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Abstract

Accidents in aviation are rare events. From them, aviation safety management systems take
fast and effective remedy actions by performing the analysis of the root causes of accidents, most
of which are proved to be human factors. Since the current standard relies on the manual classifi-
cation performed by trained staff, there are no technical standards already defined for automated
human factors identification. This paper considers this issue, proposing machine learning tech-
niques by leveraging on the state-of-the-art technologies of Natural Language Processing. The
techniques are then adapted to the Software Hardware Environment Liveware (SHEL) standard
accident causality model and tested on a set of real accidents. The computational results show
the accuracy and effectiveness of the proposed methodology. Furthermore, the application of the
methodology to real documents checked by experts estimates a reduction of the time needed for at
least 30% compared to the standard methods of human factors identification.

Keywords: SHEL, Human Factor, Aviation Safety, Natural Language Processing.
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1. Introduction

In general, accidents and incidents in aviation are rare events, for which the aviation safety
management systems take fast and effective remedy actions. In 2017, there were over 36.6 millions
of estimated departures in the world, and only 88 accidents, with 5 fatal events and 50 fatalities
(ICAO Safety, 2018a). Starting from 2013 until 2018, the accident rate per million departures5

has been floating around 3%. As positive as this is, the availability of data to develop smart
supporting solutions is somehow restricted. Additionally, the harmonization of standards and
criteria among the organizations in the world is a relatively new topic (starting in 2010). Although,
with an aggregation of global data and shared database systems available for all the organizations,
these two factors are no more considered to be an obstacle in creating a supporting smart system10

for specific purposes like Human Factor detection. It is estimated that using such tools would
drastically decrease the time spent by the investigator in re-analyzing the report, his effort in the
process, and, last but not least, would automatically contribute to the ADREP (ICAO ADREP,
2019), which is the Accident/Incident Data Reporting system, globally operated and maintained
by International Civil Aviation Organisation (ICAO). The ADREP system receives, stores and15

provides organizations with incidents’ data that will assist them in validating safety.
As the technology progressed towards the reliability of the plains, attention shifted to the Hu-

man Factor (HF). The era of HFs brought the concept of Crew to the fore and focused on the
actions of the individual, still not having a clear relationship between the person and the Orga-
nization. More detailed studies and analysis of statistical results led to the classification of orga-20

nizational factors (as an important part of HFs) - which includes the organizational culture and
operational context of a complex environment.

The job of the investigator, when analyzing an accident, is, firstly, to identify the ”root” fac-
tors that caused the events leading to the accident. From these Human Factors, the investigator
can proceed with drafting safety recommendations and remedy actions that can eliminate avoid-25

able human, economical and social costs (Hawkins, 1993; Aviation Safety Improvement Task
Force, 2005; ICAO, 1993). Extracting valuable information from the accident’s full-text report is
a critical step, that can be supported by an autonomous system able to process natural language.
Currently, the level of automation in the process is low and limited to tagging each event with
a standard accident causality model, called SHEL (Reason, 1992, 1990). This conceptual model30

is a widely used tool in aviation, allowing analysis of the interaction between multiple industrial
system components, such as the ones classified in the four capital letter acronyms:

• S = Software, any procedures, document, checklists, training, computer programs e.g intan-
gible knowledge;

• H = Hardware, machines, and equipment, including controls, tools, and interfaces;35

• E= Environment, weather conditions - oxygen, pressure, temperature, but also socio-economic
considerations in which the individual is living;

• L = Liveware, any person involved in the workplace - pilots, crew, Air traffic control, engi-
neers, etc.
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Before the SHEL, ICAO laid down the requirements for the formal Safety Management Sys-40

tems (SMS) of airlines and airports. Most of these tools were based on readily available tech-
nologies (Plioutsias et al., 2018). Despite its proven efficiency, the SHEL approach is heavily
expert-based and could take up to 18 months. Moreover, the effect of a human-based analysis is
the difficulty in comparing the results of a SHEL analysis done by different expert teams. Opera-
tors had formal tools only and have to manually filter unnecessary information. The introduction45

of language processing technology opens the way to optimize the existing methods of HF identifi-
cation in terms of saving resources of working time and processing costs while satisfying the high
safety standards.

Our work represents the first approach to the HF identification in the accident investigation pro-
cess by applying existing machine learning methods, and state-of-the-art technologies of Natural50

Language Processing (NLP). To the best of our knowledge, there have never been other automated
systems implemented for the specific problem of the final HF identification starting from a SHEL-
based tagged report. Since the current standard relies on manual intervention only, there are no
technical standards already defined for automated HF Identification. That makes it hard to repre-
sent the quantitative accuracy of the system from a software point of view. Moreover, air accidents55

are rare events, and collecting the data in terms of reports with fully tagged HF is an expensive
task for each company. Thus, the tagging is normally considered an internal asset and a limited
number of fully tagged documents are available. Hence, the final objective of this paper is the
introduction of a decision support system that can be used in the aviation industry to improve the
performance of the root-cause analysis of the accidents and that can work in conditions of limited60

training data. The results on-field of our application and the conclusion of the experts in the field
confirm the success of our approach.

The paper is organized as follows. Section 2 recalls the main literature. Section 3 summarizes
the methodological aspects of the proposed tool: knowledge database used, word and sentence
embedding aspects and similarity measure adopted. Section 4 presents the experimental results of65

the proposed method evaluation, while Section 5 discusses the results of an on-field test, showing
the importance and industrial relevance of the proposed solution. Finally, Section 6 draws the
conclusions and highlights the future axes of research.

2. Literature review

Natural Language Understanding (NLU) is a growing field, for which many companies have70

invested time and resources, reaching increasingly better results due to the availability of a huge
amount of data. In terms of general domain language, many outstanding results were obtained in
giving the machine the ability to understand the semantic meaning of documents (Semaan, 2012;
Turney & Pantel, 2010; Mirończuk & Protasiewicz, 2018; Castrogiovanni et al., 2020). The limita-
tion of these technologies is that the effectiveness of these models strictly depends on the particular75

task they were implemented for, due to the main issue of systems based on Neural Networks - lim-
ited generalization and abstraction capacity. Therefore, different researches were conducted in a
more specific-domain field, like medicine (Soğancıoğlu et al., 2017), or law (Sugathadasa et al.,
2017). The recent investigation was focused to develop a real-time safety prognosis by mining and
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classifying accident reports, where the expected output of the system is intended to give informa-80

tion if the accident is likely to happen to the first-class passengers (Srinivasan et al., 2019).
The identification of the causal chain of events leading to an accident is a very costly and

time-consuming process, which takes up to 18 months, but is crucial to improve aviation safety.
Hence, the reduction of the time needed by the annotation of the safety reports has a high impact
on the industry both from the cost and the safety points of view. Then, any automatic system85

in this sector should be crucial to support the decision-maker (the investigator) in his analysis,
without substituting him in the work, but heavily reducing the time for the analysis, letting the
companies and the regulators quickly act on the system for improving its safety. To the best of our
knowledge, currently, there is not an automatic system able to directly extract HF from accident
reports. The most recent approach to analyze the accident reports is given by Hu et al. (2019),90

where the authors compared several machine learning algorithms in textual indicator extraction
tasks and outlined the best ones. However, the high aviation safety standards do not allow such
models for HF extraction. That is why the decision support system working in parallel with the
expert is the required and only possible solution.

In general, until 2015, the analysis of accident reports was only manual, with time and re-95

sources invested in an avoidable and inefficient way. According to Mirończuk & Protasiewicz
(2018), NLP successfully applied to several industries, but not to the air accident classification. To
the best of our knowledge, the only other related work is by Mosca (2015). The authors describe
how the analysis of an aircraft accident can be processed in a partially automatic way, developing
a supporting system that can address the safety investigator during his analysis. Currently, the sys-100

tem can read accident reports and classify the events following a particular safety standard SHEL.
To be able to read, process, and identify single events in the report, some Natural Language Pro-
cessing methods were used, like a customized Part-Of-Speech Tagger to identify relevant words
in the text. The outcome of this system is a SHEL-based tagged report - where each relevant event
is tagged according to the SHEL standard. This semi-automatic system is supposed to help the105

investigator moving forward with the analysis in a faster way than simply a manual process. From
this stage, the extraction of HFs from the accident events begins.

3. Methodology

The proposed solution follows a Semantic Text Similarity approach. The general strategy be-
hind it is to leverage examples of events that are already tagged with the respective HF and are110

collected in our knowledge base. When analyzing a new event, we compare it with the tagged
examples in terms of semantic meaning. If these events are enough semantically similar to the ex-
amples we have, then it is highly probable that they contain also the same HF. Based on the notions
of Distributional Semantic theory, we designed a system to represent aviation-related sentences in
a semantically meaningful way, and then applied it to identify a correlation between phrases con-115

taining the same HF (see Figure 1). This correlation was then used in a machine-learning algorithm
to improve the recognition of the HF in new sentences, increasing the knowledge base.

At the core of our algorithm there is the semantic meaning of sentences, and thus, of words.
It requires an effective representation of the words, carrying all the semantic information that the
word has. For this purpose, we choose the Distributional Semantic approach to be the fundamental120

5



Figure 1: Schematic representation of the constructed system

base, and Vector Space Model (VSM) is a very effective system to represent tokens accordingly
to their context (White et al., 2015). Starting from the representations of single words composing
a given sentence, the system would then extract the representation of the sentence itself, using
aggregation methods. In particular, we explored three different methods of text representation:

1. A model over document (or sentence) embeddings, the d2v model125

2. A model for word embeddings first and sentence representation then, with a relatively small
corpus, the Genw2v model

3. A model implemented to verify the effectiveness of the algorithms of the second model when
increasing significantly the corpus dimensions (Mahoney, 2006), the T Fw2v model

All of the three models were trained including also the integration of the specific- domain corpus,130

built from the aviation-related text. Moreover, the VSM allows us to use an exact numerical
measure to assess the element’s similarity: it is related to the concept of distance between vectors,
which is estimated through the so-called cosine distance, and it’s related to the angle between
these vectors.

The main steps of our solution are:135

1. Select an adequate Corpus for embedding models and integrate the specific- domain full
text.

2. Pre-processing over the Corpus to improve the effectiveness of embeddings.
3. Build and train a machine learning vector representation model, leveraging the available

data.140

4. Use the model to represent sentences and tokens from the report that is processed.
5. Compute the semantic similarity between new sentences and old tagged sentences and get

the HF with the highest value.
6. Register the new sentence and similarity score as tagged under the relative HF.

Creating and Cleaning the Corpus. The general corpora used for the three models were mainly of145

two different dimensions: a generic corpus and a domain corpus.
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The natural language text containing words of all inflected forms was taken from the literature.
In details, we used the Brown Corpus and the Text8 corpus (Francis & Kucera, 1979; Mahoney,
2011). The Brown Corpus is the oldest available corpus, compiled in 1960s at Brown University.
This corpus is relatively small, about 1 million words, and considered a bit dated, but still widely150

used in the NLP field. The Text8 corpus was created as a result of the compression projects by
Matt Mahoney (2011), and it considers 253, 885 unique words, while the total number of words
(considering the repetitions) is 100 billion. What we used, given our resource availability and
the need for a light and portable system, was a share of this corpus, which is about 17 million of
words. The share of the specific-domain part over the total corpus would be 8%, which is good155

enough for our solution.
The domain corpus was extracted from books and air accident documents. However, training

a neural network over obtained raw text would result in each of the inflected forms of a single
word represented by a separate embedding vector. This in turn leads to many drawbacks and
inefficiencies. Maintaining a separate vector for each inflected form of each word makes the160

model bloat up and increases unnecessarily the memory usage. For this reason, we made a deep
work of cleaning of the domain corpus by Python-implemented modules: these tasks include
deleting punctuation (symbol digits, paragraph spaces, tabs), lowering case, deleting or changing
the stopwords (Sebleier, 2010), tokenizing, Part-of-speech tagging and lemmatizing. The outcome
of the specific-domain corpus was about 1.5 million lemmas.165

Selecting and Training the models. The corpora created were then used to train the two models
selected for the vector representation of words and sentences. Among the possible paradigms
applicable for the final purpose of semantic similarity, we chose the first model to be Word2vec,
and consequently, the second model to be Doc2vec (Simmons & Estes, 2006; Mikolov et al., 2013;
Le & Mikolov, 2014; Cuzzocrea et al., 2020). The idea behind developing more than one model170

using different paradigms comes from the fact, that in the solution design there are many possible
decisional factors to consider at different stages of the implementation and not enough information
on the selection of the adequate parameters or options.

Figure 2: Schematic representation of the corpora usage for training the tree considered models

The Word2vec model was trained over the smaller corpus (Brown + Domain-specific Corpus)
to create the Genw2v model, and over the bigger corpus (Text8 + Domain-specific Corpus) to175

create T Fw2v model. The d2v model was created by training a Doc2vec network over the Brown
+ Domain-specific Corpus (see Figure 2). Let us explain how the two basic models (Word2vec
and Doc2vec) are different and what’s the outcome expected from both.
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Word2vec model belongs to the set of predictive approaches to generate dense embeddings. It
learns embeddings by training a neural network to predict neighbor words. The approach, designed180

by Google, was born to transfer the semantic meaning of words into the embeddings created, so it
is particularly useful when it comes to evaluating similarity. The advantage of this set of methods is
that they are fast and efficient and easy to train. There are two possible implementations included
in the paradigm: the the S kip − Gram and the Continuous Bag o f Words (CBOW) methods
(Mikolov et al., 2013). While CBOW architecture predicts the current word based on the context,185

the Skip-gram works in reverse, predicting surrounding words given the current word. For the
implementation of the prototype, the S kip−gram model is used, as it is proven to be more efficient
in smaller corpora and it is said to be accurate for rare words, while CBOW is faster by a factor of
window size, which has positive impacts with larger text corpora. In particular, we used the S kip−
Gram with Negative S ampling (SGNS), which is a more effective version of the skip-gram, as it190

adds to the maximizing objective function in the learning algorithm, a minimization component,
over the negative examples. The outcome of a trained Word2vec network is a system able to
process each word of a document and represent it as word embedding. Thereby an additional phase
is required for the Word2vec-based models implemented: starting from the vector representations
of words composing a given sentence, we need to obtain a comprehensive dense vector for the195

entire sentence.
Doc2vec differentiates from Word2vec since it directly returns the sentence vectors. The

paradigm lets us build directly sentence vectors, without first developing the embeddings of the
composing words. It was developed by the same creators of Word2vec and it is sort of an exten-
sion of its model, designed to represent a whole document of any length, starting from its words’200

semantic representation. Having a fixed-length vector representing sentences and not only a sin-
gle word is the objective of this comprehensive model, which is based on the Paragraph Vector
algorithm. This algorithm is an unsupervised model that learns continuous distributed vector rep-
resentations for variable-length pieces of text. As in Word2vec, the outcome of the model is that
semantically similar sentences have similar vector representations, that we can call paragraph vec-205

tors. The model trained over Doc2vec will be able to process a whole sentence and give ad output
a dense embedding representing that sentence, so there is no need for additional steps before the
similarity comparison phase.

As explained, while the Doc2vec network gives directly a sentence vector, the Word2vec-based
networks need an additional phase to get the sentence embedding, starting from the word vectors210

composing the sentence itself. This additional phase was called Sentence Embedding. Addition-
ally, we decided to try two different approaches for the two different models we had (Genw2v
model and T Fw2v model). The first approach is the average method, for the Genw2v model, and
it is based on the easiest idea: simply computing the average vector of the word embeddings vw

composing the sentence s = 1
|S |

∑
w∈S vw, considering that every sentence processed is first lem-215

matized and cleaned. The second method for the T Fw2v model is called the S mooth Inverse
Frequency (SIF) method (Sidorov et al., 2014; Pagliardini et al., 2017): it computes the sentence
vector s = 1

|S |

∑
w∈S awvw as the average of the word embeddings vw, weighted over a factor related

to the inverse frequency aw of each word appearing in a document (in our case the corpus used).
The principle of this method is that frequent words are usually the least relevant, regardless of the220

discourse. Therefore, such frequent words should have less impact on the final sentence vector.
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Semantic Similarity Computation. When reading a new accident report, the developed prototype
first collects the events (sentences) in the document and then compares each one of them with the
HF-tagged sentences belonging to the knowledge base we created initially. If the similarity is high
enough, there are chances that the relative HF is present in the new event as well. In the Vector225

Space Model (VSM), the traditional cosine measure (Sidorov et al., 2014) is commonly used to
assess the similarity between two vectors, which represent the objects we want to compare. The
length of vectors is usually related to the frequency of a word in the documents, and this aspect is
not relevant when it compares the semantic meaning of words. Having a similar semantic meaning
tend to have the same direction in the N-dimensional vector space, where N is the length of the230

embeddings. With this in mind, we can simply analyze the angle between the two vectors. In
particular, the cosine of the angle gives us an idea of the relative direction of the vectors and it
is computed through the dot product cos(θ) = a⃗·⃗b

||⃗a|| ||⃗b||
between the embeddings, as consequence

of geometric and mathematical interpretation. In general, more sophisticated similarity measures
exist, that form a so-called kernel. However, the study of different similarity measures in VSM is235

not related to the content of the case study and out of the scope of this paper.

Learning from the outcome. After computing the cosine similarity between the new processed
event in the report and each Human Factor-tagged sentence in our knowledge base, the obtained
highest score is registered and linked to the related HF. As a result, every HF will have a similarity
score with the processed sentence; the HFs and their similarity score are stored in a dictionary240

that sorts them based on the highest score. The first n HFs of the dictionary are then shown to the
user (the investigator), who will evaluate the outcome and decide among the n HFs which one is
contained in the processed event. This is done for every event in the report.

The comparative summary of the hyper-parameters chosen for all the three models outlined in
Table 1. In the following we shortly recall the most important parameters:245

• Learning Model selects the most appropriate ML algorithm for the specific problem we are
solving and designs the appropriate neural network architecture.

• Training Algorithm represents the selection of the activation function. Since our problem
is a multi-class logistic regression we choose the Hierarchical Softmax function, which will
allow the system to decrease its computational complexity, through the use of a binary tree250

structure. When using SGNS though, the loss function is applied to a binary problem, so a
Softmax with negative sampling can be used.

• Embedding Size (dimension) is the length of the vector representations of words and sen-
tences. To compare the models, the initial value was set to 128 for all the models, based on
online community advice related to the objective of the work.255

• The window size is related to the context window L, the maximum distance from our target
word when considering the context neighborhood words.

• Min count is the minimum frequency for a word to be considered during the training pro-
cess.
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• The number of epochs are the training steps, that correspond to an entire processed dataset260

forward and backward. This parameter affects three factors: the training accuracy (percent-
age of correctly labeled examples during the training), the validation accuracy (the precision
on the testing set), and the cross-entropy (it is a loss function that shows the cross-validation
accuracy). In general, with a small number of epochs, there is a risk of not having a suffi-
ciently trained model, which results in underfitting the model. On the other side, validation265

accuracy typically starts to decrease after some number of epochs, because of the overfitting.
It is typical to use more than one iteration, but as input data gets larger, the benefits of extra
iterations decrease.

Table 1: Summary of the chosen parameters
Parameters d2v model GenW2V model TFw2v model

Corpus
Specific domain

+

Brown Corpus

Specific domain
+

Brown Corpus

Specific domain
+

1/10 Text8 Corpus
Corpus Length 66,575 sents 2,421,344 words 17,005,207 words
Learning model PV-DBOW/PV-DM SGNS SGNS

Training Algorithm Hierarchical Softmax
Softmax with

Negative Samples
NCE loss

Learning Rate 0.025 0.025 0.025
Embedding Size 128 128 128

Window size L=5 wndow size=11 L=2 wndow size=5 L=2 wndow size=5
Min count 1 2 5
Bath size sentence based 32 adaptive
Epochs 20 15 2

4. Computational results

The evaluation of our solution was performed along two axes. First, it was necessary to assess270

the effect of embedding the developed methods in the existing overall process. Second, the actual
precision of the models in identifying the right HF was considered, by comparing the punctual
identifications with the ones performed by the experts. During this process, we used the reports
provided and checked by the aviation experts from Deloitte and the support of their experts (De-
loitte & Touche, 2020). We considered tagged 24 documents provided by the company. The275

documents were split into a training (20 documents) and a test set (4 documents). A Monte Carlo
Cross-Validation was performed by repeating 10 times the process and randomly choosing the
training and the test documents (Xu & Liang, 2001).

This amount of data along with the basic material with the definitions and explanations of ones
was enough to make the system sufficiently reliable. The output of the automated annotations280

are then compared with the annotations done by real investigators are used for result validation.
For both the evaluations, we identified a model that performs better with respect to the others.
Although, it is possible to notice that the overall strategy was reasonably acceptable.
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The first axis of evaluation is represented by the embed training results, which are outlined in
Table 2. The benchmark values were taken from Google’s pre-trained Word2vec model, which is285

a 300-dimensionality model trained over a 100 Billion corpus. This is considered to be the state-
of-the-art model for the general purposes of word embedding. It is a good evaluation parameter for
general text classification, even not relevant for our purpose of this paper, which is the prediction
of the entire sentence meaning. However, this work-in-progress outcome is useful to have a broad
overview of how our models behave in general.290

Table 2: The embed training results
Parameters d2v model GenW2V model TFw2v model Benchmark

Time for Model Creation 00.00.03 00.01.31 00.00.01 -
Time to load the corpus 00.02.01 00.02.01 00.16.38 -

Time for Model Training 00.13.44 00.08.26 00.28.46 1-3 days
Number of vocabs learnt 34184 34184 211080 3000000

Loss Drop 43% 21% 90% 98.5%
Accuracy 19% 23% 76% 96%

As expected, the simplest model, Genw2v model, is the fastest in building, but also less effec-
tive than T Fw2v model. This does not mean that it cannot be anyway exploited and give useful
results further on, considering that our final task is sentence similarity and not word embed. In
fact, as will be shown later, the difference between the two models reduces drastically when we
deal with the real goal of our prediction, i.e., the tagging of entire sentences of a document. For all295

the models the standard deviation due to the Monte Carlo Cross Validation was less than 0.025.
A few considerations over the similarity values computed with the three models need to be

said:

• all the sentences are processed using our enhanced Lemmatizer system. This increases
the chances of finding similarities because words with the same root are considered to be300

identical.

• it is important to identify more than one possible HF because we cannot assume that a
machine would be able to replace completely the role of the investigator. This is why the
system is meant to give a list of n HFs with the highest similarity scores.

• looking at the whole set of sentences, the value of the cosine similarity was pretty high305

on average. This may give a multiple HF prediction, each one critical, bringing later to a
manual check to improve the overall prediction system.

Table 3 considers the second axis of evaluation concerning the specific application. The table
shows the performances of the three models over the accidents processed with a specific corpus
extracted from a repository of existing documents. The sentence embedding refers to the method310

used to embed sentences out of word vectors, which - for the d2v model - is automatically done in
the training phase. The table reports the precision and recall measures. We do not report the stan-
dard deviation due to the Monte Carlo Cross Validation, being in all the cases very low (between
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0.01 and 0.02). To this end, we outline the percentage of correctly identified HFs in all the test set
as the precision, and the recall is the missing HFs. Moreover, the correctly identified HFs in the315

top-five list are grouped by the SHEL tags, namely: Software, Hardware, Environmental, Liveware
Pilots and Operators. In this way, it is possible to show the model’s sensitivity to different HFs.
However, Precision and recall are not sufficient to qualify the methods due to the specific setting.
Indeed, the system relies on the knowledge of the specialist in the field, which should explore the
highlighted points in the report. We also provide the Cosine Similarity Threshold, i.e., the mini-320

mum level of similarity in the document part structure that it has to reach to be considered relevant.
Among the three different models, the one performing best is the T Fw2v model, with a total pre-
cision of 88, 89%. Although, the second-best model, Genw2v model, gives a great precision as
well (86, 67%), an average rank for the correct HF in the top-five list of 2.08 against the slightly
worse 2.27 of the T Fw2v model, and a distance of the correct HF score with respect to the first325

position is of only 0.018. If we consider the time required to create and train the Genw2v model,
the smaller corpus used, and the fact that the precision is only worse by 2.22%, we can consider
the Genw2v model as the most successful one for our purpose.

Not only it is relatively simpler and faster, but, if we imagine training it over a larger corpus like
the Text8 used for the T Fw2v model, we can predict that the performances would improve even330

more, and eventually out-stand the T Fw2v model’s outcome. The drawback is that by increasing
the training corpus’ size, the time for building the model would increase as well. Among the three
models, the one performing the worst is d2v model. This is explained by the fact that Doc2vec
is a general model for document embedding, which returns the document vector, independently
from the actual document’s size. Additionally, the sentences composing the corpus over which335

the model was trained are not particularly similar to the ones that are being processed, and that
negatively influences the similarity measure.

5. On-field test of the solution

To prove the efficacy of the proposed method we did an on-field test, integrating our solution in
the proprietary tagging system of Deloitte. The test was performed considering 5 additional docu-340

ments already tagged by the experts of Deloitte and then asking our system to tag them according
to the SHEL.

Concerning the accuracy of the system, the results showed precision in tagging the document of
86%. As a second-level evaluation, we considered the punctual classification of the sentences. We
compared the results with the manually processed by the investigator and therefore with the correct345

HF already identified. Knowing the correct HF belonging to each processed sentence, it was
possible to compare the system outcome with the expected results, for each model implemented.
The experts by Deloitte checked the punctual classification given by our solution (in some cases
several classifications are possible) and evaluated the accuracy of the second-level tagging in 67%.
Table 4 presents the outcome for a subgroup of evaluated events. For each event, we first checked350

if the correct HF had been identified by the system in the n-length list of potential HF. Since the
list is ordered based on the similarity score, the rank of the correct HF in the list was also captured
(position). Additionally, for those correct HFs which were included in the n-length list but were
not in the top position, we registered the error as the distance between the correct HF score and the
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score of the HF ranked at the top position by the system. For example, for those events in which355

the correct HF was identified and ranked at the top position by the system, the distance was set to
0.

We then asked some experts of Deloitte to evaluate the results of the tagging and the impact of
the proposed solution inside the entire process (tagging, identification of the root causes, and pro-
posal of recommendations) from three points of view: cost saving, air safety, process automation,360

and standardization.
Concerning the pure cost-saving, they evaluated a save of about 30% of the expert time (includ-

ing the check of the tagging done by them). Being this cost reduction mainly due to the salaries
of well-trained investigators, this has a double side effect. First, the obvious decrease in the total
costs for the company, making Deloitte more competitive. Second, normally each investigator has365

specific expertise. Reducing the effort needed to analyze a document can free human resources
for a deeper and comparative analysis of the reports to find similarities of the series of root causes,
which are not obvious at a first sight.

And this brings us to the second axis of industrial impact: aviation safety. The contraction of
the time needed for the annotation of the reports might have a direct impact on the total time for370

the identification of the causal chain of events leading to the root of the problem up to 18 months.
Moreover, by letting the experts focus on a portion of the document first (the tagged part), they
might be able to analyze some of the causes immediately, speeding up the process of the root
causes identification. Their evaluation in the contraction of the time between the tagging and first
hypotheses on the root causes was estimated to be up the 20%.375

These are just the direct impact of the application of our automated methodology. Indeed, an
indirect effect is the standardization of the annotation procedure, with the consequent possibility
to use the output of the standardized tagging to train more complex Artificial Intelligence systems
able to highlights the more probable sequence of causes beneath a series of accidents.

6. Conclusions380

As stated in the introduction, automatizing the operation of tagging air accidents documents is
a crucial task for two reasons: it reduces the time needed to analyze the document itself, reducing
the time before the accident and the identification of the root causes of the accident itself, while
reducing the cost due to this operation.

The results of our methodology fully meet the goals of the research. We presented an alter-385

native way to deal with the identification of human factors within unstructured text, by proposing
different approaches to the basic task. Basing the solution on unstructured text processing proved
to be a viable option and promising one for the future, thanks to the huge amount of available
data (big data) and the collaboration of open source communities democratizing machine learn-
ing/deep learning algorithms. In summary, the system has been tested over case studies entailing390

safety events with different severity, including near-miss incidents, minor incidents, and serious
incidents involving loss of human lives, whether the usual time to investigate those events and an-
notate the documents spans from some weeks up to 18 months and over. The tests gave a precision
over the 86% and the Deloitte experts estimated in a practical manner cost and time reduction of
30% for the whole investigation process.395
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Table 3: Performance comparison of the three models over the different type of cause
Comparison parameters d2v model GenW2V model TFw2v model

Sentence embedding Automatic
Concatenation Average method SIF method

Cosine Similarity Treshold 0.05 0.5 0.5
Software (S) 100% 100% 100%
Hardware (H) 53.36% 84.62% 92.30%

Environment (E) 62.50% 75.00% 87.50%
Liveware Pilots (LP) 71.43% 85.71% 85.71%

Liveware Operators (LO) 61.54% 92.30% 84.61%
Precision 64.45% 86.67% 88.89%

Recall 36.55% 14.32% 12.1%
AVG score found 0.1952867 0.865041 0.894419

AVG rank 2.89 2.08 2.27
Distance wrt first position 0.033 0.018 0.029

One of the possible improvements of the work is the study of different similarity measures
influence of the proposed models. Another future enhancement of this work would be to add, dur-
ing the pre-processing phase, a parser system that gives important grammatical information over
the structure of a sentence, by organizing it in a logical tree. This additional task would increase
the accuracy of the representation of the words, allowing a more reliable system. Finally, after400

an application of the methodology to a larger dataset, an automated root causes sequence identi-
fication might be done, similarly to the one done in Cantamessa et al. 2018. When talking about
semantic similarity over sentences, it is never easy to get a starting reliable dataset. While for
single word comparison it might be more obvious, giving a good measure on how the sentences
are similar to each other is a task that many researchers are trying to solve. The problem is that405

to train effectively neural networks, the amount of data needed is “big” (clearly a big data prob-
lem), and currently there is not a suitable dimension of available data over a specific domain such
as Aviation Safety Management. This problem can be overcome by the use of the implemented
solution: the knowledge base currently used is increasing for every new report processed, and,
when becoming “big enough”, it could potentially be leveraged as a new training dataset, more410

structured than just raw text, to train a neural network-based model for automatic sentence seman-
tic similarity. The technology to train a model over such a dataset is already available (Mueller
& Thyagarajan, 2016; Neculoiu et al., 2016). This idea is applicable not only in aviation; one of
the most important fields where such a solution can be relevant is healthcare, where a system that
helps to compare unstructured documents like case studies and diagnosis would have positive con-415

sequences on human beings’ lives. An industrialization process of the methodology is presently
under development.
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Table 4: Genw2v model outcome for a subgroup of events evaluated

Target Sentences Manual HF
identification Score Position

Distance
wrt the first

position
The malfunction of the engine was

due to intermittent contact cable
W450-P4

Equipment failure 0.90691 1 0.00000

There were not reports of
MASTER CAUTION signals
neither beeps on the Head up
display of the Ground Station

Worspace:
Communication

Equipment
0.81637 4 0.0453

The aircraft was inappropriate for
long range travel, because it is not

provided with APU
Equipment failure 0.90885 1 0.00000

The operation room had
no air conditioner Equipment failure 0.81513 2 0.0345

The pilot noticed the
OVERTORQUE warning light

had illuminated

Instrument design and
illumination Not found Not found Not found

The flag on the torque of the
transmission confirmed the warning

Instrument design and
illumination Not found Not found Not found

The helicopter entered an
uncontrolled descend and

impacted water
Equipment failure 0.83243 4 0.0546

The rotor lost speed because of
the over-torque Equipment failure 0.77647 3 0.0579

The aircraft type has limitations
in lateral and frontal view

Workspace: visibility
restrictions 0.83321 3 0.0570

The colour of the Fire
Extinguisher does not allow

visibility in bad weather conditions
Workspace: layout 0.82913 5 0.0558

The fire extinguisher was stuck
in the belly of the aircraft and

the wheel bars
Workspace: layout 0.87973 1 0.0000

Absence of specific rain clothes Equipment failure 0.85605 2 0.0402
There was a failure in
the aircraft avionics Equipment failure 0.83368 3 0.0188
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Mirończuk, M. M., & Protasiewicz, J. (2018). A recent overview of the state-of-the-art elements of text classification.

Expert Systems with Applications, 106, 36 – 54. doi:https://doi.org/10.1016/j.eswa.2018.03.058.455

Mosca, F. (2015). A support model to draft safety recommendations as follow up over investigation on an aviation
safety occurrence. Master’s thesis Polytechnic University of Turin.

Mueller, J., & Thyagarajan, A. (2016). Siamese recurrent architectures for learning sentence similarity. In thirtieth
AAAI conference on artificial intelligence (pp. 2786–2792).

Neculoiu, P., Versteegh, M., & Rotaru, M. (2016). Learning text similarity with siamese recurrent networks. In460

Proceedings of the 1st Workshop on Representation Learning for NLP (pp. 148–157).
Pagliardini, M., Gupta, P., & Jaggi, M. (2017). Unsupervised learning of sentence embeddings using compositional

n-gram features. arXiv preprint arXiv:1703.02507, .
Plioutsias, A., Karanikas, N., & Tselios, D. (2018). Decreasing the distance between international standards from

different domains: The case of project management and aviation safety investigations. AUP Advances, 1, 7–39.465

16

http://dx.doi.org/10.3390/su10072346
http://dx.doi.org/10.1109/ACCESS.2020.2982218
http://dx.doi.org/10.1109/ACCESS.2020.2982218
http://dx.doi.org/10.1109/ACCESS.2020.2982218
https://www2.deloitte.com/global/en.html?icid=site_selector_global
https://www2.deloitte.com/global/en.html?icid=site_selector_global
https://www2.deloitte.com/global/en.html?icid=site_selector_global
http://icame.uib.no/brown/bcm.html
https://www.skybrary.aero/index.php/ICAO_ADREP
https://www.skybrary.aero/bookshelf/books/4431.pdf
http://mattmahoney.net/dc/textdata.html
http://dx.doi.org/https://doi.org/10.1016/j.eswa.2018.03.058


Reason, J. (1990). Human error. Cambridge university press.
Reason, J. T. (1992). Cognitive underspecification. In Experimental Slips and human error (pp. 71–91). Springer.
Sebleier (2010). NLTK’s list of english stopwords. URL: https://gist.github.com/sebleier/554280 Last

access: 16/08/2020.
Semaan, P. (2012). Natural language generation: An overview. Journal of Computer Science& Research, (pp. 50–57).470
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Soğancıoğlu, G., Öztürk, H., & Özgür, A. (2017). Biosses: a semantic sentence similarity estimation system for the475

biomedical domain. Bioinformatics, 33, i49–i58.
Srinivasan, P., Nagarajan, V., & Mahadevan, S. (2019). Mining and classifying aviation accident reports. In AIAA

Aviation 2019 Forum (p. 2938).
Sugathadasa, K., Ayesha, B., de Silva, N., Perera, A. S., Jayawardana, V., Lakmal, D., & Perera, M. (2017). Synergis-

tic union of word2vec and lexicon for domain specific semantic similarity. In 2017 IEEE International Conference480

on Industrial and Information Systems (ICIIS) (pp. 1–6). IEEE.
Turney, P. D., & Pantel, P. (2010). From frequency to meaning: Vector space models of semantics. Journal of artificial

intelligence research, 37, 141–188.
White, L., Togneri, R., Liu, W., & Bennamoun, M. (2015). How well sentence embeddings capture meaning. In

Proceedings of the 20th Australasian Document Computing Symposium (p. 9). ACM.485

Xu, Q.-S., & Liang, Y.-Z. (2001). Monte carlo cross validation. Chemometrics and Intelligent Laboratory Systems,
56, 1–11. doi:https://doi.org/10.1016/S0169-7439(00)00122-2.

17

https://gist.github.com/sebleier/554280
http://dx.doi.org/https://doi.org/10.1016/S0169-7439(00)00122-2

	Introduction
	Literature review
	Methodology
	Computational results
	On-field test of the solution
	Conclusions

