microgrid with demand response, islanding, and battery degradation cost 
considerations. Appl Energy 2019;237:695–707. 

[54] Federal Ministry for Economic Affairs and Energy. Markets for Battery Storage. 
Sub-sector analysis on the market potential for battery storage in Tanzania. 2015. 

[55] Proost J. State-of-the art CAPEX data for water electrolysers, and their impact on 
renewable hydrogen price settings. Int J Hydrogen Energy 2019;44(9):4406–13. 

[56] Shehzad MF, Abdelghany MB, Liuzza D, Mariani V, Glielmo L. Mixed logic dynamic 
models for MPC control of wind farm hydrogen-based storage systems. Inventions 
2019;4(4):1–17. 

[57] Santos M, Marino I. Energy analysis of the Raggovidda integrated system. 2019. 
[58] Battelle Memorial Institute. Manufacturing Cost Analysis of PEM Fuel Cell Systems 

for 5- and 10-kW Backup Power Applications. 2016. 
[59] Parra D, Patel MK. Techno-economic implications of the electrolyser technology 

and size for power-to-gas systems. Int J Hydrogen Energy 2016;41(6):3748–61. 
[60] Torreglosa JP, García-Triviño P, Fernández-Ramirez LM, Jurado F. Control based 

on techno-economic optimization of renewable hybrid energy system for stand- 
alone applications. Expert Syst Appl 2016;51:59–75. 

P. Marocco et al.                                                                                                                                                                                                                                

http://refhub.elsevier.com/S0196-8904(21)00740-8/h0080
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0080
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0080
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0085
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0085
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0085
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0090
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0090
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0090
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0095
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0095
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0095
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0100
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0100
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0105
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0105
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0105
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0110
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0110
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0115
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0115
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0120
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0120
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0120
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0125
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0125
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0130
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0130
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0130
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0135
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0135
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0135
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0135
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0140
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0140
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0145
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0145
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0145
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0150
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0150
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0150
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0155
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0155
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0155
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0160
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0160
https://ec.europa.eu/jrc/en/pvgis
https://ec.europa.eu/jrc/en/pvgis
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0170
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0170
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0170
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0175
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0175
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0175
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0180
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0180
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0185
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0185
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0185
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0190
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0190
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0190
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0195
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0195
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0195
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0200
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0200
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0200
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0205
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0205
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0205
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0210
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0210
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0210
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0210
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0215
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0215
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0220
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0220
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0220
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0225
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0225
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0225
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0230
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0230
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0230
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0230
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0235
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0235
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0235
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0240
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0240
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0240
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0245
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0245
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0245
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0250
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0250
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0250
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0250
https://www.lg.com/us/business/solar-panels/lg-LG365Q1C-A5
https://www.lg.com/us/business/solar-panels/lg-LG365Q1C-A5
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0260
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0260
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0265
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0265
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0265
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0270
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0270
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0275
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0275
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0280
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0280
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0280
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0285
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0290
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0290
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0295
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0295
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0300
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0300
http://refhub.elsevier.com/S0196-8904(21)00740-8/h0300

	An MILP approach for the optimal design of renewable battery-hydrogen energy systems for off-grid insular communities
	1 Introduction
	2 Problem statement
	3 Methodology
	3.1 Modelling of the components
	3.1.1 PV panels
	3.1.2 Electrolyzer and fuel cell
	3.1.3 Battery storage system
	3.1.4 Pressurized hydrogen storage tank

	3.2 System reliability
	3.3 Sizing cost function
	3.3.1 Battery operating cost
	3.3.2 Electrolyzer and fuel cell operating costs

	3.4 Demand response program
	3.5 Techno-economic data
	3.6 Post-processing
	3.7 Metaheuristic algorithm with a ruled-based control strategy

	4 Results and discussion
	4.1 Main sizing outcomes
	4.2 The impact of the demand response program on sizing

	5 Conclusions
	CRediT authorship contribution statement
	Declaration of Competing Interest
	Acknowledgements
	Appendix A Acknowledgements
	PWA approximation of the electrolyzer and fuel cell performance curves
	MILP implementation of the PWA approximation of the performance curves
	MILP implementation of the PWA approximation of the cost curves

	Appendix B MILP implementation of the PWA approximation of the cost curves
	Appendix C MILP implementation of the PWA approximation of the cost curves
	References


