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Effect of different geometrically nonlinear strain measures on the

static nonlinear response of isotropic and composite shells with

constant curvature

A. Pagani1*, R. Azzara1�, B. Wu2�, E. Carrera1§

1Mul 2 group
Department of Mechanical and Aerospace Engineering, Politecnico di Torino,

Corso Duca degli Abruzzi 24, 10129 Torino, Italy

2School of Mathematics, Statistics and Applied Mathematics,
NUI Galway, University Road, Galway, Ireland

Abstract: The structural analysis of ultra-lightweight flexible shells and membranes may require the
adoption of complex nonlinear strain-displacement relations. These may be approximated and simpli-
fied in some circumstances, e.g., in the case of moderately large displacements and rotations, in some
others may be not. In this paper, the effectiveness of various geometrically nonlinear strain approx-
imations such as the von Kármán strains is investigated by making use of refined shell formulations
based on the Carrera Unified Formulation (CUF). Furthermore, geometrical nonlinear equations are
written in a total Lagrangian framework and solved with an opportune Newton-Raphson method. Test
cases include the study of shells subjected to pinched loadings, combined flexure and compression, and
post-buckling including snap-through problems. It is demonstrated that full geometrically nonlinear
analysis accounting for full Green-Lagrange strains shall be performed whenever displacements are
higher than the order of magnitude of the thickness and if compressive loads are applied.

Keywords: Geometrical nonlinearity; Carrera Unified Formulation; Refined shell models; Green-
Lagrange strains; von Kármán strains, Large displacements and rotations.

1 Introduction

Highly flexible structures are employed extensively in various engineering fields. The great potential
of these structures is to exhibit large displacements/rotations without showing plastic deformations.
This capability is an aspect of fundamental importance if linked to the industrial requirement to
produce more advantageous structures in terms of cost and performance.

In this context, shell structures have been widely used and studied over the years by researchers
and scientists. Shells consist of curved lightweight constructions, and they turn out to be very
popular in structural engineering mainly owing to their characteristics of supporting external loads
with high efficiency. Their outstanding mechanical properties are due to the curvature, which gener-
ates coupling between the membrane and the flexural behaviours, in both singly and doubly curved
geometries. Furthermore, when sufficiently thin, shell structures can also undergo large displace-
ments/rotations when extreme external loading conditions are applied, but they are still preserving
post-buckling stiffness. The literature concerning theories of shells is vast [1, 2, 3]. The works of
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Poisson [4], Love [5], Mindlin [6], Kirchhoff [7], Reissner [8] and Cauchy [9] represent the classical
formulations available in the open literature. These classical theories are typically adopted in com-
mercial codes. Over the years, various higher-order two-dimensional (2D) theories were developed
to overcome the drawbacks of the classical studies’ hypotheses. For instance, Reddy [10] proposed a
refined through-the-thickness kinematics, accounting for higher-order shear deformations, to study
2D composite structures. Mashat et al. [11] provided an assessment of the relevance of displacement
variables in refined theories for isotropic and multi-layered shells, using an axiomatic/asymptotic
technique. The refined theories of shell models were unified by Carrera in his early work, see [12].
Readers are referred to other significant works on isotropic and composite shell theories [13, 14],
because the purpose of the article is not to provide a detailed description of such theories in the
linear regime.

In the context of large displacement/rotation fields, the geometrically nonlinear relations have to
be considered to accurately predict the flexible structures’ mechanical behaviour. This challenging
problem is of fundamental importance for modern analysts to build an efficient and reliable numer-
ical tool that is able to evaluate these nonlinearities in the mechanical response of shell structures.
Nonlinear analysis of isotropic and laminated shell structures is a topic of considerable research
interest. Since there is a large number of studies in the literature on this topic, readers are referred
to the review provided by Budiansky [15], Librescu and Schmidt [16], Palmiero et al. [17]. Many
available works are focused on the theoretical developments and numerical solutions of shell models
in the nonlinear regime. For example, Arciniega et al. [18] investigated bucking and post-buckling
behaviours of shells under longitudinal compressions. Large deformation analysis of functionally
graded (FG) shells were presented by the same author [19] adopting tensor-based finite element
formulations for geometrically nonlinear relations. Palazotto [20] provided a detailed description
of geometrically nonlinear theories for shell models with transverse shear deformations, emphasiz-
ing the nonlinear composite shell behaviour. Nonlinear analysis of shells based on the degenerated
isoparametric shell element was studied by Kuo-Mo and Yeh-Ren [21]. Hajlaouia et al. [22] for-
mulated a higher-order shear strain enhanced solid-shell element to perform an accurate nonlinear
dynamic analysis of 2D FG materials and structures. Sze et al. [23] provided significant benchmark
solutions for the analysis of various geometrically nonlinear shell structures in a recent work.

Most of the available researches employ the classical nonlinear von Kármán strains to perform ge-
ometrically nonlinear analysis of highly flexible structures. For example, Ma and Wang [24] adopted
the von Kármán nonlinearity to study large deflections of 2D FG circular structures under me-
chanical and thermal loadings. Zao and Liew [25] considered nonlinear formulations based on von
Kármán strains to conduct the nonlinear response analysis of FG ceramic-metal shells. Arumugam
and Reddy [26] adopted the von Kármán strains to carry out nonlinear analysis of ionic polymer-
metal laminated elements. Geometrically nonlinear analyses of piezo-laminated smart shells were
presented by Kulkarni and Bajoria [27] by employing higher-order shear deformation formulations
and adopting von Kármán hypotheses. Furthermore, their commercial codes adopted these classical
von Kármán nonlinear strain theories. As mentioned by Carrera and Parisch [28], the classical von
Kármán theory showed reliable results in the deflection analysis of thin shells when displacements
are the same order of magnitude of the thickness. In contrast, less accuracy was obtained in the case
of thick structures, as confirmed by the same authors. Moreover, the inaccuracy predicted by the von
Kármán theory is accentuated when shear loadings are considered, in which case deformations ex-
hibit large rotations. In addition, the displacements are overestimated when using the von Kármán’s
nonlinear theories in the advanced nonlinear regime, as reported by Kim and Chaudhuri [29]. In
the advanced nonlinear domain, the proposed method in this paper aims to compare different geo-
metrically nonlinear strain approximations for large-deflection and post-buckling nonlinear response
analyses of isotropic or composite shells. The goal of the present research is to provide benchmark
solutions on shell structure problems, pointing out where the classical von Kármán nonlinear strain
approximation is accurate and where it is not. In other words, we will present different prediction
results obtained when different geometrically nonlinear strains are adopted in moderate and large
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displacement/rotation fields.
The Carrera Unified Formulation (CUF) was implemented to perform geometrically nonlinear

analyses of isotropic and laminated plates and shells in the last years [30, 31, 32, 33, 34, 35, 36, 37]
and characterizes the foundations of the proposed method. In the framework of CUF, any degree of
refinement of a model can be obtained since the adopted theory’s order is treated as an analysis input.
According to the textbooks [38, 39], any theory is degenerated into generalized kinematics employing
arbitrary expansions. In this article, in particular, Lagrange expansion (LE) are considered, which
may eventually lead to a layerwise (LW) approach for the analysis of laminated structures, see
[40, 41]. Basically, the nonlinear governing equations and the related finite element (FE) array of any
model are formulated using the fundamental nuclei (FN). The FNs represent the basic building blocks
of the presented formulations. Furthermore, different geometrically nonlinear refined shell theories
from full Green-Lagrange (GL) strains to the classical von Kármán strains are automatically and
opportunely obtained by adopting the CUF due to its intrinsic scalable nature. Once the nonlinear
governing equations are derived, the path-following Newton-Raphson linearization method based on
the arc-length constraint is employed to compute the geometrically nonlinear solutions.

This paper is structured as follows: (i) first, Section 2 discusses some information about the
related geometrically nonlinear relations and the 2D CUF shell model; (ii) next, the numerical
results are given in Section 3, where particular interest focuses on the comparison between different
results obtained by adopting the full Green-Lagrange nonlinear strain tensor and the classical von
Kármán nonlinear theories; (iii) finally, Section 4 makes the conclusions.

2 Geometrically nonlinear refined shell models

2.1 Preliminaries

The discussion is presented by taking into account a N -ply laminated composite shell structure, as
illustrated in Fig. 1, with the in-plane α-β and through-the-thickness z domains, in which k indicates
the kth layer. For the sake of clarity, the same formulations are applied to homogeneous isotropic
models. The typical three-dimensional displacement vector of a point in the composite shell is:

β

α

z

R

h

R

1

2

k

α

z

h/2

h/2

Figure 1: Generic laminated composite shell model and related curvilinear coordinate system.

uk(α, β, z) = { ukα ukβ ukz }T (1)
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In addition, the Green-Lagrange (GL) strain, ε, and the second Piola-Kirchhoff (PK2) stress, σ,
vectors for each layer k are written as:

εk = {εkαα, εkββ , εkzz, εkαz, εkβz, εkαβ}T

σk = {σkαα, σkββ , σkzz, σkαz, σkβz, σkαβ}T
(2)

In the regime of large displacement and rotation fields, the problem of defining the strain tensor
from the initial undeformed state is not easy [42]. For this reason, accurate definitions of strain and
stress tensors are necessary to perform reliable nonlinear analysis. The Lagrangian formulations are
typically adopted in the pure geometrically nonlinear analysis due to its natural undeformed state, to
which the structure returns when unloaded. By using a Lagrangian approach, strains are formulated
in terms of the undeformed configuration. On the contrary, strains are expressed as functions of the
deformed configuration in the Eulerian description. A large number of advantages are entailed when
a Lagrangian method is adopted [43].

The proposed approach is implemented using the total Lagrangian formulations and employs the
GL strains. In essence, the GL strain vector is written as:

εk = εkl + εknl = (bkl + bknl)u
k (3)

in which bl and bnl represent the 6×3 linear and nonlinear differential operators. Complete forms
of these two matrices for the 2D shell model are given in the following [30]:
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, bnl =
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(4)

where ∂α = ∂(·)/∂α, ∂β = ∂(·)/∂β, ∂z = ∂(·)/∂z, Pij(i = 1− 6, j = 1− 3) represent the parameters
used to opportunely simplify or tune the nonlinear strain measures and Hα, Hβ are defined as:

Hk
α = Ak(1 + zk/R

k
α), Hk

β = Bk(1 + zk/R
k
β), (5)

where Rkα and Rkβ indicate the radii of the middle surface of the layer k and Ak and Bk denote the
Lamé parameters of the in-plane mid-surface. This paper only considers the shells with constant
curvatures and the in-plane coordinates α and β are chosen to be the arc-length coordinates, therefore
Ak= Bk= 1. A complete review of geometrically nonlinear shell formulations is not the purpose of
this work. Further details can be found in [44, 45].

Researchers have developed many approximate geometrically nonlinear models for 2D and one-
dimensional (1D) structures from simplifications of the three-dimensional (3D) full geometrical re-
lations over the years. The von Kármán strain theory for 2D shells, see [46], represents a classical
and well-known example. In the domain of moderate rotations, the hypotheses of 2D von Kármán
models state that only the nonlinear terms of Eq. 4 associated with the in-plane partial deriva-
tives of the transverse displacement cannot be neglected. Thus, the only non-zero components of
geometrically nonlinear strains are P13, P23, and P63 6= 0. If, adding the nonlinear shear effects as
well, the additional non-zero terms that should be considered are P31 and P32. Instead, according
to the von Kármán hypotheses, in the case of 1D models, the only non-zero component is P23 6= 0.
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In the case of von Kármán strain theory for 1D models with nonlinear shear effects, the P32 strain
component should be also considered. In summary, different geometrically nonlinear strain models
compared in this paper are shown in Fig. 2, where the black dots indicate the activated nonlinear
strain components with reference to the matrix bnl in Eq 4.

FULL Green-Lagrange LINEAR 1D von Kármán

1D von Kármán with shear 2D von Kármán 2D von Kármán with shear

Figure 2: Different geometrically nonlinear strain models for shells.

The present work aims to investigate the effect of various geometrically nonlinear strain models on
the static nonlinear response of metallic and laminated shells in moderate to large displacement and
rotation fields, emphasizing the comparison between 3D full geometrically nonlinear strain relations
and 2D simplified von Kármán models.

For linear elastic materials, the constitutive relations are expressed as:

σk = C̃kεk (6)

in which the complete expressions of the material elastic matrix C̃ are provided in [47, 48].
In the framework of Carrera Unified Formulation, the nonlinear governing equations of isotropic

and laminated composite shells are formulated in a unified manner due to the scalable nature of the
CUF. Furthermore, it is possible to formulate various geometrically nonlinear models by cancelling
or adding different nonlinear strain terms from or into the CUF fundamental nuclei (FN).

2.2 Carrera Unified Formulation (CUF)

In the framework of the 2D shell CUF, the 3D displacement field is defined as:

uk(α, β, z) = F kτ (z)ukτ (α, β) τ = 0, 1, ..., N (7)

in which uτ (α, β) represents the generalized displacement vector depending on the in-plane coor-
dinates α and β, k denotes the layer index, N indicates the order of expansion in the thickness
direction and Fτ are the expansion functions of the thickness coordinate z. It is possible to choose
Fτ and N arbitrarily, which defines the class of the 2D CUF shell model. For a detailed mathematical
derivation of the shell FE formulations in the CUF framework, readers are referred to [39].

In this article, the LW [40, 41, 49, 50] approach based on the LE model is used. LW theories divide
and expand the displacement field within each material layer. The continuity of the displacements
is guaranteed at the interface level by the continuous expansion functions, to have an accurate
evaluation of the deformation and stress distributions. By doing so, the homogenization is carried
out at the interface layer. When LE models are considered, the unknowns are only displacements;
i.e., they have only displacements as degrees of freedom. The displacements at each interface obey
the compatibility conditions. Readers are referred to [51, 52, 53] for more details about the Lagrange
polynomials along the thickness direction used in this paper. The acronym LDN denotes the adopted
CUF shell formulations, which represent the LE of order N . Essentially, the two-node linear (LD1),
three-node quadratic (LD2), and four-node cubic (LD3) Lagrange expansion functions are employed
in the thickness direction to obtain linear to higher-order kinematics CUF shell theories.
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Independent of the shell model kinematics, the finite element method (FEM) is used to discretize
the generalized displacement vector in the α-β plane, as follows:

ukτ (α, β) = Ni(α, β)qkτi i = 1, 2, ..., nel (8)

in which Ni(α, β) are the shape functions, qτi represents the unknown nodal parameters, nel is the
number of nodes per element and the repeated index i indicates summation. For clarity, the classical
2D nine-node quadratic (Q9) FE will be considered as the shape function in the following analysis.
During the analyses, no problems related to membrane and shear locking (MITC9) were found. For
the sake of completeness, readers are referred to [14, 54, 55, 56] for a detailed description of the
strategy to contrast the membrane and shear locking phenomenon for a nine-node shell element in
the CUF domain.

The principle of virtual work is utilized to derive the formulations of the nonlinear FE governing
equations. In essence:

δLint = δLext (9)

where δLint and δLext represent the virtual variations of the strain energy and the work of external
loadings. They are expressed as follows:

δLint = δqTsjK
ijτs
0 qτi + δqTsjK

ijτs
lnl qτi + δqTsjK

ijτs
nll qτi + δqTsjK

ijτs
nlnlqτi

= δqTsjK
ijτs
S qτi

(10)

in which Kijτs
S represents the secant stiffness matrix, Kijτs

0 is the linear contribution and Kijτs
lnl ,

Kijτs
nll and Kijτs

nlnl indicate the nonlinear contribution. These components are written in the form of
FNs. Instead, the virtual variation of the external work can be formulated as:

δLext = δqTsjpsj (11)

After some mathematical operations, the nonlinear equilibrium equations read as:

Kijτs
S qτi − psj = 0 (12)

which is a set of three nonlinear algebraic equations, where Kijτs
S indicates the secant stiffness

matrix and pτi represents the nodal loading vector. Note that Kijτs
S is expressed by means of FN,

which is a 3 × 3 matrix that can be expanded by looping the indexes i, j, τ and s. The complete
forms of Kijτs

S and pτi are omitted here, see [30, 32, 57, 58] for a detailed description. Equation 12
is arbitrarily expanded to obtain any desired theory by choosing the value for τ, s = 1, 2, ..., N and
i, j = 1, 2..., nel to give:

KSq − p = 0 (13)

where KS , q and p represent the global, assembled FE arrays of the final structure.
Finally, the path-following Newton-Raphson linearization method (or tangent method) [59, 60]

is chosen to solve the nonlinear system. According to the Newton-Raphson method, Eq. 13 is
expressed as follows:

ϕres = KSq − p = 0 (14)

where ϕres denotes the vector of the residual nodal forces (unbalanced nodal force vector). Equa-
tion 14 can be linearized by expanding ϕres in Taylor’s series about a known solution (q,p). By
introducing the tangent stiffness matrix KT and assuming that the load varies directly with the
vector of the reference loadings pref , that it has a rate of change equal to the load parameter λ, i.e.,
p = λpref , we obtain in compact form:

KT δq = δλpref −ϕres (15)
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Since the load-scaling parameter λ is taken as a variable, an additional governing equation is required
and this is given by a constraint relationship to finally obtain:{

KT δq = δλpref −ϕres
c(δq, δλ) = 0

(16)

For the sake of brevity, readers are referred to [57, 61] for the complete description.

3 Numerical results

In this paper, representative benchmark problems accounting for large displacements and rotations
are discussed. Particular emphasis focuses on the effectiveness of various geometrically nonlinear
strain-displacement relations for different structure and loading problems. Both isotropic and lami-
nated composite shell structures are investigated. It is important to underline that the curvature is
one of the main parameters to consider in the analysis of shell structures. However, only shells with
constant curvature are analyzed in this research. The effect of the curvature and doubly-curved shell
structures will be investigated in future works. In this regard, convergence analyses are conducted
first. Then, based on the converged model, large-deflection equilibrium curves of various 2D CUF
shell models are presented. A comparison between the 3D full Green-Lagrange nonlinear strains and
the classical von Kármán strains is reported. For completeness, readers are referred to [62] for a
comparison between the linear buckling results and those obtained by incremental solutions.

3.1 Isotropic pinched thin-walled cylindrical shell

A clamped-clamped pinched thin-walled cylindrical shell under a transverse load is considered as
the first example, see Fig. 3. Owing to the symmetry of the structure, only one-eighth of the entire
model is analyzed. The geometrical and material data come from the book of Flügge [63]. The

z

(a) (b)

z

β α

Figure 3: Representation of a) the entire pinched thin-walled cylindrical shell under a transverse
load and b) the in-plane mesh approximation of the model studied.

investigated model has the following characteristics: L = 600 in, t = 3 in and R = 300 in. The
material data are: E = 3×106 psi, ν = 0.3. The structure is subjected to large deflections due to a
transverse load P applied as in Fig. 3.

First of all, convergence analyses on the in-plane finite element mesh and different kinematic
expansion functions in the thickness direction are needed to perform an accurate comparison be-
tween the numerical results of different nonlinear strain approximations. Specially, we evaluate the
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nonlinear equilibrium path of the clamped-clamped pinched thin-walled cylindrical shell for differ-
ent in-plane meshes and LE functions in the thickness direction. Figure 4a compares the transverse
deflection at the loading point for different 2D CUF shell elements, where the in-plane meshes from
64Q9 to 400Q9 FEs are employed, while the evaluations adopting one LD1, LD2 or LD3 are illus-
trated in Fig. 4b. The proposed method was validated by comparing the results with those provided
by Pagani et al. [32], in which the same structure was studied based on the higher-order 1D beam
elements. Moreover, the transverse displacement values for various CUF shell models and loads,
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(a) Mesh approximation
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(b) Kinematic expansion

Figure 4: Convergence study of the nonlinear response curves for the pinched thin-walled cylindrical
shell on both ends. Comparison of (a) various in-plane mesh approximations and (b) different orders
of Lagrange expansion functions in the thickness direction.

along with the total degrees of freedom (DOFs), are tabulated in Table 1. As evident from Fig. 4

CUF shell model DOFs
-uz [in]

2.5×105 lb 15×105 lb

8 x 8Q9 + 1LD2 2601 18.5 48.1
12 x 12Q9 + 1LD2 5625 21.8 50.8
16 x 16Q9 + 1LD2 9801 22.9 52.0
20 x 20Q9 + 1LD2 15129 22.9 52.1

Ref. [32] 10920 23.1 52.4

Table 1: Equilibrium points of nonlinear response curves of the pinched cylindrical shell for various
models and loads at the loading point.

and Table 1, to carry out an accurate static nonlinear response analysis and demonstrate the effects
of the various nonlinear strain terms below, the structure should be modelled by employing 16×16Q9
for the in-plane mesh approximation and only one LD2 in the thickness direction.

Figure 5 depicts the equilibrium curves of the pinched cylindrical shell under a transverse load
for various geometrically nonlinear strain models at the loading point. In addition, some deformed
configurations are illustrated in the same figure. Basically, different nonlinear strain terms of the
operator bnl in Eq. 4 are activated in each geometrically nonlinear CUF shell theory. In essence,
black dots in Fig. 5 denote the activated nonlinear strain terms. For example, the analysis with all
nonlinear terms involved (i.e., 3D full GL nonlinear strain) is abbreviated as the “Full”, whereas that
with all nonlinear terms excluded indicates “linear” analysis. The “1DVK” and “2DVK” analyses
represent the von Kármán assumptions corresponding to 1D and 2D models. Instead, the analyses
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including nonlinear shear effects will be referred to as “1DVKs” and “2DVKs”. Analysis case number

0

0.5
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1.5
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0 10 20 30 40 50 60
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 x
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0

-6
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-uz, in

4

6

1

2

3

4

5

6

5

1 2 3

FULL LINEAR

1DVK 1DVKs 2DVK 2DVKs

Figure 5: Equilibrium curves evaluated at loading point of the pinched thin-walled cylindrical shell
under a transverse load for different geometrically nonlinear approximations.

4 points out that neglecting the higher-order derivatives of the transverse displacement component
uz (the third column of matrix bnl) affects the accuracy of the nonlinear solution. In fact, the
variation trend is very similar to that of linear analysis (case number 2). As for the von Kármán
models, case numbers 5 and 6 are the solutions for the traditional 1D and 2D sets of approximations.
In particular, the 2DVK curve is very similar to the 3D full geometrically nonlinear solution also
for moderate and large displacements/rotations. In contrast, the 1DVK case leads to a remarkably
different curve than the FULL theory. Especially, this curve follows the linear solution until the
transverse displacement reaches the value of 20 in. After that, the displacement predicted by the
1DVK (and 1DVKs) is larger than the linear case. It is important to underline that including or not
the nonlinear shear terms in the von Kármán approximation leads to nearly the same results. For
the sake of completeness of readers, adopting a symmetrical model, for example, one-eighth of the
entire cylinder as in this case, may not provide accurate results when considering non-symmetrical
load conditions or composite structures with complex laminations.

3.2 Composite cylindrical shell subjected to compressive and transverse loads

The second analysis example concerns a clamped composite semi-cylindrical shell under compressive
and transverse loads. Regarding boundary conditions, the vertical deflection and the rotation about
the β-axis are restrained along its longitudinal edges. This laminated composite cylindrical shell
considering the stacking sequence [90◦, 0◦, 90◦] is reported in Fig. 6. In the same figure, the boundary
conditions and applied loads are shown. The investigated model has the following geometric data: L
= 3.048 m, Rα = 1.016 m, and the thickness equal to 0.03 m. Each layer is made up of an orthotropic
material with the following properties: EL = 2068.5×104 N/m2, ET = 517.125×104 N/m2, GLT =
795.6×104 N/m2 and Poisson’s ratio νLT = νTT = 0.3.

First, convergence analyses of the in-plane mesh approximation are carried out to achieve accurate
static nonlinear response evaluation. In the thickness direction, only one LD2 for each layer is
adopted. Figure 7 provides the transverse deflection at the loading point for various 2D CUF
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Figure 6: A composite semi-cylindrical shell under compressive and transverse loads.

shell models, where the in-plane meshes from 256Q9 to 1600Q9 FEs are employed. The nonlinear
response curves are split into two regions A and B. Moreover, the transverse displacement values
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Figure 7: Convergence study of the nonlinear response curves for the composite semi-cylindrical shell
under compressive and transverse loads. Comparison of different in-plane mesh approximations.
P0/Pβ0 = 0.1515

for various models and loads, along with the DOFs, are reported in Table 2. As evident from Fig.
7 and Table 2, the composite structure is well modelled through using 32×32Q9 for the in-plane
mesh approximation and only one LD2 for each layer in the thickness direction so as to achieve an
accurate static nonlinear response analysis, which could be employed to show the various nonlinear
strain terms effects.

Figure 8 shows the equilibrium curves of the composite semi-cylindrical shell under compressive
and transverse loads based on different kinds of nonlinear strain approximations at the loading point.
In particular, the comparison between FULL, 2DVK and 2DVKs solutions is illustrated in the regime
of moderate and large displacements/rotations. It should be pointed out from Fig. 8 that, compared
with the FULL solution, the classical approximation of the von Kármán strains with nonlinear shear
effects leads to less conservative results in the post-buckling regime. On the contrary, curve 2 (the
2DVK solution) provides a more conservative solution.

3.3 Isotropic hinged cylindrical panel

A popular cylindrical panel undergoing snap-through under a transverse load is now considered. As
shown in Fig. 9, the load condition is characterized by a central transverse force applied to the center
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CUF shell model DOFs
-uz [m]

[90◦, 0◦, 90◦]

1800 N 2500 N in A 2500 N in B

16 x 16Q9 + 3LD2 22869 0.021 0.030 0.304
32 x 32Q9 + 3LD2 88725 0.020 0.033 0.236
40 x 40Q9 + 3LD2 137781 0.020 0.033 0.236

Table 2: Equilibrium points of nonlinear response curves of the composite semi-cylindrical shell
under compressive and transverse loads for various models and loads at the transverse loading point.
P0/Pβ0 = 0.1515
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of the structure. The geometrical and material data are: E = 3102.75 MPa and ν = 0.3, L = 508
mm, Rα = 2540 mm, θ = 0.1 rad and thickness equal to 12.7 mm. Regarding boundary conditions,
all nodal displacements are restrained along the hinged edges. Before calculating the numerical
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Figure 9: A hinged cylindrical panel subjected to a central transverse load.

results of different geometrically nonlinear models, we first perform a convergence study on the in-
plane mesh approximation. In the thickness direction, only one LD2 is adopted. Figure 10 compares
the transverse deflection for various 2D CUF shell model, where the in-plane mesh approximations
from 25Q9 to 225 FEs are employed. The nonlinear response paths are split into three regions A,
B and C. Furthermore, the transverse displacement values for various kinematic models and loads,
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Figure 10: Convergence study of the nonlinear response curves for the isotropic hinged cylindrical
panel under a central transverse load. Comparison of different in-plane mesh approximations.

along with the DOFs, are tabulated in Table 3. As demonstrated from Fig. 10 and Table 3, we could
mode the hinged cylindrical panel by using 10×10Q9 for the in-plane approximation to obtain an
accurate nonlinear static response analysis, which will be utilized to show the effects of the different
nonlinear strain terms effects.

Figure 11 shows the equilibrium curves of this popular hinged panel structure at the loading
point. The linear, FULL nonlinear, 2DVK and 2DVKs solutions are illustrated in this figure. For
this case, the classical von Kármán nonlinear approximations (2DVK and 2DVKs) provide results
similar to the 3D full nonlinear solution in the range of moderate displacements and of the same
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2D CUF model DOFs
-uz [mm] in A -uz [mm] in B -uz [mm] in C

1000 N 1500 N 2000 N 1000 N 1500 N 2000 N 1000 N 1500 N 2000 N

5 x 5Q9 + 1LD2 726 2.71 4.51 7.03 17.76 16.25 13.10 22.23 24.35 25.72
6 x 6Q9 + 1LD2 1521 2.72 4.52 7.08 18.18 13.96 13.31 22.51 24.56 25.71
8 x 8Q9 + 1LD2 2601 2.82 4.79 7.39 15.51 14.43 13.80 22.75 24.92 26.02

10 x 10Q9 + 1LD2 3969 2.89 4.81 7.65 15.70 14.79 14.10 22.91 24.89 26.29
15 x 15Q9 + 1LD2 8649 2.90 4.80 7.66 15.71 14.80 14.11 22.92 24.88 26.30

Table 3: Equilibrium points of nonlinear response curves of the isotropic hinged cylindrical panel
for various in-plane mesh approximations and loads at the loading point.
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Figure 11: Equilibrium curves evaluated at loading point of the isotropic hinged cylindrical panel
for various geometrically nonlinear approximations.
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order of magnitude of the thickness.

3.4 Isotropic and composite hinged cylindrical panel subjected to compressive
and transverse loads

Now our interest is to compare the 3D full geometrically nonlinear CUF shell model and the classical
von Kármán nonlinear theory for both isotropic and composite [90◦, 0◦, 90◦] hinged cylindrical panel
under compressive and transverse loads. The material data of isotropic panel are E = 3102.75 MPa
and ν = 0.3, whereas those of composite panel are: EL = 3330 MPa, ET = 1100 MPa, GLT = 660
MPa, GTT = 660 MPa, νLT = νTT = 0.25. The geometrical characteristics, the boundary conditions
and the loading conditions are illustrated in Fig. 12, with L = 508 mm, Rα = 2540 mm, θ = 0.1 rad
and thickness equal to 12.7 mm. In essence, all nodal displacements are restrained along the hinged
edges.
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Figure 12: A hinged cylindrical panel subjected to compressive and transverse loads.

First, convergence studies of the in-plane mesh approximation are performed to achieve an ac-
curate static nonlinear response evaluation. In the thickness direction, only one LD2 per layer is
adopted. Figure 13 presents the transverse deflection versus Pβ for various 2D CUF shell models ap-
proximations considering P0/Pβ0 = 0.0045. Moreover, the transverse displacement values for various
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Figure 13: Convergence study of the nonlinear response curves for the isotropic and composite hinged
cylindrical panel subjected to compressive and transverse loads. Comparison of different in-plane
mesh approximations. P0/Pβ0 = 0.0045

models and loads, along with the DOFs, are reported in Table 4. As seen from Fig. 13 and Table 4,
the cylindrical panel under compressive and transverse loads is well modelled based on the in-plane
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CUF shell model
DOFs

-uz [mm]

Isotropic 10×104 N 30×104 N

5 x 5Q9 + 1LD2 1089 44.04 71.49
10 x 10Q9 + 1LD2 3969 46.34 60.95
15 x 15Q9 + 1LD2 8649 45.84 58.99
20 x 20Q9 + 1LD2 15129 45.86 59.01

CUF shell model
DOFs

-uz [mm]

Composite 10×104 N 30×104 N

5 x 5Q9 + 3LD2 2541 46.91 60.10
10 x 10Q9 + 3LD2 9261 41.48 44.66
15 x 15Q9 + 3LD2 20181 39.77 40.55
20 x 20Q9 + 3LD2 35301 39.41 39.07
30 x 30Q9 + 3LD2 78141 39.40 39.05

Table 4: Equilibrium points of nonlinear response curves of the isotropic and composite hinged
cylindrical panel under compressive and transverse loads for various in-plane mesh approximations
and loads at the center of the structure. P0/Pβ0 = 0.0045

mesh 15×15Q9 for the isotropic model and 20×20Q9 for the composite to conduct an accurate static
response analysis.

Figure 14 shows the equilibrium curves of the isotropic and composite hinged panel at the center
of the structure. The 3D FULL nonlinear, 2DVK and 2DVKs solutions are illustrated in this figure.
Obviously, for both isotropic and composite structures, the simplified 2D von Kármán models predict
accurate results in the range of moderate displacements, while differences become more remarkable
when large displacements are considered. Specifically, for the isotropic case the 2DVK is reliable up
to about uz = 35 mm, whereas for the composite structure up to about uz = 25 mm. The effective
range of the 2DVKs predictions with nonlinear shear effects is larger than that of the 2DVK solutions
for both isotropic and composite panels. Specifically, the 2DVKs prediction is effective up to about
uz = 50 mm for isotropic case, while for composite case up to about uz = 35 mm.

4 Conclusions

In the present article, nonlinear analyses of different popular shell structures in the deformed states of
large displacements and rotations have been performed. These investigations have been conducted in
the framework of the Carrera Unified Formulation (CUF). Thanks to its intrinsic scalable nature, the
predictions from three-dimensional (3D) full Green-Lagrange nonlinear strains to simplified nonlinear
von Kármán strains are automatically obtained. In fact, in the domain of CUF, the nonlinear
governing equations and the related finite element (FE) arrays of any model are formulated through
fundamental nuclei (FNs), the structure of which are independent of the theory approximation order
and the strain approximation considered. We have adopted the Lagrange expansion (LE) to carry out
detailed numerical evaluations for large displacements and rotations of isotropic and composite shell
structures under transverse and compression loads. Various sets of nonlinear strain approximations
have been analyzed, emphasizing the comparison between the 3D full Green-Lagrange nonlinear
relations and the well-known two-dimensional (2D) von Kármán approximation. In this context, the
nonlinear equilibrium curves for each case have been illustrated and discussed. As a conclusion to
the proposed results, it is plausible to state that:

� This presented approach, based on the CUF, represent an efficient tool for comparing var-
ious geometrically nonlinear strain assumptions and kinematic approximation orders in an
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Figure 14: Equilibrium curves evaluated at the center of the (a) isotropic and (b) composite hinged
cylindrical shell under compression and transverse loads for various geometrically nonlinear approx-
imation. P0/Pβ0 = 0.0045

automatic way;

� Simplifications of the 3D full Green-Lagrange (GL) nonlinear strains, such as the von Kármán
theory, can provide good results for small/moderate displacements in the nonlinear regime,
whereas in the regime of large displacements/rotations these simplified models present unac-
ceptable results;

� The 2D von Kármán strain approximation can be adopted for the analysis of pinched cylindrical
shells and hinged cylindrical panels under transverse loads, but the 3D full geometrically
nonlinear model should be employed for structures subjected to compressive loads. The same
considerations made for the snap-through instability case are also valid for the snap-back one,
already studied in the works of Wu et al. [30] and Shahmohammadi et al. [64].
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