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Impulsive Goodwin’s Oscillator Model of Endocrine Regulation:
Local Feedback Leads to Multistability

Zhanybai T. Zhusubaliyev, Alexander Medvedev, and Anton V. Proskurnikov

Abstract—The impulsive Goodwin’s oscillator (IGO) is a hy-
brid model that captures complex dynamics arising in continuous
systems controlled by pulse-modulated (event-based) feedback.
Being conceived to describe pulsatile endocrine regulation, it has
also found applications in e.g. pharmacokinetics. The original
version of the IGO assumes the continuous part of the model
to be a chain of first-order blocks. This paper explores the
nonlinear phenomena arising due to the introduction of a local
continuous feedback as suggested by the endocrine applications.
The effects caused by a nonlinear feedback law parameterized
by a Hill function are compared to those arising due to a
simpler and previously treated case of affine feedback law. The
hybrid dynamics of the IGO are reduced to a (discrete) Poincaré
map governing the propagation of the model’s continuous states
through the firing instants of the impulsive feedback. Bifurcation
analysis of the map reveals in particular that both the local Hill
function and affine feedback can lead to multistability, which
phenomenon has not been observed in the usual IGO model.

I. INTRODUCTION

Impulsive mathematical models [1] are instrumental in
describing systems that comprise subsystems with relatively
fast dynamics interacting with subsystems possessing slow
dynamics. Then the fast dynamics components can be re-
duced to impulse trains impacting the components with slow
dynamics. In general, the timing and the amplitudes of the
impulses are modulated by variables that belong to the slow
dynamics part of the system thus giving rise to a hybrid (i.e.
continuous-discrete) model of the system [2], which can often
be considered as a feedback loop comprising a continuous-
time plant and a discontinuous event-triggered feedback law
that portrays a biological (endogenous or exogenous) pulsatile
controller.

In biological systems, the slow and fast dynamical parts of-
ten have different underlying nature. Electrical neural signaling
that regulates continuous biochemical subsystems is ubiquitous
in endocrinology [3] and metabolism [4]. Episodic impacts can
also be mediated biomechanically by contracting and relaxing
muscles that affect a liquid flow [5]. Naturally, the muscles
are neurally controlled and, in this case, act as actuators.
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A. Pulsatile endocrine regulation

The endocrine system of an organism is constituted by
glands communicating through hormone molecules as mes-
sengers [6]. Hormones are chemical blood-borne substances
produced by the glands and regulate biological vital functions
such as metabolism, reproduction, and growth. The endocrine
system is an example of a complex dynamical network with
multiple positive (stimulatory) and negative (inhibitory) cou-
plings between the nodes that correspond to individual glands.
The endocrine system is orchestrated by the dedicated neural
centers of the brain, primarily, the hypothalamus and the pitu-
itary gland (hypophysis). The former produces concentration
pulses of so-called release hormones (releasing factors) that
communicate control information to the glands through pulse
amplitude and frequency, see e.g. [7]. The neuroendocrine
control loop incorporating the hypothalamus and the involved
endocrine glands is thus an example of impulsive (pulse-
modulated) control system [1].

Mathematically tractable models are usually obtained by
decoupling the endocrine system into smaller subsystems,
called hormonal axes, capturing only essential characteristics
and interactions [8]. In spite of different biological char-
acteristics of the hormones (secretion and clearance rates,
temporal patterns of concentration evolution, etc.), structures
of endocrine axes regulating testosterone, cortisol, growth,
adrenal and parathyroid hormones are similar [3], [9], [10].

The structural diagram of a neuroendocrine axis is shown
in Fig. 1 and possesses two negative feedback loops. The
outer (“long”) feedback implements impulsive event-triggered
control through impulses of a so-called release hormone
from the hypothalamus, whose amplitude and frequency are
modulated by the concentration of the effector hormone in the
bloodstream. It is generally hypothesized that the purpose of
the impulsive regulation loop is to maintain timed rhythmic
activity in the concentrations of the involved hormones with
minimal means. The inner (or local) feedback from the target
gland to the pituitary is enabled by the presence of effector
hormone receptors in the pituitary but its strength apparently
differs between species [11]. The inner feedback is therefore
continuous in nature. As reported in [9], the third negative
feedback from the pituitary gland to the hypothalamus also
exists, but its effect is much weaker than the effects of two
feedback loops, so its usually neglected to reduce model
complexity.

B. Goodwin’s oscillator

The classical Goodwin’s oscillator (GO) [13], [14] serves
as a basis for many biochemical models and constitutes a



Fig. 1. A scheme of hypothalamus-pituitary endocrine axis [12]

prototypical biological oscillator. At the same time, its original
version has numerous limitations [12], [15]–[17] and fails
to capture many important features of the actual biological
mechanism; In particular, the classical GO is continuous,
whereas the dynamics of endocrine axes are hybrid due to
the presence of impulsive phenomena.

The current extensions of the GO can be divided into two
groups. Models of the first type [18]–[25] modify the structure
of the original GO and consider more complex interactions
between the model states that obey nonlinear ordinary or
delay-differential equations. Their dynamics, however, remain
continuous, which allows to use well-developed techniques
of ordinary differential equations, ranging from local stabil-
ity analysis and Hopf bifurcations to recent extensions of
Poincaré-Bendixson theorems [26].

In many biomedical applications, biochemical processes are
controlled by neural populations and centers through impulsive
feedback action contributed by firing neurons. This class of
systems gives rise to the models of the second kind [27]–[32].
Being historically focused on the testosterone regulation in
the male, they preserve the original structure of the GO and
yet portray the pulsatile mechanism of secreting the release
hormone, which phenomenon is established by numerous
experimental studies [8], [33], [34]. To cope with the hybrid
(impulsive and continuous) dynamics of such models, special
techniques from theory of impulsive systems [1] have been
utilized. Unlike the classical continuous GO, the hybrid model
in [28] (i.e. the IGO) has no equilibria by design and is proved
to possess periodic trajectories. In particular, a unique solution
with one pulse over the period (1-cycle) exists [28]; periodic
solutions with m ≥ 2 pulses per period (m-cycles) may also
exist [32]. A hybrid model with equilibrium can be obtained
from the IGO by allowing for impulses of zero weight [5].
This special case is motivated by the necessity of modeling
transient oscillations, e.g. in the blood concentration of a drug
after single-dose administration.

Although the rich dynamics of IGO can approximate mea-
sured hormone concentration profiles quite well [28], this
model ignores the local feedback from the target gland to the
pituitary and, thus, does not reflect the full structure of the hor-

mone interactions in Fig. 1. In order to study the effect of this
local feedback, an extension termed the impulsive Goodwin’s
oscillator with a local feedback (IGOLF) has been introduced
in [12]. The local feedback can be reasonably assumed to be
continuous, as the corresponding loop does not involve the
hypothalamus. As discussed in [12], there is no consensus on
the mathematical description of the respective feedback control
mechanism. From a system identification perspective [35]–
[37], it is desirable to consider models that linearly depend
on unknown parameters rather than identify the nonlinear
functions that usually arise in the kinetic equations [14].

Beyond the saturation intervals corresponding to extreme
values of the regulated variable, a Hill-function nonlinearity
can be well approximated by an affine function, as proposed
in [12], where the IGOLF model with an affine negative
feedback is considered. It has been shown that, for a low-
gain local feedback of this type, the IGOLF model inherits
many properties of IGO [28] and, moreover, can be reduced
to the IGO by an affine transformation. The price paid for the
affine structure of local feedback is, however, the occurrence of
partially negative trajectories. Although negative concentration
values of a substance in the bloodstream allow a plausible
biological interpretation (the substance deficit in homeostasis),
their occurrence undermines the model cogency. At the same
time, with a proper choice of the parameters, the IGOLF
model exhibits periodic solutions that are positive and hence
biologically feasible. Notably, the latter property applies only
to the case of an affine local feedback but, in general, fails to
hold for a linear feedback.

Although the feedback approximation by an affine function
simplifies somehow the analysis of the IGOLF model, more
sophisticated choices (in particular, the Hill function) are
typically made in biological models. A clear disadvantage
of affine negative feedback is the existence of biologically
infeasible solutions. The use of positive Hill-function non-
linearities automatically ensures feasibility of the solutions,
adding however to the diversity in the model’s dynamical
behaviors.

The present paper demonstrates that the introduction of a
local Hill-function feedback in the IGO leads to the appearance
of e.g. multistability (that is, coexistence of several stable
attractors) as well as crises of chaotic attractors. In order
to understand the mechanism leading to these phenomena, a
comparison between IGOLF models with a nonlinear Hill-type
function and with its affine approximation is preformed. We
explain also which features of the behavior of the nonlinear
feedback model are captured by the affine feedback model and
which are not. It should be noted that the model with affine
feedback, arising as an approximation of the Hill function,
does not satisfy the “small gain” condition from [12], and
thus is not reducible to the IGO model previously studied
in [28]. In fact, the IGOLF model that is studied in this paper
acquires new properties that are not exhibited by the original
IGO model without local feedback. To examine the IGOLF
numerically, its hybrid dynamics are reduced to a discrete-
time system, or the Poincaré map, governing the propagation
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of the model’s continuous states through the firing instants of
the impulsive feedback.

The paper is organized as follows. In Section II, we briefly
review the Goodwin-type models used in modeling of hor-
monal axes, introducing, in particular, the IGO and IGOLF
models. In Section III, bifurcation analysis of the simpler
model with an affine local feedback is carried out. Section IV
deals with a more complicated nonlinear model. Section V
concludes the paper.

II. PRELIMINARIES: GOODWIN-TYPE MODELS

This section briefly reviews the GO and introduces its
extensions to be studied in the rest of the paper.

A. The classical Goodwin’s oscillator

The classical continuous GO [13] involves three variables
x1,x2,x3 that in our case stand for serum concentrations of
the release, tropic, and effector hormones, respectively. The
variables obey the equations

ẋ1 =−b1x1 + f (x3),

ẋ2 =−b2x2 +g1x1,

ẋ3 =−b3x3 +g2x2.

(1)

Here bi,gi > 0 and the function f : [0,∞)→ [0,∞) describe
the production and clearing rates of the hormones; f (·)
is decreasing (thus f (0) > 0) and represents the negative
(inhibitory) coupling from the last to the first hormone in
the chain, see Fig. 1. The decrease in the level of effector
hormone stimulates the production of the release hormone,
which in turn stimulates of the effector hormone (through the
additional tropic hormone). The nonlinear feedback is typically
characterized by the Hill function [15]

f (x3) =
a

1+b(x3/h)m , a,b,h > 0,m≥ 1. (2)

The properties of GO (1), (2) are surveyed in [14], [15],
[17], [25] and references therein. It is known that the model
has a unique equilibrium in the positive octant x1,x2,x3 > 0.
This equilibrium can be unstable only when the Hill constant
m > 8, otherwise, the model has a locally stable equilibrium.
Simulations indicate that, in fact, all positive trajectories
converge to the equilibrium, which fact has still to be proved
mathematically. If the equilibrium is unstable, then almost all
trajectories converge to periodic orbits [25].

B. The impulsive Goodwin’s oscillator (IGO)

The key limitation of the classical GO is its incoher-
ence with the actual discontinuous mechanism of the release
hormone secretion in the hypothalamus. The jumps in the
hormone concentration x1 observed in experiments [28], [38]
can be modeled by replacing the continuous function f (x3)

in (1) with a pulse-modulated feedback mechanism [28].
Equations (1) are thus substituted by

ẋ1 =−b1x1,

ẋ2 =−b2x2 +g1x1, t ∈ (tk, tk+1),

ẋ3 =−b3x3 +g2x2,

(3)

x1(t+k ) = x1(t−k )+λk, x2(t+k ) = x2(t−k ), x3(t+k ) = x3(t−k ). (4)

The instantaneous jumps in x1 given by (4) correspond to
onset of release hormone pulses. The pulses are produced
by a pulse-modulation mechanism implementing the “long”
feedback from the effector to the release hormone (Fig. 1).
The sequences of the pulse instants tk and amplitudes λk
depend on a specific solution to model (3), (4). An important
assumption, based on experimental evidence [39], is that, in
this feedback mechanism, the amplitude λk and the inter-pulse
interval (tk+1− tk) depend only on the state of the system at
time tk, but not on the previous trajectory:

λk = F(x3(tk)), tk+1 = tk +Φ(x3(tk)), t0 = 0, (5)

where the functions Φ,F are strictly positive and bounded

Φ : R→ [Φ1,Φ2], F : R→ [F1,F2],

0 < Φ1 < Φ2 < ∞, 0 < F1 < F2 < ∞.
(6)

Such a feedback mechanism is referred to as a pulse
amplitude-frequency modulator of the first kind [1] or an
impulsive self-triggered controller [40]. The assumption t0 = 0
does not result in loss of generality and means that the system
operation starts with the first pulse.

In (6), the amplitude modulation characteristic F is non-
increasing, while the frequency modulation characteristic Φ

is assumed to be non-decreasing. This agrees with the ex-
perimental observations reported in e.g. [38]. An increase of
the effector hormone level decreases the frequency of release
hormone pulses and reduces their amplitudes [38], thus also
suppressing the bursts of the intermediate tropic hormone.

The properties of system (3)-(5) constituting the IGO are
well documented in [28]–[32]. The most important difference
from the classical GO is the existence of periodic solutions and
absence of fixed points due to the persistent pulses. Moreover,
a periodic solution with a single jump over the least period
(1-cycle) always exists and is unique [28].

C. From IGO to IGOLF: Additional feedback

Whereas the pulsatile mechanism of the “long” feedback
in Fig. 1 is captured by the IGO model (3)-(5), this model
ignores the existence of a local feedback. A natural question
arises whether such a local feedback changes the model
properties and leads to new dynamical phenomena.

An important step in the analysis of IGO with additional
local feedback (IGOLF) was taken in [12]. The local feedback
can be reasonably assumed to be continuous, as it does not
involve impulsive mechanisms of hypothalamus; On the other
hand, there is no consensus on the form of this nonlinear-
ity. The local feedback typically cannot be experimentally
observed in its full domain of definition [37]. Beyond the
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saturation intervals of extreme hormone concentration, the Hill
function and other nonlinearities can be well approximated
by polynomials. It was proposed to approximate the “local”
feedback by the simplest first-order polynomial, or the affine
function µ−kdx3, where µ,kd ≥ 0 are some coefficients. The
continuous part of the IGO model in (3) is then replaced by

ẋ1 =−b1x1,

ẋ2 =−b2x2 +g1x1− kdx3 +µ,

ẋ3 =−b3x3 +g2x2, t ∈ (tn, tn+1),

(7)

whereas equations (4) and (6) remain unchanged.
The constant k≥ 0 in (7) stands for the control gain, regulat-

ing the dependence between the level of the effector hormone
and the secretion of the tropic hormone in the pituitary gland.
The constant µ may be interpreted as the hormone’s basal
level, i.e. the product of the hormone secretion outside the
feedback loop. Note here that removing µ simplifies the
model, but then the system may have no positive solutions
for some parameters bi,gi.

The main mathematical result from [12] is concerned with
the case of kd being sufficiently small, so that the characteristic
polynomial of the linear part

χ(λ ) = (λ +b1)[(λ +b2)(λ +b3)+g2kd ] (8)

has only real zeros. This holds if and only if

0≤ kd < k∗ :=
(b2−b3)

2

4g2
.

Under this assumption, the IGOLF given by (7), (4), (6)
reduces, in fact, to the IGO in (3)-(6) through a linear
transformation of variables. The inverse transformation can
however map a positive (biologically feasible) solution into a
partially negative solution. Nevertheless, choosing µ > 0 large
enough, it can be guaranteed that all periodic solutions of the
system are positive.

In what follows, we consider a more complicated situation,
when the polynomial χ(λ ) has only one real root and a pair of
complex-conjugate roots. Then, the dynamics of (7), (4), (6)
become much more complicated and cannot be reduced to the
IGO model. By using numerical analysis, we in fact show that
the IGOLF in this situation obtains new properties that do not
appear in the IGO model, e.g. multistability.

Furthermore, we compare the behaviors of this model and
the more complicated model with Hill-function local feedback,
whose continuous part is described by the equation

ẋ1 =−b1x1,

ẋ2 =−b2x2 +g1x1 +
a

1+κ · (x3/r)s ,

ẋ3 =−b3x3 +g2x2, t ∈ (tn, tn+1),

(9)

Here a,κ,r > 0 and s≥ 1 are constant parameters.

III. IGOLF WITH AFFINE LOCAL FEEDBACK

We first consider system (7), (4), (5) whose structure is sim-
pler than the structure of IGOLF with Hill-function feedback

and whose dynamics essentially reduces to a discrete mapping,
for which a closed-form expression is available.

Below, we assume that characteristic polynomial (8) (which
is Hurwitz1 when b1,b2,b3,g2 > 0 and kd ≥ 0) has only one
real root λ1 = −b1 and a pair of complex-conjugate roots
λ2,3 = α±β i, where

α =−b2 +b3

2
< 0, β =

√
b2b3 +g2kd−

(b2 +b3)
2

4
> 0.

In the present case, the algebraic transformation reducing
the IGOLF to the IGO from [12] is undefined. As presented
in the next subsections, bifurcation analysis reveals a deep
geometric reason for this: the dynamics of the IGOLF in the
case of complex eigenvalues are much richer than dynamics
of the IGO and are featured by multistability, in particular,
chaotic attractors may coexist with stable cycles.

Following [28], we assume that the modulation functions
in (6) are given by

Φ(x3) = k1 + k2
(x3/h)p

1+(x3/h)p , F(x3) = k3 +
k4

1+(x3/h)p .

(10)

A. Discrete-time map

To facilitate the analysis, introduce the new variables x̄, ȳ
and z̄ that are related to x1, x2, x3 as follows

x1 = [(b1 +α)2 +β
2] · x̄, (11)

x2 =−g1(b1 +b2 +2α) · x̄−g1(b2 +α) · ȳ

−g1β · z̄+ b3µ

b2b3 +g2kd
,

x3 = g1g2(x̄+ ȳ)+
g2µ

b2b3 +g2kd
.

Substituting (11) into (7) and solving with respect to the
derivatives, we obtain

dx̄
dt

= λ1x̄,
dȳ
dt

= α ȳ−β z̄,
dz̄
dt

= β ȳ+α z̄, (12)

whereas equations (4),(6) transform into

x̄(t+k ) = x̄(t−k )+ γ0F(ϕ(tk)), ȳ(t+k ) = ȳ(t−k )− γ0F(ϕ(tk)),

z̄(t+k ) = z̄(t−k )− γ1F(ϕ(tk)), tk+1 = tk +Φ(ϕ(tk)).

In the equations above, we have

ϕ(t) = g1g2(x̄(t)+ ȳ(t))+
g2µ

b2b3 +g2kd
= x3(t),

γ0 =
1

(b1 +α)2 +β 2 and γ1 =
b1 +α

β
γ0.

It can be easily seen that the whole trajectory of the system
is uniquely recovered from the behavior of the discrete-time
sequence {(x̄k, ȳk, z̄k)}, defined as

x̄k = x̄(t−k ), ȳk = ȳ(t−k ), z̄k = z(t−k ).

The values x̄(t), ȳ(t), z̄(t) for t ∈ (tk, tk+1) are found by direct
integration of linear equations (12).

1Recall that a polynomial is Hurwitz if all its roots have negative real parts.
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For this reason, analysis of the nonlinear IGOLF model
reduces to the analysis of discrete-time dynamics, which can
be expressed explicitly

x̄k+1 = eλ1Tk · (x̄k +Γk);

ȳk+1 = eαTk · [(ȳk−Γk) · cos(βTk)− (z̄k−Ωk) · sin(βTk)] ;

z̄k+1 = eαTk · [(ȳk−Γk) · sin(βTk)+(z̄k−Ωk) · cos(βTk)] ,
(13)

and here Tk,Γk,Ωk are functions of x̄k, ȳk defined by

Tk = Φ(ϕk), Γk = γ0F(ϕk), Ωk = γ1F(ϕk),

ϕk = g1g2(x̄k + ȳk)+
g2µ

b2b3 +g2kd
,

γ0 =
1

(b1 +α)2 +β 2 and γ1 =
b1 +α

β
γ0.

(14)

Substituting (14) into the right-hand side of (13), one finds
the discrete map

M : (x̄k, ȳk, z̄k) 7→ (x̄k+1, ȳk+1, z̄k+1).

B. Cycles

Dealing with hormonal rhythms, we are primarily interested
in periodic solutions of the model. It can be shown that
periodic trajectories lead to periodic sequences (x̄k, ȳk, z̄k),
and vice versa. Therefore, if the discrete-time dynamics are
periodic, the continuous solution is periodic, too. Notice that
the time elapsed between the subsequent jumps tk+1− tk is
strictly positive by construction. Given the solution least period
T , each interval [t, t + T ) contains only a finite number of
jumping instants. Such periodic solution is called an m-cycle,
where m≥ 1 and, obviously, does not depend on t.

Evidently, 1-cycles stand for the fixed points of the discrete
map M. More generally, m-cycles correspond to the points of
period m, that is, such point r = (x̄, ȳ, z̄) that

m = min{k ≥ 1 : Mk(r) = r}.

C. Bifurcation analysis

In [12], it was illustrated both analytically and numerically
that the presence of an affine negative feedback compromises
solution positivity. By choosing µ large enough, one can
guarantee positivity of all periodic solutions. However, on the
other hand, the local feedback may lead to more complicated
dynamical behaviors, such as multistability (coexistence of
several stable attractors) and hysteresis transitions [41], [42].

The purpose of this section is to illustrate some mechanisms
involved in the appearance of the multistability. For the simu-
lation, we use the following parameters: b2 = 0.1, b3 = 0.06,
k1 = 42.0, k2 = 82.0, k3 = 0.05, k4 = 5.0, h = 2.7, p = 4.
Remaining parameters b1, g1, g2, kd = 0.042 and µ = 0.07
are varied.

Fig 2(a) displays the coexistence of the two stable cycles
and hysteretic transitions from the one stable motion to another
and vice versa. The bifurcation diagrams in Fig 2(a) obtained
through direct simulation also show a period doubling tran-
sition to chaos. To better illustrate hysteretic transitions, a
magnified part of Fig. 2(a) is presented in Fig. 2(b). This

diagram is obtained by following the stable and saddle 4-
cycles.

As the parameter b1 decreases/increases, the stable 4-cycle
O1/O2 merges with the saddle 4-cycle O3 and disappears in a
fold (saddle-node) bifurcation (Fig. 2(b)). The domain between
the fold bifurcation points b1,fold

1 and b2,fold
1 are the region

of bistability where the two stable 4-cycles coexist. When
crossing the boundaries b1,fold

1 and b2,fold
1 of the bistability

region, the system displays hysteretic transitions from the one
stable 4-cycle to another and vice versa. Fig. 2(c) illustrates a
form of multistability when the stable periodic motions, arising
in a fold bifurcation, can undergo a classical infinite sequence
of period-doubling bifurcation, leading to the transition to
chaos, see Fig. 2 (a),(c). As a result, we have parameter
domains where a chaotic attractor coexists alongside with
stable cycles, Fig. 2(c).

Note that the ordinate axis x3 in Fig. 2 is the third dynamical
variable of (7) interpreted as the concentration of effector
hormone (testosterone, cortisol, growth hormone etc.), which
is related to the dimensionless variables of (12) through linear
transformation (11). Next, we will stick to the same notation.

A distinctive feature of multistable systems is their sensi-
tivity to dsiturbance: an arbitrarily small level of perturbation
may cause a sudden transition from one attractor to another,
i.e. a fundamentally unpredictable behavior of the system. A
broad discussion of the role of the multistability in complex
dynamics can found for instance in a series of publications by
Feudel et al. [41], [42].

IV. IGOLF WITH HILL-FUNCTION LOCAL FEEDBACK

Although the IGOLF model with affine feedback has a
number of disadvantages (such as e.g. the existence of bio-
logically infeasible negative solutions) and is limited in its
ability to describe actual biochemical feedback mechanisms,
our studies of this model reveal actually the same phenomena
(e.g. multistability, crises of the chaotic attractors etc.) as those
observed in the more complicated IGOLF model with Hill-
function local feedback (9),(4),(5). Similar to the previous
case, we choose the pulse modulator characteristics in the form
of (10). Note that if a = 0, then continuous block (9) reduces
to (3), and the model degenerates to the IGO from [28].

In the numerical simulations, the following parameters were
used: 0.13 < b1 < 0.14, b2 = 0.1, b3 = 0.06, g1 = 0.8, g2 =
0.18, k1 = 42.0, k2 = 82.0, k3 = 0.05, k4 = 5.0, h = 2.7, p = 3,
r = 1.2, a = 4.5, κ = 1.0 and s = 3.

Fig. 3(a) provides an overview of the formation of coex-
isting modes, appearance of chaos via a cascade of period-
doubling bifurcations, and transitions from a small-size to a
large-size chaotic attractor in an expansion bifurcation.

Inspection of this diagram shows that stable 4-cycle O3
that is arising in a fold bifurcation at b3,fold

1 coexists with a
stable fixed point O4. As the parameter b1 decreases, one can
observe an infinite sequence of period-doubling bifurcation,
leading to the transition to chaos. This type of transition also
is observed when the parameter b1 increases from the value
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(a)

(b)

(c)
Fig. 2. (a) Bifurcation diagram showing the coexistence of two stable 4-
cycles (O1, O2) and a period doubling transition to chaos, 0.37 < b1 < 0.41,
kd = 0.028 and µ = 0.062. (b) Magnified part of the bifurcation diagram
that is outlined by the red rectangle in (a) illustrating hysteretic transition
from one stable 4-cycle O1 to another O2 and vice versa in a fold (saddle-
node) bifurcation. b1,fold

1 and b2,fold
1 are the fold bifurcation points. The

stable manifold of a saddle 4-cycle O3 delineates the basins of attraction for
coexisting stable cycles O1 and O2. (c) Bifurcation diagram illustrating the
coexistence of periodic and chaotic attractors, 0.28 < b1 < 0.29, kd = 0.0268
and µ = 0.06208.

b1,fold
1 , at which the stable O1 and saddle O2 4-cycles appear

in a fold bifurcation.
It should be noted that at the points b1,h

1 and b2,h
1 , the chaotic

attractors, which occur through a period-doubling cascade,
suddenly increase in size. Such type of transition is known as

an expansion bifurcation [43] or an interior crisis [44], [45].

(a)

(b)
Fig. 3. (a) Bifurcation diagram for (9). The diagram illustrates a form of
multistability in which stable fixed point O4 and periodic or chaotic attractor
coexist. Here b1,fold

1 , b3,fold
1 , are the fold bifurcation points at which the

stable O1 and saddle O2 cycles or stable O3 and saddle O2 points are born,
respectively. b4,fold

1 is the saddle-node bifurcation point for the fixed point
O4. b1,h

1 and b2,h
1 denote the expansion bifurcation point at which a chaotic

attractor suddenly increases in size. (b) Bifurcation diagram for the affine
model illustrating an expansion bifurcation, that is shown in (a).

Consider the characteristics of this bifurcational behavior
in more detail in order to understand the mechanism of the
transition. Expansion bifurcation is associated with homoclinic
bifurcations and it is very difficult to study in detail using a
model with a Hill-function feedback. In this case, the role of
the affine model is very important.

Fig. 3(b) shows the bifurcation diagram for the affine
feedback model obtained by means of continuation techniques.
This diagram illustrates the expansion bifurcation, that is
shown in Fig. 3(a). This transition is caused by the con-
tact of the chaotic attractor with the stable manifold of the
saddle cycle O2 (see Fig. 3(a),(b)), or, in other words, by
the homoclinic tangency between the stable and the unstable
manifolds of the O2 [46]. As a result, the chaotic attractor
merges with the chaotic repeller. This leads to an abruptly
changing amplitude of the chaotic oscillations. The domain
between the points b1,h

1 and b2,h
1 is a region where the large-

size chaotic attractor coexists with the stable fixed point O4.
When crossing the boundaries b1,h

1 and b2,h
1 the system displays

expansion bifurcations.
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(a)

(b)

(c)

(d)
Fig. 4. (a) Coexistence of a stable 3-cycle O3 and a stable fixed point O4
for b1 = 0.1348 in Fig. 2(a). (b) Phase portrait for b1 = 0.132893334 near the
expansion bifurcation point b2,h

1 where a stable fixed point O4 coexists with
a small-size chaotic attractor. (c) Phase portrait for b1 = 0.13249384646 in
the region between the expansion bifurcation points b1,h

1 and b2,h
1 . (d) Phase

portrait for b1 = 0.1317 that falls to the left of the point b2,h
1 .

Fig. 4(a) shows the phase portrait of (9) for the values of b1
where the stable 4-cycle O3 coexists with a stable fixed point

O4. The phase portrait contains the periodic orbits Γ4 and Γ3
of the Eq. (9), and corresponding fixed O4 and periodic O3
points of the map for a vector field (9). Fig. 4(b) displays the
phase portrait near the first expansion bifurcation (for the value
of b1 that falls to the right of the point b2,h

1 ). At this stage,
the stable fixed point O4 coexists with a small-size chaotic
attractor.

Fig. 4(c) shows the phase portrait after the first expansion
bifurcation as b1 decreases from the value b3,fold

1 . The bound-
ary of this bifurcation is denoted as b2,h

1 . Here, the stable
fixed point O4 coexists with a large-size chaotic attractor.
With further decrease of b1, the second expansion bifurcation
occurs at b1,h

1 when the stable and unstable manifolds of
the period-4 saddle cycle become tangent to each other (the
second homoclinic tangency). After the homoclinic tangency,
the chaotic attractor suddenly changes in size. Fig. 4(d) shows
the phase portrait after the second expansion bifurcation.
Comparing Fig. 4(b) and Fig. 4(d), one can conclude that in
region between the points b1,h

1 and b2,h
1 the stable and unstable

manifolds of the period-4 saddle cycle intersect transversally
to form a homoclinic structure. The intersection of these
manifolds implies, that the two small-size chaotic attractors
(in Figs 4(b) and 4(d)) “merge” into a single large-size one
(Fig 4(c)).

V. CONCLUSION

The present work deals with the dynamic features of an
impulsive Goodwin’s oscillator [27], [28] that was modified
in [12] by introducing a local nonlinear continuous feedback.
We have demonstrated that this addition resulted in new
complex dynamical behaviors such as multistability and crises
of chaotic attractors. In order to understand the mechanisms
behind these phenomena, we apply a modeling approach based
on the approximation of a nonlinear continuous feedback by
an affine feedback. Due to its simplicity, this model allowed
us to perform a detailed numerical bifurcation analysis. The
affine model is of course strongly limited in its ability to
account for the many complicated mechanisms taking place
in the model with a Hill-function feedback. In particular,
the presence of an affine negative feedback gives rise to the
problem of solution positivity. However, it still can be useful
in the analysis of global dynamics that are associated with
homoclinic bifurcations, showing similar properties to those
of the Hill-function feedback model.

One topic of ongoing research is to find a procedure for
identification of the IGOLF model’s parameters, which will
allow, in particular, to compare the model’s predictions with
experimental data provided in [28].
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[2] R. Goebel, R. G. Sanfelice, and A. R. Teel, Hybrid Dynamical Systems.
Modeling, Stability, and Robustness. Princeton University Press, 2012.

[3] W. S. Evans, L. S. Farhy, and M. L. Johnson, “Biomathematical
modeling of pulsatile hormone secretion: a historical perspective,” in
Methods in Enzymology: Computer methods, Volume A, M. L. Johnson
and L. Brand, Eds., 2009, vol. 454, pp. 345–366.

7



[4] A. Niijima, “Nervous regulation of metabolism,” Progress in Neurobi-
ology, vol. 33, no. 2, pp. 135–147, 1989.

[5] H. Runvik, A. Medvedev, and M. C. Kjellsson, “Impulsive feedback
modeling of levodopa pharmacokinetics subject to intermittently inter-
rupted gastric emptying,” in American Control Conference, Denver, CO,
2020.

[6] K. L. Becker, J. P. Bilezikian, W. J. Bremner, and W. Hung, Principles
and Practice of Endocrinology and Metabolism, 3rd ed. Lippincott
Williams & Wilkins, 2001.

[7] J. J. Walker, J. R. Terry, K. Tsaneva-Atanasova, S. P. Armstrong, C. A.
McArdle, and S. L. Lightman, “Encoding and decoding mechanisms of
pulsatile hormone secretion,” J. Neuroendocrinoly, vol. 22, no. 12, pp.
1226–1238, 2009.

[8] D. M. Keenan and J. D. Veldhuis, “A biomathematical model of time-
delayed feedback in the human male hypothalamic-pituitary-Leydig cell
axis,” Amer. J. Physiology. Endocrinology and Metabolism, vol. 275,
no. 1, pp. E157–E176, 1998.

[9] E. B. Stear, “Application of control theory to endocrine regulation and
control,” Annals of biomedical engineering, vol. 3, no. 4, pp. 439–455,
1975.

[10] D. M. Keenan, J. D. Veldhuis, and W. Sun, “A stochastic biomathemati-
cal model of the male reproductive hormone system,” SIAM Journal on
Applied Mathematics, vol. 61, no. 3, pp. 934–965, 2000.

[11] Y. Okada, Y. Fujii, J. P. Moore, and S. J. Winters, “Androgen receptors
in gonadotrophs in pituitary cultures from adult male monkeys and rats,”
Endocrinology, vol. 144, no. 1, pp. 267–273, 2003.

[12] H. Taghvafard, A. Medvedev, A. Proskurnikov, and M. Cao, “Impulsive
model of endocrine regulation with a local continuous feedback,” Math
Biosci., pp. 128–135, Feb 2019.

[13] B. Goodwin, “Oscillatory behavior in enzymatic control processes,”
Nature, vol. 209, no. 5022, pp. 479–481, 1966.
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