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Abstract

With the advancement of technology, analysis of large-scale data of gene expression is fea-

sible and has become very popular in the era of machine learning. This paper develops an

improved ridge approach for the genome regression modeling. When multicollinearity exists

in the data set with outliers, we consider a robust ridge estimator, namely the rank ridge

regression estimator, for parameter estimation and prediction. On the other hand, the effi-

ciency of the rank ridge regression estimator is highly dependent on the ridge parameter. In

general, it is difficult to provide a satisfactory answer about the selection for the ridge param-

eter. Because of the good properties of generalized cross validation (GCV) and its simplicity,

we use it to choose the optimum value of the ridge parameter. The GCV function creates a

balance between the precision of the estimators and the bias caused by the ridge estima-

tion. It behaves like an improved estimator of risk and can be used when the number of

explanatory variables is larger than the sample size in high-dimensional problems. Finally,

some numerical illustrations are given to support our findings.

Introduction

High-dimensional statistical inference is essential whenever the number of unknown parame-

ters is larger than sample size. Typically, high-throughput technology provides large-scale data

of gene expressions in transcriptomics. As an example, the riboflavin production data set with

Bacillus subtilis (Lee et al. [1] and Zamboni et al. [2]) includes the logarithm of the riboflavin

production rate as the response variable along with 4088 covariates which are the logarithm of

the expression levels of 4088 genes, which are normalized using the Affymetrix oligonucleotide

arrays normalizing methods. One rather homogeneous data set exists from 71 samples that

were hybridized repeatedly during a fed-batch fermentation process in which different engi-

neered strains and strains grown under different fermentation conditions were analyzed.

A relevant family of methods for prediction of the response based on the high dimensional

gene expression data are sparse linear regression models. The least absolute shrinkage and

selection operator (LASSO), proposed by Tibshirani [3], is the most popular, while other rele-

vant methods are SCAD penalization [4] and minimum concave penalty [5]. In spite of the
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suitable sparsity caused by these penalized methods, they have low prediction performance for

high dimensional data sets, because of their shrinkage and bias. Hence, developing shrinkage

strategies to improve prediction is an interest in genome studies.

The primary aim of this study is improving the prediction accuracy of the riboflavin pro-

duction data, in genome regression modeling; secondly, we further focus on detecting outli-

ers. Intuitive methods for labeling observations as outliers can be provided by diagnostic

plots. Fig 1 gives the diagnostics plots to identify outliers for the riboflavin data set based on

the ordinary least-squares model with effective genes. The plots suggest there exist some out-

liers in the data set. Hence, developing efficient robust estimation strategy is another aspect

of our approach.

Fig 1. Diagnostic plots for the riboflavin production data set.

https://doi.org/10.1371/journal.pone.0245376.g001
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Rank regression

Jureckova [6] and Jaeckel [7] proposed rank-based estimators for linear models as highly effi-

cient and robust methods to outliers in response space. In short, rank regression is a simple

technique which consists of replacing the data with their corresponding ranks. Rank regres-

sion and related inferential methods are useful in situations where

1. the relation between the response and covariate variables is nonlinear and monotonic and a

simple and practical nonlinear form is of interest rather than polynomial, spline, kernel

and/or other forms

2. there are outliers present in the study and we need a nonparametric robust procedure

3. the mere presence of so many important input variables makes it difficult to think in terms

to find an appropriate parametric nonlinear model

The package Rfit in R, developed by Kloke and McKean [8] is a convenient and efficient

tool for estimation/testing, diagnostic procedures and measures of influential cases in rank

regression.

Rank estimator

Consider the setting where observed data are realizations of fðXi; yiÞg
n
i¼1

with p-dimensional

covariates Xi 2 Rp and univariate continuous response variables yi 2 R. A simple regression

model has form

yi ¼ X>i βþ �i; ð1Þ

where β is the vector of regression coefficients and �i is the ith error component. For simplicity,

we assume that the intercept is zero. In case it exists, by centering the observations one can

eliminate it from the study.

We assume that:

1. Errors � = (�1, . . ., �n)> are independently and identically distributed (i.i.d.) random vari-

ables with (unknown) cumulative distribution function (c.d.f.) F having absolutely continu-

ous probability density function (p.d.f.) f with finite and nonzero Fisher information

0 < Iðf Þ ¼
Z þ1

� 1

�
f 0ðxÞ
f ðxÞ

� �2

f ðxÞdx <1:

2. For obtaining the linear rank estimator, we consider the score generating function

c : ð0; 1Þ ! R which is assumed to be non constant, nondecreasing, and square integrable

on (0, 1). The scores are defined in either of the following ways:

aðiÞ ¼ EcðUi:nÞ or aðiÞ ¼ c
i

nþ 1

� �

; i ¼ 1; . . . ; n

for n� 1, where U1:n� . . .� Un: n are order statistics from a sample of size n from the uni-

form distribution Uð0; 1Þ.

To obtain the rank estimate of β, define the pseudo-norm

k v kc ¼
Xn

i¼1

aðRðviÞÞvi ð2Þ

where for y = (y1, . . ., yn)>, a(R(y)) = (a(R(y1)), . . ., a(R(yn)))> and R(yi) is the rank of yi,
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i = 1, . . ., n and a(1)�a(2)�. . .�a(n). Then, the rank-estimate of β is given by

β̂c ¼ arg min k y � Xβkc

¼ ðX>XÞ� 1X>ŷc;
ð3Þ

where X = (X1, . . ., Xn)> and ŷc is the minimizer of dispersion function Dψ(η) = ky − ηkψ over

Z�CðXÞ, where CðXÞ is the column space spanned by the columns of X. Thus, β̂c is the solution

to the rank-normal equations X> a(R(y − Xβ)) = 0 and DcðXβ̂cÞ ¼ k y � ŷc kc. Refer to the

“S1 File” for a simple example of rank estimator, the form of ψ, and references.

Regularization methods

Under situations in which the matrix X> X is singular, the usual estimators are not applicable.

From a practical point of view, high empirical correlations among two or a few other covari-

ates lead to unstable results for estimating β or for pursuing variable selection. To overcome

this problem, the ridge version for estimation can be considered. Ridge estimation is a regular-

ization technique initially introduced by Tikhonov [9] and followed by Hoerl and Kennard

[10] to regularize parameters or linear combination of them in order to provide acceptable

estimators with less variability than the usual estimator, in multicollinear situations (see [8,

11–14] for more details). On the other hand, when the response distribution is non-normal or

there are some outliers present in the study, the usual least squares and maximum likelihood

methods fail to provide efficient estimates. In such cases, there is a need to develop an estima-

tion strategy which is applicable in multicollinear situations and has acceptable efficiency in

the presence of outliers.

Our contribution

Our contribution is two fold. First, for the situations where both multicollinearity and outliers

exist we develop a shrinkage estimation strategy based on the rank ridge regression estimator.

This creates two tuning parameters that must be optimized. Then, we define a new generalized

cross validation (GCV) criterion to select the induced tuning parameters. The GCV has been

applied to obtain the optimal ridge parameter in a ridge regression model by Golub et al. [15]

and to obtain the optimal ridge parameter and bandwidth of the kernel smoother in semipara-

metric regression model by Amini and Roozbeh [16] as well as in partial linear models by

Speckman [17]. Here, we use the GCV criterion for selecting the optimal values of ridge

and shrinkage parameters, simultaneously. Our proposed GCV criterion creates a balance

between the precision of the estimators and the biasedness caused by the ridge and shrinkage

parameters.

The following section provides a robust shrinkage estimator based on the improved rank-

based test statistic with developing a generalized cross validation (GCV) criterion, to obtain

optimal values of tuning parameters. Subsequently, application of the proposed improved

estimation method is illustrated for two real world data sets and an extensive simulation

study to demonstrate usefulness of the proposed improved methodology. Finally, our study is

concluded.

Methodology

In this section, we first define a robust test-statistic for testing the null hypothesis Ho : β ¼ 0
in the rank-regression analysis. This test is further employed in the construction of a robust

rank-based shrinkage estimator. Then, we consider the rank ridge regression estimator and by
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the aid of the proposed test-statistic, we define the Stein-type shrinkage estimator for β for

robust analysis. Since this estimator will have two tuning parameters, we evaluate these param-

eters using a generalized cross validation (GCV) criterion.

Robust shrinkage estimator

In order to define the robust rank-based shrinkage estimator, we need to develop a robust test

statistic to test the following set of hypotheses

Ho : β ¼ 0 vs HA : β 6¼ 0: ð4Þ

Denote the ith element of H = X(X> X)−1 X>, the projection matrix onto the space CðXÞ, by

hiin. We also need the following regularity conditions to be held.

(A1) limn!1max1�i�n hiin = 0, where hiin is commonly called the leverage of the ith data

point.

(A2) limn!1
1

nX
>X ¼ S, where S is a p × p positive definite matrix.

Theorem 1 Let

RnðkÞ ¼ s� 2
a a>ðRðyÞÞXðn� 1X>X þ kIpÞ

� 1
½XðkÞ�� 1

ðn� 1X>X þ kIpÞ
� 1X>aðRðyÞÞ; ð5Þ

where X(k) is an invertible matrix given by

XðkÞ ¼
1

n
X>X þ Ip

� �� 1

� k
1

n
X>X þ Ip

� �� 1
1

n
X>X þ Ip

� �� 1
" #

; ð6Þ

s2
a ¼

1

n� 1

Pn
j¼1

a2ðjÞ¼: 1, and k> 0. Assume (A1) and (A2). Then, reject Ho in favor of HA at
approximate level α iff RnðkÞ � w2

pðaÞ, where w
2
pðaÞ denotes the upper level α critical value of χ2

distribution with p d.f.
Proof 1 Refer to the “S1 File”.

Now, using a similar approach in formulating the ridge estimator, we use the following

rank ridge regression estimator (Roozbeh et al. [18])

β̂cðkÞ ¼
1

n
X>X þ kIp

� �� 1

X>ŷc; ð7Þ

where k> 0 is the ridge parameter.

In order to improve upon the rank ridge regression estimator, following Saleh [19], we use

the Stein-type shrinkage estimator (SSE) as

β̂ðSÞc ðk; dÞ ¼ 1 �
d

RnðkÞ

� �

β̂c kð Þ

¼ β̂cðkÞ � dRnðkÞ
� 1β̂cðkÞ; d > 0:

ð8Þ

The SSE shrinks the coefficients towards the origin using the test statistic Rn(k). The

amount of shrinkage is controlled by the shrinkage coefficient d.

In the following result we show that the SSE is a shrinkage estimator with respect to the lq-
norm, k a kq ¼ ð

Pn
j¼1
jajj

q
Þ

1=q
, q> 0, with a = (a1, . . ., an)>. The reason we take the lq-norm is

that we can simultaneously take l1 and l2 norms into consideration. One must consider l1-

norm keeps the scale of observation, however, l2-norm is mathematically tractable.
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Theorem 2 β̂ðSÞc ðk; dÞ is a shrinkage estimator under lq-norm under some regularity condi-
tions as stated below

(i): Under the set of local alternatives Kn : β ¼ n� 1
2 d, with δ = (δ1, . . ., δp)

>, δi 6¼ 0, i = 1, . . ., p,

we have k β̂ðSÞc ðk; dÞ kq < k β̂cðkÞ kq.

(ii) For k> n/2, d> 0, we have

k β̂ðSÞc ðk; dÞ kq < k 1 �
d

RnðkÞ

� �

ŷc kq:

(iii) Assume λi = o(n), i = 1, . . ., n. For k> sup1�i � n λi, (ii) holds in limit.

Proof 2 Refer to the “S1 File”.

The proposed SSE may be criticized since it depends on the two tuning parameters k and d
and it may come to mind why we need an estimator with two tuning parameters, when we

have the rank ridge regression estimator. In what follows we elaborate more on the advantages

of the SSE β̂ðSÞc ðk; dÞ in our analysis. Accepting the fact that we need a robust rank estimator,

apart from the justifications provided in Saleh [19], we give the following reasons.

1. Apparently, as d! 0, β̂ðSÞc ðk; dÞ ! β̂cðkÞ and thus for small values d the gain in estimation

is just the information provided by the robust ridge parameter, even if the null hypothesis

Ho is not true. Thus, even if we agree that the rank ridge regression estimator shrink the

coefficients to zero, the information provided by the test statistic Rn(k), which is controlled

by d in the SSE, is useful.

2. Consider a situation in which we do not have strong evidence to reject the null hypothesis.

Knowing the fact that the ridge estimator does not select variables (see Saleh et al. [20]), we

can not estimate the zero vector using the rank ridge regression estimator, however, the

shrinkage coefficient d maybe obtained such that for a given k, d = Rn(k) and the resulting

shrinkage estimator becomes equal to zero. This might be a rare event, but theoretically

sounds.

3. The last but not the least, for the set of local alternatives Kn, as in Theorem 2, the proposed

SSE shrinks more than the rank ridge regression estimator. Thus in order to have robust

shrinkage estimator, the SSE with two tuning parameters is preferred.

The SSE depends on both the ridge parameter k and shrinkage parameter d. For optimiza-

tion purposes, we use the GCV of Roozbeh et al. [18] in the forthcoming section.

Generalized cross validation

The GCV chooses the ridge and shrinkage parameters by minimizing an estimate of the unob-

servable risk function

Rðβ; β̂ðSÞc ðk; dÞÞ ¼
1

n
ðXβ � ŷðSÞc ðk; dÞÞ

> Xβ � ŷðSÞc ðk; dÞ
� �

¼
1

n
k Xβ � Xβ̂ðSÞc ðk; dÞ k

2;

PLOS ONE Ridge regression and its applications in genetic studies

PLOS ONE | https://doi.org/10.1371/journal.pone.0245376 April 8, 2021 6 / 17

https://doi.org/10.1371/journal.pone.0245376


where

ŷðSÞc ðk; dÞ ¼ Xβ̂ðSÞc ðk; dÞ

¼ 1 �
d

RnðkÞ

� �

2t̂cXðn� 1X>X þ kIpÞ
� 1X>y

¼ Lðk; dÞy;

ð9Þ

with Lðk; dÞ ¼ 1 � d
RnðkÞ

� �
2t̂cXðn� 1X>X þ kIpÞ

� 1X>, termed as the hat matrix of y, and t̂c is a

consistent estimator (see Hettmansperger and McKean [21]) for the scale parameter τψ given

by

t� 1
c
¼

Z

cðuÞcf ðuÞdu; cf ðuÞ ¼ �
f 0ðF� 1ðuÞÞ
f ðF� 1ðuÞÞ

:

It is straightforward to show that (see Hettmansperger and McKean [21] and Roozbeh [22])

EðRðβ; β̂ðSÞc ðk; dÞÞÞ ¼
1

n
k In � Lðk; dÞð ÞXβk2 þ

t2
c

n
tr Lðk; dÞ2
� �

¼ b2ðk; dÞ þ t2
c
m2ðk; dÞ;

where b2ðk; dÞ ¼ 1

n k In � Lðk; dÞð ÞXβk2 and m2ðk; dÞ ¼ 1

n tr Lðk; dÞ2
� �

.

The GCV function is then defined as

GCVðβ̂ðSÞc ðk; dÞÞ ¼
1

n k In � Lðk; dÞð Þyk2

1 � 1

n tr L k; dð Þð Þ
� �2

¼
1

n k In � Lðk; dÞð Þyk2

ð1 � m1ðk; dÞÞ
2

;

ð10Þ

where m1ðk; dÞ ¼ 1

n tr L k; dð Þð Þ.

Corollary 3 Suppose that the eigenvalues {λνn, ν = 1, . . ., n} of XX> satisfy λνn’ nν−m for
some m> 1. Then, for the GCV function in (10)

lim
n!1

EðGCVðβ̂ðSÞc ðk; dÞÞÞ ¼ t2
c
þ lim

n!1
EðRðβ; β̂ðSÞc ðk; dÞÞÞ: ð11Þ

Corollary 3 is an application of the GCV theorem of Craven and Wahba (1979) and Golub

et al. (1979). It implies that the minimizer of EðGCVðβ̂ðSÞc ðk; dÞÞÞ is essentially equivalent to the

minimizer of EðRðβ; β̂ðSÞc ðk; dÞÞÞ for SSE. Based on (11), GCVðβ̂ðSÞc ðk; dÞÞ is an estimator of

EðRðβ; β̂ðSÞc ðk; dÞÞÞ with a nearly constant bias. Using the techniques of Section 3, this can be

shown to be an estimator of t2
c

with positive but asymptotically negligible bias, so the resulting

“F” statistic can be expected to be conservative. The main result of this section is to obtain a

good estimate of the minimizer of EðRðβ; β̂ðSÞc ðk; dÞÞÞ from the data which does not require

knowledge of t2
c

so that, by minimizing it, we can extract the optimal values for the two tuning

parameters simultaneously.

Applications

In this section we consider some numerical experiments to illustrate the usefulness of the sug-

gested improved methodology in the regression model. We analyze the performance of the

proposed estimators in a real-world examples related to the riboflavin production.
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Application to riboflavin production data set

To support our assertions, we consider the data set about riboflavin (vitamin B2) production

in Bacillus subtilis, which can be found in R package “hdi”. There is a single real valued

response variable which is the logarithm of the riboflavin production rate and p = 4088 explan-

atory variables measuring the logarithm of the expression level of 4088 genes. There is one

rather homogeneous data set from n = 71 samples that were hybridized repeatedly during a fed

batch fermentation process where different engineered strains and strains grown under differ-

ent fermentation conditions were analyzed.

Fig 2 shows the normal Q–Q plot based on the ridge estimation for the riboflavin produc-

tion data set. Also, the bivariate boxplot for selected genes of this data is depicted in Fig 3. The

bivariate boxplot is a two-dimensional analogue of the boxplot for univariate data. This dia-

gram is based on calculating robust measures of location, scale, and correlation; it consists

essentially a pair of concentric ellipses, one of which (the hinge) includes 50% of the data and

the other (called the fence) delineates potentially troublesome outliers. In addition, robust

regression lines of both response on predictor and vice versa are shown, with their intersection

showing the bivariate location estimator. The acute (large) angle between the regression lines

will be small (large) for a large (small) absolute value of correlations. Figs 2 and 3 clearly reveals

that the data contains some outliers.

We use GCV to select the the ridge and shrinkage parameters for the proposed estimators,

simultaneously. Similar to the SSE, the GCV score functions for β̂ðkÞ and β̂cðkÞ can be pro-

cured by setting

L1ðkÞ ¼ Xðn� 1X>X þ kIpÞ
� 1X>; L2ðkÞ ¼ 2t̂cXðn� 1X>X þ kIpÞ

� 1X>;

in (10), respectively.

Fig 2. Q–Q plot based on the ridge estimator for the riboflavin production data set.

https://doi.org/10.1371/journal.pone.0245376.g002
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All computations were conducted using the statistical software R 3.4.3 to develop

the package Rfit for calculating the proposed estimators, their test statistics and powers

described in this paper. The R codes are available at https://mahdiroozbeh.profile.semnan.ac.

ir/#downloads. The 3D diagram as well as the 2D slices of GCV of β̂ðSÞc ðk; dÞ versus k and d are

Fig 3. Bivariate boxplot of the riboflavin production data set for effective genes.

https://doi.org/10.1371/journal.pone.0245376.g003
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plotted in Fig 4 for the riboflavin production data set. As it can be seen from Fig 4, the 2D (3D)

diagrams of GCV are convex functions (surfaces) and hence they have a global minimum.

This guarantees the existence of optimum values of k and d which minimize the GCV’s. The

minimum of GCVðβ̂ðSÞc ðk; dÞÞ approximately occurs at kopt = 0.468759 and dopt = 0.002332. We

test the hypothesis Ho : β ¼ 0 using the ridge rank-based (RRB) test statistic. The test statistic

for Ho, given our observations, is Rn(kopt) = 27.42. Thus, we conclude that there is not enough

Fig 4. The diagram of GCVðβ̂ðSÞc ðk; dÞÞ and its counter plot versus k and d for the riboflavin production data set.

https://doi.org/10.1371/journal.pone.0245376.g004
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evidence to reject the null hypothesis Ho and so, the SSE can be efficient for prediction pur-

poses according to the second comment right after Theorem 2.

To measure the prediction accuracy of proposed estimators, the leave-one-out cross-valida-

tion (CV) criterion was used, which is defined by

CVðβ̂Þ ¼
1

n

Xn

s¼1

ðy
ð� sÞ � Xð� sÞβ̂ð� sÞÞ

2
;

where β̂ð� sÞ is obtained by replacing X and y with Xð� sÞ ¼ ð~xjkð� sÞÞ, 1� k� n, 1� j� p,

y
ð� sÞ ¼ ð~y1ð� sÞ; . . . ; ~ynð� sÞÞ

>
, ~xlkð� sÞ ¼ xlk �

Pn
j6¼s WnjðtsÞxlj, ~ykð� sÞ ¼ yk �

Pn
j6¼s WnjðtsÞyj. Here

y
ð� sÞ is the predicted value of response variable where sth observation left out of the estimation

of the β.

Table 1 displays a summary of the results. In this Table, a goodness of fit criterion R-

squared is calculated for comparing the proposed estimators using the following formula

R2ðβ̂Þ ¼ 1 �
SSEðβ̂Þ
Syy

;

where SSEðβ̂Þ ¼
Pn

i¼1
ðŷi � �yÞ2 for ŷi ¼ X>β̂ and Syy ¼

Pn
i¼1
ðyi � �yÞ2. From Table 1, it is

seen that β̂ðSÞc ðk; dÞ performs better than ridge regression, since it offers smaller GCV and big-

ger R-squared values in the presence of multicollinearity and outliers. Moreover, because of

the existence of outliers in the data set, it can be seen that R-squared’s of robust type estimators

are more acceptable than the R-squared of non-robust type estimator.

For further illustrative purposes, we analyze some simulated data sets in the forthcoming

section.

Monte-Carlo simulation

In this section, we perform some Monte-Carlo simulation studies to justify our assertions as

well as examining the performance of the proposed estimators. As pointed and explained in

Section 1, high-dimensional case p> n causes the matrix X> X to be ill-conditioned. To

accommodate ill-conditioning, apart from generating multicollinear data, we will evaluate

how our estimators work for the high-dimensional case p> n.

We also examine the robustness of the proposed estimators in the presence of contaminated

data. The regressors are drawn a new in every replication. The efficiencies of β̂i relative to β̂1

are defined by

effðβ̂ i; β̂1Þ ¼
1

M

PM
m¼1
k β̂1ðmÞ � β k2

1

M

PM
m¼1
k β̂ iðmÞ � β k2

; i ¼ 2; 3; ð12Þ

where M is the number of iterations and β̂iðmÞ is the ith estimator of β in the mth stage.

Table 1. Evaluation of proposed estimators for the riboflavin production data set.

Estimator β̂ðkÞ β̂cðkÞ β̂ðSÞc ðk; dÞ

CV 13.10023 9.88070 8.01023

minðGCVÞ 22.88144 17.00815 14.23133

R2 0.707080 0.759485 0.798853

https://doi.org/10.1371/journal.pone.0245376.t001
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To examine the performance of the proposed estimators, we perform a Monte-Carlo simu-

lation. To achieve different degrees of collinearity, following McDonald and Galarneau [23]

and Gibbons [24] the explanatory variables were generated for (n, p) = {(180, 60), (180, 120)}

(low-dimensional) and (n, p) = {(200, 240), (200, 360), (250, 10000)} (high-dimensional) from

the following model:

xij ¼ ð1 � g2Þ
1
2zij þ gzip; i ¼ 1; 2; . . . ; n; j ¼ 1; 2; . . . ; p; ð13Þ

where zij are independent standard normal pseudo-random numbers and γ is specified so that

the correlation between any two explanatory variables is given by γ2. These variables are then

standardized so that X> X and X> y are in correlation forms. Two different sets of correlation

corresponding to γ = 0.20, 0.50, 0.90 and 0.95 are considered. The observations for the depen-

dent variable are determined by

y ¼ Xβþ �; ð14Þ

in sparse case: βi, i = 1, . . ., 0.1p are generated from standard normal distribution and βi = 0,

i> 0.1p; non-sparse case: βi, i = 1, . . ., 0.2 × p are generated from standard normal distribution

and βi = 0, i> 0.2p. Also, we considered � ¼ ð�>
1
; �>

2
Þ
>

where

�1 ðh�1Þ � Nhð0; s2VÞ; s2 ¼ 0:44; vij ¼ exp ð� 9ji � jjÞ;

�2 ððn� hÞ�1Þ�
i:i:d:
w2

1
ð8Þ;

where w2
mðdÞ is the non-central chi-squared distribution with m degrees of freedom and non-

centrality parameter δ. The main reason of selecting such structure for errors is to contaminate

the data and evaluate the robustness of the estimators. We set the first h error terms as depen-

dent normal random variables and the last (n − h) error terms as independent non-central chi-

squared random variables. The non-centrality causes the outliers to lie on one side of the true

regression model which then pulls the non-robust estimation toward them.

The Monte-Carlo simulation is performed with M = 103 replications, obtaining the pro-

posed estimators β̂1 ¼ β̂ðkÞ; β̂2 ¼ β̂cðkÞ and β̂3 ¼ β̂ðSÞc ðk; dÞ, in the sparse and non-sparse

regression models.

To save space, the Tables have been reported in the S1 File of this paper and their results

have been briefly shown by Fig 5. In the “S1 File”, we provided 12 tables (S2-S9 Tables in S1

File) to extensively analyze the numerical outputs. However, to save space here, we only report

Fig 5 as an abstract of tables’ results. Fig 5 summarizes the empirical type I errors and powers

at a 5% significance level under low-dimensional (based on F test statistic) and high-dimen-

sional (based on Rn(k) test statistics) settings for γ = 0.20, 0.50, 0.90 and 0.95, respectively.

The contaminated sample is the percentage of the sample contaminated with outliers

(CS ¼ 100� n� h
n %). The F-test is valid when p is less than n. Please note in Tables S10-S13

Tables in “S1 File”, we numerically estimated the risks and efficiencies of the proposed estima-

tors relative to β̂1.

We apply the generalized cross-validation (GCV) method to select the optimal ridge param-

eter (kopt) and shrinkage parameter (dopt), which minimizes the GCV function. Since the

results were similar across cases, to save space we report here only the results for the sparse

case with γ = 0.95, n = 200, p = 240 and CS = 20%. For this case, the minimum of GCV approx-

imately occurred at kopt = 5.90 and dopt = 0.006254 for the model (14). The 3D diagram as well

as the 2D slices of GCV versus k and d are plotted in Fig 6. Fig 7 shows the results of the F test

and RRB test for the non-sparse and sparse cases with parameter values γ = 0.95, n = 180,
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Fig 5. The diagram of empirical type I error and power for different (n, p) for the simulated data sets.

https://doi.org/10.1371/journal.pone.0245376.g005
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p = 120, CS = 40% and significance level α = 5% (there are a total of 25 realizations). Each

point in the plot corresponds to one realization of this configuration.

Comparison results based on the simulations are similar: Firstly, we observe the empirical

type I errors for the F test, are not reasonable in comparison with the significance level α =

0.05, while the powers are slightly smaller than RRB test in most cases. Secondly, the RRB test

is highly efficient for all cases under consideration. Its sizes are reasonable, while its powers

Fig 6. The diagram of GCV and its counter plot versus k and d for the simulated data set.

https://doi.org/10.1371/journal.pone.0245376.g006
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compared to F test is high, in the low dimensional settings. Thirdly, RRB test is powerful in the

high-dimensional settings, as we would expect.

As demonstrated, the RRB test is overly conservative. In other words, it achieves smaller

empirical type I error and bigger empirical power compared to the F test.

Summary & conclusions

In this paper, we proposed a robust ridge test statistic to improve the predictions in a regres-

sion model. In the presence of multicollinearity and outliers, we introduced robust ridge type

estimator and improved it by shrinking toward the origin to incorporate the information con-

tained in the null-hypothesis. By defining a generalized cross validation criterion optimal val-

ues of ridge and shrinkage parameters obtained simultaneously. Figs 3 and 6 showed the

global minimum archived by this criterion. Through nonlinear minimization algorithms, we

found the global minimum of this criterion with respect to both parameters. Finally, a Monte-

Carlo simulation study as well as a real data example were considered to compare perfor-

mances of the proposed estimators numerically.

According to Fig 5 and the detailed tabulated numerical results in the “S1 File”, we observed

that the proposed robust ridge-type test statistic is more powerful than the classical F test in

the presence of multicollinearity and outliers. Moreover, we found that efficiencies of robust

type estimators with respect to non-robust type increase when the percentage of outliers

increases. Another factor affecting the efficiency of the estimators was the number of explana-

tory variables. We seen the estimator β̂ðSÞc ðk; dÞ is leading to be the best estimator among oth-

ers, since it offers smaller risk and bigger efficiency values in all cases. Moreover, β̂ðkÞ was not

a suitable estimator in the presence of outliers, especially, for the high percentage of outliers.

For the real examples, from Table 1, we deduced β̂ðSÞc ðk; dÞ is quite efficient in the sense that it

has significant value of goodness of fit.

Fig 7. Comparison between F test and RRB test for the non-sparse case (left diagram) and sparse case (right diagram) with γ = 0.95, n = 180, p = 120 and CS = 40%.

https://doi.org/10.1371/journal.pone.0245376.g007
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