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2. Materials and Methods

Two di�erent brain slice datasets were used in this work. Firstly, the real-world clinical dataset,
which comprises 22 brain slices (axial T2 MR DICOM slices), obtained from the Proscans Diagnostics
Centre (Chennai, India). Secondly, the benchmark BRATS dataset was used for evaluating the
performance of the proposed model. Further, in this work, the BRATS dataset comprised of ten patients
and around 200 brain slices were acquired from each patient. This section speci�es that the proposed
approach was deployed to segment and analyze the axial MR DICOM slices. Initially, the DICOM
slices are subjected to pre-processing. The segmentation of preprocessed DICOM slices is subjected to
fuzzy clustering for image enhancement. In order to select the best clusters, the silhouette metric is
employed. The enhancement of extracted structures is carried out using morphological operations.
Finally the ROI is extracted using image post-processing procedures such as MCW, RG, and DRLS,
and the extracted tumor is validated using similarity measures. The complete architecture is shown in
Figure 1. Also volumetric quanti�cation of tumor and 3D visualization is generated from the slices
involved in the real-time clinical study. The decision making capability of the proposed approach is
tested and validated using 2D slices of the considered image dataset.

 

Figure 1. The Architecture of the Proposed Hybrid Model.

2.1. Pre-Processing

The considered slices are presented to the system as (.dcm) �les. Rescale correction is performed on
all the slices which provide a 512*512 pixel array for each image. The DICOM tags Rescale Intercept (RI)
and Rescale Slope (RS) postulates the linear transformation of pixels to their memory representation.
The Rescale Correction [36] of the slices is given by:

RC = I*RS + RI (1)

where RC is the rescaled units, I is the intensity value. In MR DICOM metadata, the attributes rescale
slope and rescale intercept are not available as tags. For the computational purpose, the tag values are
engaged as one and 1024, respectively. The available slice location header attribute in MR allows brain
slices to be added for processing sequentially.

Abnormality identi�cation in the brain requires removal of the skull or non-brain tissues such as
dura, arachnoid, pia mater for e�ective extraction of ROI. The skull portions possess a low solidity area.
Solidity is the proportion of the contour area to its convex hull area. Regions having the least solidity
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are removed, leaving only the region occupied by the actual brain tissue. The slices which have high
solidity objects were retained after rescaling correction, thereby eliminating the non-brain matter.

2.2. Fuzzy Clustering Based Object Extraction from DICOM Slices

The fuzzy clustering (FC) technique is performed to extract the best segmentation in a feature
space containing varying cluster intensities and shapes. Fuzzy clustering classi�es a set of data points
p1, p2, p3, . . . , pm of a DICOM slice into k (�m) clusters, which minimizes the total distortion. Each data
point in the feature space has a degree of membership (aij) to its own cluster. The points closest to
cluster centroids has a higher degree compared to the points in the cluster edge. For a data point i
assigned to cluster j, gives aij coe�cient value for being in the jth cluster. The sum of aij coe�cient is
always 1. The fuzzy assisted clustering algorithm based on minimization of the following objective
function (Fw) concerning A (fuzzy k partition) and B (k set of clusters) and it is given by:

Fw(A, B) =
m�

j=1

k�

i=1

�
aij

�w
d2

�
Pj, Bi

�
; k � m (2)

where, w(>1), is the weighting exponent acts as a control parameter for the fuzziness in aij, Pj is the jth

point in the feature vector of N-dimensional space, Bi being the centroid for cluster i, aij is the degree
of membership of the pixel Pj in cluster i, d2

�
Pj, Bi

�
is the distance measure between Pj and Bi, m and k

represent the number of data points and the number of clusters, respectively.
The degree of membership of all feature vectors is associated with the inverse of the distance to

the cluster center:

aij =

�
1

d2(Pj,Bi)

�1/w� 1

	k
i=1

�
1

d2(Pj,Bi)

�1/w� 1
(3)

The Euclidean distance measure is used to compute the degree of membership (aij) is given as:

d2
�
Pj, Bi

�
=

�
Pj � Bi

�T
I
�
Pj � Bi

�
(4)

where I denotes the identity matrix. The new centroid positions are computed based on the mean of all
the points, weighted by its corresponding degree of membership (aij) to the cluster:


Bi =

	n
j=1

�
aij

�w
Pj

	n
j=1

�
aij

�w (5)

Based on new centroid positions the updated degree of membership
�

aij

�
, is computed according

to aij shown in Equation (3). This process is repeated until the sum of distances of each point in the
slice to the centroid of the cluster is minimum, i.e., a termination criterion ��� is reached, which ensures
maximum accuracy. Other stopping criteria include no further improvement in the variance over some
iterations. The structures of the brain are segmented from the set of DICOM slices for a set of �k� values
ranging from 2 to 9.

2.3. Selection of the Best (k) Using Silhouette Index

Fuzzy clustering renders the clustered image for the preferred number of clusters (k). However,
optimal �k� should be chosen in order to place cluster labels within the centroid. In literature,
a well-balanced coe�cient named silhouette score, presented by Rousseeuw [37], has shown higher
performance in �nding optimal clusters. The silhouette score pertains to the deviation between the
within-class tightness and separation. Speci�cally, the silhouette value for a pixel in the slice pixel
array is given by,
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sil( j) =
b( j) � a( j)

max(a( j), b( j))
(6)

where, a( j) = 1/|Vi| � 1
	

y�Vi
d(x, y), be the mean distance of pixel point �x� with other pixels (y) within

the cluster Vi and b( j) = min {1/Vi
	

y�Vi
d(x, y)}, be the average dissimilarity of a point �x� to about

any cluster Vi of which chosen point �y� is not associated with it.
The maximum value of s(j) re�ects the optimal number of clusters. Correspondingly, the minimum

of b(j) is taken for computing s(j). If b(j) is larger, then the point is very far from its next neighboring
cluster. The squared Euclidean distance provides the distance metric d(x, y) between clusters for
computing the silhouettes.

K-means clustering with silhouette analysis is executed to �nd out the optimal �k� ranging from
2 to 9.

Silhouette always lies between �1 to 1, and it is de�ned as:

sil( j) =

�
����
�����

1� a( j)/b( j), i f a( j) < b( j)
0 , i f a( j) = b( j)

b( j)/a( j) � 1, i f a( j) > b( j)
(7)

If the silhouette values are approaching either +1 or �1, the pixel points are well clustered or
misclassi�ed, respectively. If zero, the points could be assigned to another cluster also.

Further, to validate the segmented slices, the entire pixel array of each slice is considered, and the
average silhouette width is computed. The average silhouette width for every slice is calculated from
mean of all the distinct cluster silhouettes is given by:

Savg(si) =
	n

i sil( j)
k

(8)

where, n denotes the number of clusters segmented. The Savg is used to �nd the best k for a slice si.
The silhouette coe�cient (kbest,i) is de�ned as the maximum average silhouette width which is given by,

kbest,i = max
�
Savg(si)

�
(9)

The algorithmic steps of incorporating fuzzy clustering and silhouette metric to the set of DICOM
slices are illustrated in Algorithm 1.

Algorithm 1 Silhouette-enabled Fuzzy Clustering

1: Let S = {s1, s2, s3, . . . , sm} (Set of Dicom Slices)
2: P =

�
p1, p2, p3, . . . , pm

�
(Set of data points to be clustered)

3: Kr, r � cluster_range [2:10]
4: kbest = Best K value of the clustered image
5: B = {b1, b2, b3, . . . , bk} (Set of cluster Centroids)
6: for each si � S

for each k in Kr
for each pi � P

Compute fuzzy Clustering by iteratively updating the degree of membership
�

�aij
�

and cluster
centroids �Bi

end
7: for every k in Si

8: Compute averagesilhouettewidth from individual cluster silhouettes (�nding best k from r.)
9: end
10: Compute kbest,i =max(averagesilhouettewidth) (Calculate kbest for Slice i)
11: End
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2.4. Morphological Operations for Objects Enhancement

Image masking is used to specify the foreground, background, or probable background /foreground.
Contour masking separates the objects from the original images, and it is essential for further analysis.
It is eliminating the outliers such as air, from the actual brain slices. The fuzzy clustering process
discovers the best-segmented clusters. These clusters form a binary mask that overlaid on the actual
slices to acquire the respective contour intensities. Mutual information (I) is computed between the
contour mask with the corresponding slice for ensuring similarity [38,39]. The weighted contribution
(Wi) of the contour mask (CMi) to the original slice (Si) is calculated as:

Wi =
1

CMi
e�

Ii � Imin
Imax � Imin (10)

where Ii represents the mutual information between CMi and Si. Imax, Imin are the maximum and
minimum mutual information for the overall CMi. After the extraction of structures from the fuzzy
clustering process, the obtained binary mask of the chosen slices may be distorted due to noise
and texture. Mathematical morphology, a kind of contrast enhancement technique, assists selective
enhancement of the small diagnostic contour features that are overlaid on a composite background.
Hence, the binary mask representing the extracted structures is further practiced with non-linear
operations such as morphological erode and morphological dilate for removing the inadequacies
in order to retain the form and structure of the extracted objects. Erosion is a reverse process to
dilation-erosion strips pixel layer over the edges, contradictorily dilation augments pixel layer over
the edges.

Dilation adds pixels to the contour boundaries in the slices. The number of supplementary
pixels integrated into the mask image is subject to the shape and size of the structuring element.
Dilation process is done by:

CM� SE = {z|(�SE)z � CM � �} (11)

where CM is the set of pixels representing the binary mask, SE be the structuring element initially
re�ected as �SE then the re�ected element is translated by z. This process enlarges the binary mask in
all directions not to miss any pixels, particularly at contour edges. Similarly, erosion is performed by:

CM� SE =
��

z
���(SE)z � CM

��
(12)

Stating that z con�ned in CM shifts the SE. Erosion removes pixels, thus sharpening the object
boundary. The number of pixels stripped is subject to the size of the SE. Erosion strips the connected
normal and abnormal contours, which aid in the e�ective extraction of ROI in the post-processing stages.

2.5. Tumor Quantization and Validation

The extracted objects possess high solidity ventricles and the tumor region. In order to extract the
ROI from the brain structures, image post-processing approaches are utilized to mine the ROI from the
extracted objects. After determining the abnormal regions, the size of the tumor is quanti�ed based on
its area and perimeter.

The validation metrics are used to evaluate the spatial intersection of ground truth (GT) of the
clinical slices with the extracted ROI [40]. The performance of the segmentation procedure is validated
using similarity measures such as Dice, Jaccard, false positive (FPR), and false negative (FNR) rates.

These measures are mathematically conveyed as:

Jaccard
�
Igt, IROI

�
= (Igt � IROI)/(Igt � IROI) (13)

Dice
�
Igt, IROI

�
= 2(Igt � IROI)/(Igt � IROI) (14)

FPR
�
Igt, IROI

�
= (Igt/IROI)/(Igt � IROI) (15)
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FNR
�
Igt, IROI

�
=

�
IROI/Igt

�
/(Igt � IROI) (16)

where, Igt expresses to the ground truth (GT) and IROI points for the segmented image with the
proposed strategy. Other related works implemented on brain MRI can be found in [41�49].

2.6. Volume Assessment and 3D Modeling

The clinical slices considered in this work have the cubical stack format [SC ×W ×H], SC signi�es
the number of slices (22), W, and H indicates the width and height of a slice [512 × 512] in pixels,
respectively. The slices are processed in DICOM format, which holds adequate slice information.
In DICOM metadata, it is identi�ed that �slice thickness (ST)� is 5 mm, �pixel spacing (PSx/PSy)� is
(0.4492 mm/0.4492 mm) and �spacing between slices (SS)� is 6.5 mm. The original stack [22 × 512 × 512]
migrated to a resampled stack [110 × 230 × 230] based on the spacing information presented in the
DICOM header. Resampling is achieved by cubic spline interpolation function. The tumor volume is
estimated as:

Volume = Tumor Voxels 	Voxel size (17)

where tumor voxels are the number of voxels that contributes to tumor and voxel size is measured
based on pixel spacing and slice thickness.

Visualization of tumor voxels in the complete study is achieved by merging the tumor containing
slices to form a voxel mesh in all three anatomical planes. Further, this exempli�es an interconnected
set of triangular faces of tumor voxels [50].

3. Results and Discussions

This section illustrates the results achieved with the proposed procedure. Figure 2 demonstrates a
brief overview of the proposed procedure for brain MR examination. Initially, the DICOM slices of the
patient study are pre-processed with rescaling correction. Moreover, this creates the intensity of the
similar tissues in the study to con�rm across the image slices. Then the non-brain tissues are stripped
from the brain matter, leaving the brain pixels, which contain the brain tissues. Figure 3 shows the
representative image of slice 12 before extraction (a) of brain tissue after removing (b) the non-brain
portions. This procedure avoids non-brain tissues to add unnecessary information, thereby enhancing
the e�cacy of extracting the ROI. The combination of Fuzzy clustering with validated silhouette index
(as the criterion for choosing best k) discovers the precise number of clusters from the slices. Figure 4
shows the extracted objects of Slice-14 and its corresponding mask image for �k� clusters (k ranges from
2 to 9).

Table 1 shows the silhouette scores Savg for the considered slices for the chosen k values. A more
substantial silhouette value gives a high split over the data points. For slice10 in Table 1, the optimal
k is elected as two, since Savg(si) holds the maximum value 0.45571. Similarly, the optimal kbest,i is
selected from the range of slices (Slice11-Slice14) based on the average silhouette width.

Table 1. Silhouette scores for Slices (10�14).

Slices k = 2 k = 3 k = 4 k = 5 k = 6 k = 7 k = 8 k = 9

Slice 10 0.45571 0.37847 0.3974 0.40063 0.40432 0.40568 0.411 0.35408
Slice 11 0.42842 0.41451 0.44141 0.43435 0.43878 0.4262 0.43644 0.43349
Slice 12 0.44109 0.45273 0.4498 0.46001 0.47158 0.4616 0.46032 0.46397
Slice 13 0.47107 0.50479 0.51933 0.50445 0.51069 0.50843 0.50041 0.43237
Slice 14 0.48988 0.53767 0.54796 0.55355 0.58523 0.53146 0.52066 0.52847

The maximum silhouette score (kbest,i) obtained for the cluster range are highlighted in bold.

In slice14 the maximum Savg(s14) = 0.58523 when k is six, but a minimum value resulted when k is
two, (Savg(s14) = 0.48988). Further, this shows the loss of tumor information in Figure 4 when k is two,
and an optimal segmentation is obtained when k is six.
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Figure 2. Flowchart of the proposed brain MRI examination of a patient study.
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(a) (b) 

Figure 3. Slice (12) Before (a) and after (b) skull stripping.

 

Figure 4. Segmented results and Masked Objects for Slice 14.

Figure 5a shows the graph with silhouette scores versus the number of clusters �k� for a
representative sample image �slice14.dcm�. The average silhouette width for the slices, which are more
than 0.48, con�rms a good split for all k clusters. As shown in the graph, a reasonable peak is obtained
when k = 6 and also possess a maximum value (Savg(s12) = 0.58523).

Figure 5b depicts the silhouette plot for slice14. The selection of an optimal k provides better
separation in feature space with more similar thickness and sizes. This increase in Savg(s14) is due to
the distinct separation from their neighboring clusters except for the background. The well-diversi�ed
information is obtained from the slices since the proper selection silhouette index was made. From the
achieved outcomes, it is clear that silhouette analysis plays a signi�cant role in the identi�cation of
best-clustered objects. After FC, the pixels representing abnormalities are spatially identi�ed and
segmented. The mask image is produced from the objects extracted from each slice, in order to
distinguish from outliers/ background. The mask image holds the pixel intensity values of abnormal
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normalized absolute error (NAE) and structural similarity index (SSIM) are calculated and are presented
in Table 3. From the table values, it is perceived that the FC method discovers the vital prominent
structures and thus preserves the segmentation quality. Also, the average image quality measures
attained through FC is superior compared to the other state-of-art approaches re�ected in this work.

Table 3. Image quality measures for segmentation methods.

Segmentation Slice PSNR NCC NAE SSIM

Watershed

Slice 10 21.3173 0.4923 0.6852 0.7955
Slice 11 19.8605 0.3846 0.7571 0.7095
Slice 12 22.6953 0.4742 0.7021 0.6992
Slice 13 20.8065 0.4192 0.7121 0.7148
Slice 14 21.7631 0.4031 0.7231 0.7219
Average 21.28854 0.43468 0.71592 0.72818

Chan-vese

Slice 10 24.0187 0.5102 0.6712 0.7083
Slice 11 23.0823 0.5802 0.6328 0.7153
Slice 12 22.0176 0.4979 0.6693 0.6983
Slice 13 25.2131 0.5374 0.6501 0.7213
Slice 14 23.0129 0.5278 0.6712 0.6859
Average 23.46892 0.5307 0.65892 0.70582

Fuzzy Clustering

Slice 10 20.9234 0.4865 0.7091 0.6995
Slice 11 28.6764 0.7681 0.4065 0.8204
Slice 12 30.5289 0.7548 0.3773 0.8143
Slice 13 32.3411 0.7917 0.3961 0.8968
Slice 14 31.5401 0.7842 0.3843 0.8412
Average 28.80198 0.71706 0.45466 0.81444

The proposed approach had been tested for its performance by validating it against the grand
challenge benchmark image dataset called the BRATS (size: 236 × 216 pixels). In this dataset, ten
patient studies of T2 and T1C modalities had been taken up for analysis, which contains axial brain MR
image series. The sample image series of patient studies and their corresponding GT that are obtained
are shown in Figure 6. The BRATs dataset that had been considered in the proposed research has a
number of advantages, few of those are�The desirable amount of 2D slices of a patient study can be
easily extracted from its skull stripped 3D brain MRI, modalities like Flair, T1, T1C, and T2 are easily
supported, contains ground truth images for all modalities o�ered by an expert member. Due to these
reasons that most researchers had adopted the BRATS images for testing their disease examination tool.

 

Figure 6. BRATS Dataset image series with Expert�s Ground Truth.
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For a comparative analysis in the post-processing stage, the ROI mining technique, marker
controlled watershed segmentation (MCW), Seed region growing (RG) and distance regularized level
sets (DRLS) are adopted and implemented to extract the anomalous section from the segmented objects
(shown in Figure 4). MCW is a well-known segmentation technique associated with marker controlled
morphological function and Sobel�s edge detection. This procedure detects ROI with the assistance of
priori provided whole alike image intensities [54].

In contrast to MCW, the level sets the implicit active contour models, uses gradient information of
the image, and thus naturally handles topological deviations by merging or splitting the contours [55].
The parameters for DRLS is assigned as follows; number of iterations = 100, scale parameter = 1.5,
potential function = single-well and timestamp = 5.

RG is an operator instigated semi-automated method, extensively used to extract the desired
(abnormal) structures from medical images [56]. RG requires a seed point (pixel position) to be
initialized somewhere within a contour or ROI. From the seed point, the RG procedure will start
mining the similar intensities of possible connected neighboring pixels accessible in the ROI.

The images chosen are initially subjected to FC for objects enhancement before applying the
post-processing. The image quality gets enhanced through the validated FC technique and provides an
ideal platform for the post-processing that is performed using MCW, RG, and DRLS. Figure 7 depicts
the brain abnormality segmentation results extracted from the 2D slices of T2 modality images through
FC assisted MCW, RG, and DRLS techniques. Correspondingly, results of segmented ROI from 2D
slices of T1C modality are shown in Figure 8.

The segmentation methods (MCW, RG, and DRLS) that had been implemented were assessed
for their performance by carrying out a comparative analysis that was executed between the ROI
and GT. The extracted ROI and GT were initially compared on T2 modality images, followed by
T1C modality images. The results obtained from these comparisons were recorded in Tables 4 and 5.
The recordings were made based on image similarity measures like Jaccard, Dice, FPR, and FNR.
Figure 9 shows the comparative analysis of assessed similarity measures of T2 and T1C weighted
images. The corresponding average scores of Tables 4 and 5 are depicted in the graph.

Figure 7. Segmentation results of BRATS T2 series.
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Figure 8. Segmentation results of BRATS T1C series.

Table 4. Image similarity measures for BRATS T2 MRI series.

Slice Jaccard Dice FPR FNR

FC+MCW

S100 0.8625 0.9201 0.00617 0.0487
S110 0.7623 0.8587 0.00126 0.1327
S120 0.7162 0.828 0.00427 0.1117
S130 0.7428 0.7048 0.002044 0.2123

FC+RG

S100 0.8914 0.9421 0.00796 0.0742
S110 0.7785 0.8691 0.00127 0.1566
S120 0.7189 0.8299 0.00144 0.1951
S130 0.7478 0.7868 0.00923 0.3995

FC+DRLS

S100 0.8958 0.9334 0.00288 0.083
S110 0.7939 0.9091 0.00119 0.179
S120 0.7427 0.8525 0.00176 0.1925
S130 0.7592 0.7951 0.00159 0.2636

Table 5. Image similarity measures for BRATS T1C MRI series.

Slice Jaccard Dice FPR FNR

FC+MCW

S100 0.6645 0.8284 0.0047 0.1904
S110 0.5154 0.9067 0.0064 0.1868
S120 0.6923 0.8643 0.0069 0.1628
S130 0.7187 0.8322 0.0061 0.1954

FC+RG

S100 0.7071 0.9123 0.0051 0.1962
S110 0.8293 0.8045 0.0058 0.1895
S120 0.761 0.8999 0.0052 0.1552
S130 0.7127 0.9034 0.0043 0.2001

FC+DRLS

S100 0.7628 0.8655 0.0054 0.2467
S110 0.8376 0.9116 0.0057 0.0994
S120 0.8187 0.9003 0.0059 0.1567
S130 0.7357 0.8477 0.0054 0.1886
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Figure 9. Average picture similarity measures of a patient study against expert�s ground truth.

From the recorded values for the considered slices presented in Tables 4 and 5, it could be inferred
that the outcome produced through FC based DRLS technique is far more superior to FC+MCW and
FC+RG techniques. Also, the metrics Jaccard and Dice are computed for ten patient studies of BRATS
individually. Figures 10 and 11 depicts the average scores for ten patient studies of the BRATS dataset,
and �Av.� represents the overall average score of all the patient studies from T2 and T1C weighted
images, respectively.

 

Figure 10. Average Jaccard and Dice score of individual patient studies for T2 modality. �Av.� speci�es
the average score of all the patient studies.

Figure 11. Average Jaccard and Dice score of individual patient studies for T1C modality. �Av.� Speci�es
the average score of all the patient studies.

Furthermore, the suggested procedure is attempted on clinical MRI brain study of a patient [57].
The patient study considered contains axial T2 MR DICOM slices. The DICOM slices between the
ranges Slice-10 to Slice-14 are considered in this approach for tumor analysis, as they hold enough
tumor information. Slice15 and above are excluded from the examination as it does not contain any
tumor region. Initially, the considered series are enhanced using FC, then at the post-processing stage,

83



Electronics 2020, 9, 475

the mining techniques MCW, RG, and DRLS are adopted. Figure 12a,b embody the slice number with
an optimal k and the original (actual) middle slices. Figure 12c represents the ground truth provided by
an expert member. Figure 12d�f signify the ROI extracted from the validated fuzzy clustering-assisted
MCW, RG, and DRLS procedures.

 

Figure 12. Segmented results of the clinical dataset (middle slices only).

The validation of the FC-aided mining procedures against GT images is performed using
well-known image similarity measures such as Dice, Jaccard, false-negative, and false-positive rates.
These parameters stay as an aid to assess the e�cacy of the segmentation procedure.

From Table 6, it is observed that maximum similarity is attained between ROI and GT by the
suggested FC+DRLS procedure shown on the Jaccard and Dice metric scores. FPR values indicate that
typical pixels of the brain are misclassi�ed as tumor pixels. Similarly FNR values depict pixels which
contribute as tumor are misclassi�ed as normal pixels of the brain.

Table 6. Image similarity measures for clinical T2 MRI series.

Slice Jaccard Dice FPR FNR

FC+MCW

S10 0.6932 0.7832 0.1027 0.0612
S11 0.8223 0.8828 0.1075 0.0311
S12 0.8185 0.8569 0.1579 0.0424
S13 0.8137 0.8761 0.1683 0.0422
S14 0.7314 0.8168 0.1544 0.1201

FC+RG

S10 0.7209 0.7767 0.1123 0.0723
S11 0.8149 0.8934 0.1099 0.0793
S12 0.7953 0.8491 0.1184 0.0683
S13 0.8054 0.7962 0.1163 0.0923
S14 0.7821 0.8021 0.1201 0.0876

FC+DRLS

S10 0.6874 0.7949 0.1336 0.0642
S11 0.8104 0.8972 0.1253 0.032
S12 0.8256 0.8625 0.1368 0.0296
S13 0.8179 0.8879 0.1374 0.038
S14 0.7555 0.8596 0.1164 0.0958
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The minimum values of FPR and FNR guarantee the e�ciency of the FC+DRLS segmentation
method against MCW and RG in the set of DICOM slices. Figure 13 shows the comparative analysis
of assessed similarity measures using the average scores of the slices depicted in Table 6. Therefore
it is evident that in the proposed approach, the FC+DRLS based segmentation technique produces
superior results for the clinical study as well.

 

Figure 13. Average picture similarity measures of clinical study with expert�s ground Truth.

Further, the ROI (tumor) is extracted to acquire the geometrical properties such as area and
perimeter. The captured tumor information is clearly visible from slice10 to slice14. In Table 7,
the parameters, area, and perimeter are calculated based on the tumor information extracted from the
ROI. The parameters gradually increase up to slice13, which holds the maximum tumor part and then
decreases. The overall study of a patient is determined from the entire DICOM slices.

Table 7. Quantization features Area and Perimeter for best �K�.

Slices FC Enhancement ROI by DRLS Area Perimeter

Slice 10
(k = 2)

  

2268 192.5097

Slice 11
(k = 4)

 

  

4842 324.60

Slice 12
(k = 6)

  

6090 366.74

Slice 13
(k = 4)

 

  

6091 375.90

Slice 14
(k = 6)

 

  

6008 320.1680

(a) (b) (c) (d) (e)
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The slices are reconstructed to a cubical stack based on in-stack position attribute of DICOM.
The extracted objects of the clinical study undergo volumetric estimates and 3D reconstruction. Table 8
shows the volume of tumor calculated for DICOM and resampled stack.

Table 8. Volume calculation of DICOM and Resampled stack.

Stack No. of Voxels Voxel Size Volume (mm3)

DICOM 21623 1.0089032 21,815.5
Resampled 26911 0.9998 26,905.6

Tumor volume is calculated for the DICOM grid using the physical spacing metadata available
in the DICOM header. The inter-slice resolution of the considered patient study is coarse, as the
slice thickness is 5 mm, which is considerably higher than the in-plane pixel size, i.e., 0.4492 mm.
This anisotropic characteristic results in appalling issues for modeling 3D and image analysis. Thus
resampling is often considered as a vital step to transform DICOM stack to an isotropic stack. In the
resampled stack, the accuracy of integrating the contours of individual slices not degraded; also, it
interpolates the z dimension with lower resolution and in-plane dimensions with higher resolution.

Figure 14 shows the 3D models of DICOM and resampled grid for the patient study. The three
anatomical planes are used, and their dimensions are set in mm. For the DICOM grid in Figure 14a, it
is observed that the dimensions [X × Y × Z] are set as [512 × 512 × 22]. Similarly, the resampled grid in
Figure 14b the dimensions are viewed as [230 × 230 × 110]. The model permits to visualize the object
interactively in all the three directions speci�ed.

(a) 

(b) 

Figure 14. (a) DICOM Grid; (b) Resampled Grid.

From Figure 14a,b, it is clear that the resampled grid o�ers a smoother surface than the DICOM
grid. Resampled grid o�ers a smoother iso-surface and better 3D visualization.
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The proposed work had been validated against various modalities of the BRATS dataset and
clinical slices. The performance progression is carried out at each stage of the suggested segmentation
procedure. The fuzzy clustering technique had given prominent results in the enhancement phase
that aids in e�ective extraction in post-processing stages. The proposed work had considered two to
nine classes (k) that were applied on each slice of the patient under study for ascertaining the most
prominent k that could yield the best segmentation. The silhouette score is taken as validation metric
results in the optimal enhancement of slices since it considers the kbest,i measure for making up the
number of required classes. This validated clustering process helps in minimizing the loss of tumor
intensities over the patient study. Also, a comparative segmentation analysis had been carried out
against Chan-Vese and watershed algorithms for ensuring the segmentation quality of FC. To overcome
the computational complexity, the proposed work had considered k = 9 as the upper limit for the
number of clusters. For DRLS post-processing, imparting single well potential function and Gaussian
kernel value as 1.5 had yielded better extraction of tumor part than RG and MCW techniques. In the
future, the proposed procedure can be pondered on brain slices containing di�used boundaries and
other image modalities in addition to magnetic resonance angiograms (MRA).

4. Conclusions

In this work, a hybrid procedure is implemented, which uses fuzzy clustering with silhouette
analysis followed by MCW, RG, and DRLS procedures. Moreover, this proposed method applied to
the entire slices of abnormal patient studies obtained from the BRATS challenge and the Proscans
Diagnostics Centre. This investigation delivered better segmentation of the regions where the
concentration of tumor was high. The best-segmented objects are obtained using clustering techniques
which are further evaluated by silhouette metrics. The tumor objects from the enhanced slices are
segmented based on MCW/RG/DRLS techniques. The quanti�cation results of the mined anomalies
ensure the progression of counterpart tumors at di�erent treatment stages. The clinical signi�cance
of the proposed hybrid approach gives a better prognosis identi�cation against the ground truth.
The use of python open source technologies in implementing the work can visualize, analyze and
interact with the slice data claim to be cost-e�ective. Hence, the proposed framework on MR DICOM
slices requires less user intervention in extracting tumor heterogeneity from typical brain structures.
Quanti�cation and 3D modeling procedure help in �nding a spatial identity and tumor concentration.
By knowing the size, shape and spatial location of the tumor, the process of treating the tumor might
be improved. The future work could include the implementation of advanced arti�cial intelligence
methodologies for early, e�cient, and real-time diagnosis of malignant brain tumors [58�65].

Supplementary Materials: The video abstract can be found at the following link: https://drive.google.com/�le/
d/1ddr0DxPNP1cX7aMC-dvSx12sQJ4fuH59/view?ts=5e452180. Video: An E�cient Hybrid Fuzzy-Clustering
Driven 3D-Modeling.

Author Contributions: Conceptualization, S.K., D.S.; methodology, S.K., D.S., D.R.V.P.M.; software, S.K.;
validation, K.S. D.N.K.J., D.G.R.; formal analysis, S.K., D.S., D.R.V.P.M.; investigation, S.K., D.S., D.R.V.P.M.;
resources, K.S.; data curation, S.K., K.S.; writing�original draft preparation, S.K.; writing�review and editing,
D.S., D.R.V.P.M., K.S., D.N.K.J., D.G.R., A.I.; visualization, D.N.K.J., D.G.R.; supervision, K.S., D.N.K.J., and project
administration, K.S., D.N.K.J.; funding acquisition, D.N.K.J. All authors have read and agreed to the published
version of the manuscript.

Funding: This work was funded, in part, by the Scheme for Promotion of Academic and Research Collaboration
(SPARC), Ministry of Human Resource Development, India under the SPARC/2018-2019/P145/SL, in part, by the
framework of Competitiveness Enhancement Program of the National Research Tomsk Polytechnic University,
Russia in part, and, in part, by the International cooperation project of Sri Lanka Technological Campus, Sri Lanka
and Tomsk Polytechnic University, Russia, No. RRSG/19/5008.

Acknowledgments: The authors would like to acknowledge the support granted by Proscans Diagnostics Centre,
the leading and reputed Pathology Lab network in Chennai, Tamilnadu, India, for providing real clinical images
of the brain MRI.

Con�icts of Interest: The authors declare that they have no con�ict of interest.

Ethical Approval: This article follows the ethical standards of 1964 Helsinki declaration with its future amendments.

87



Electronics 2020, 9, 475

References

1. Karaa, W.B. Biomedical Image Analysis and Mining Techniques for Improved Health Outcomes; IGI Global: Hershey,
USA, 2015. [CrossRef]

2. El-Dahshan, E.S.; Mohsen, H.M.; Revett, K.; Salem, A.B.M. Computer-aideddiagnosis of human brain tumor
through MRI: A survey and a new algorithm. Expert Syst. Appl. 2014, 41, 5526�5545. [CrossRef]

3. Chyzhyk, D.; Savio, A.; Graæa, M. Evolutionary ELM wrapper feature selection for Alzheimer�s disease
CAD on anatomical brain MRI. Neurocomputing 2014, 128, 73�80. [CrossRef]

4. Virmani, J.; Dey, N.; Kumar, V. PCA-PNN, and PCA-SVM based CAD systems for breast density classi�cation.
In Applications of Intelligent Optimization in Biology and Medicine; Springer: Berlin/Heidelberg, Germany, 2016;
pp. 159�180.

5. Bahadure, N.B.; Ray, A.K.; Thethi, H.P. Image analysis for MRI based brain tumor detection and feature
extraction using biologically inspired BWT and SVM. Int. J. Biomed. Imag. 2017, 2017. [CrossRef]

6. Fujita, H.; Uchiyama, Y.; Nakagawa, T.; Fukuokab, D.; Hatanakac, Y.; Hara, T.; Lee, G.N.; Hayashi, Y.;
Ikedoa, Y.; Gaoa, X.; et al. Computer-aided diagnosis: The emerging of three CAD systems induced by
Japanese health care needs. Comput. Methods Progr. Biomed. 2008, 92, 238�248. [CrossRef]

7. Marshkole, N.; Singh, B.K.; Thoke, A.S. Texture and shape-based classi�cation of brain tumors using linear
vector quantization. Int. J. Comput. Appl. 2011, 30, 21�23.

8. Arimura, H.; Tokunaga, C.; Yamashita, Y.; Kuwazuru, J. Magnetic resonance image analysis for brain CAD
systems with machine learning. In Machine Learning in Computer-Aided Diagnosis: Medical Imaging Intelligence
and Analysis; IGI Global: Hershey, USA, 2012; pp. 258�296. [CrossRef]

9. Bidgood Jr, W.D.; Horii, S.C.; Prior, F.W.; Van Syckle, D.E. Understanding and using DICOM, the data
interchange standard for biomedical imaging. J. Am. Med. Inf. Assoc. 1997, 4, 199�212. [CrossRef]

10. Herrmann, M.D.; Clunie, D.A.; Fedorov, A.; Doyle, S.W.; Pieper, S.; Klepeis, V.; Le, L.P.; Mutter, G.L.;
Milstone, D.S.; Schultz, T.J.; et al. Implementing the DICOM standard for digital pathology. J. Pathol. Inform.
2018, 9, 1�18. [CrossRef]

11. Suresh, K.; Sakthi, U. Robust multi-thresholding in noisy grayscale images using Otsu�s function and
harmony search optimization algorithm. In Advances in Electronics, Communication and Computing; Springer:
Singapore, 2018. [CrossRef]

12. Hartigan, J.A.; Wong, M.A. Algorithm AS 136: A k-means clustering algorithm. J. R. Stat. Soc. Ser. C 1979,
28, 100�108. [CrossRef]

13. Dhanachandra, N.; Manglem, K.; Chanu, Y.J. Image segmentation using K-means clustering algorithm and
subtractive clustering algorithm. Proc. Comput. Sci. 2015, 54, 764�771. [CrossRef]

14. Abdel-Maksoud, E.; Elmogy, M.; Al-Awadi, R. Brain tumor segmentation based on a hybrid clustering
technique. Egypt. Inf. J. 2015, 16, 71�81. [CrossRef]

15. Kim, K.B.; Song, Y.S.; Park, H.J.; Song, D.H.; Choi, B.K. A fuzzy C-means quantization based automatic
extraction of rotator cu� tendon tears from ultrasound images. J. Intell. Fuzzy Syst. 2018, 35, 149�158.
[CrossRef]

16. Dehariya, V.K.; Shrivastava, S.K.; Jain, R.C. Clustering of image data set using k-means and fuzzy k-means
algorithms. In Proceedings of the 2010 International Conference on Computational Intelligence and
Communication Networks, Bhopal, India, 26�28 November 2010; pp. 386�391. [CrossRef]

17. Gasch, A.P.; Eisen, M.B. Exploring the conditional coregulation of yeast gene expression through fuzzy
k-means clustering. Genome Biol. 2002, 3, research0059-1. [CrossRef] [PubMed]

18. Rajinikanth, V.; Raja, N.S.M.; Kamalanand, K. Fire�y algorithm assisted segmentation of tumor from brain
MRI using Tsallis function and Markov random �eld. J. Control Eng. Appl. Inf. 2017, 19, 97�106.

19. Raja, N.S.M.; Lakshmi, P.R.V.; Gunasekaran, K.P. Fire�y algorithm-assisted segmentation of brain regions
using tsallis entropy and Markov random �eld. In Innovations in Electronics and Communication Engineering;
Springer: Singapore, 2018; pp. 229�237.

20. Gath, I.; Geva, A.B. Unsupervised optimal fuzzy clustering. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 515,
87�100. [CrossRef]

21. Llet�, R.; Ortiz, M.C.; Sarabia, L.A.; Sánchez, M.S. Selecting variables for k-means cluster analysis by using a
genetic algorithm that optimises the silhouettes. Anal. Chim. Acta 2004, 515, 87�100. [CrossRef]

88



Electronics 2020, 9, 475

22. Muca, M.; Kutrolli, G.; Kutrolli, M. A proposed algorithm for determining the optimal number of clusters.
Eur. Sci. J. 2015, 11, 36.

23. Zeng, Y.Z.; Liao, S.H.; Tang, P.; Zhao, Y.Q.; Liao, M.; Chen, Y.; Liang, Y.X. Automatic liver vessel segmentation
using 3D region growing and hybrid active contour model. Comput. Biol. Med. 2018, 97, 63�73. [CrossRef]

24. Koulountzios, P.I.; Zervakis, M.E.; Karakitsios, P.L.; Stavroulakis, G.E. A semi-automatic algorithm for
reconstruction and NURBS surface generation of thoracic aorta. In Proceedings of the 2017 IEEE International
Conference on Imaging Systems and Techniques (IST), Beijing, China, 20 October 2017; pp. 1�6. [CrossRef]

25. Nekooeimehr, I.; Lai-Yuen, S.; Bao, P.; Weitzenfeld, A.; Hart, S. Automated contour tracking and trajectory
classi�cation of pelvic organs on dynamic MRI. J. Med. Image. 2018, 5, 014008. [CrossRef]

26. Wang, H.; Ahmed, S.N.; Mandal, M. Computer-aided diagnosis of cavernous malformations in brain MR
images. Comput. Med. Image Gr. 2018, 66, 115�123. [CrossRef]

27. Arbelaez, P.; Maire, M.; Fowlkes, C.; Malik, J. Contour detection and hierarchical image segmentation.
IEEE Trans. Pattern Anal. Mach. Intell. 2010, 33, 898�916. [CrossRef]

28. Essadike, A.; Ouabida, E.; Bouzid, A. Brain tumor segmentation with Vander Lugtcorrelator based active
contour. Comput. Meth. Prog. Biomed. 2018, 160, 103�117. [CrossRef] [PubMed]

29. Hemalatha, S.; Anouncia, S.M. A computational model for texture analysis in images with fractional
di�erential �lter for texture detection. Int. J. Ambient Comput. Intell. 2016, 7, 93�113. [CrossRef]

30. Hu, S.; Wang, X.; Zhu, M.; Hao, G.; Yao, C.; Hu, C.-H. Di�erentiation of High-grade Gliomas from Brain
Metastases Using Tissue Similarity Maps (TSMs) Based Relative Cerebral Blood Volume Values. Curr. Med.
Image Rev. 2018, 14, 594�598. [CrossRef]

31. Ali, S.M.; Abood, L.K.; Abdoon, R.S. Brain tumor extraction in MRI images using clustering and morphological
operations techniques. Int. J. Geogr. Inf. Syst. Appl. Remote Sens. 2013, 4, 12�25.

32. Deng, L.; Huang, H.; Yuan, J.; Tang, X. Automatic segmentation of corneal ulcer area based on ocular
staining images. In Proceedings of the Medical Imaging 2018: Biomedical Applications in Molecular, Structural,
and Functional Imaging; International Society for Optics and Photonics: Houston, TX, USA, 2018. [CrossRef]

33. Dey, N.; Rajinikanth, V.; Ashour, A.S.; Tavares, J.M.R. Social group optimization supported segmentation and
evaluation of skin melanoma images. Symmetry. Int. J. Geogr. Inf. Syst. Appl. Remote Sens. 2013, 4, 12�25.

34. Chang, C.-Y.; Srinivasan, K.; Chen, M.-C.; Chen, S.-J. SVM-Enabled Intelligent Genetic Algorithmic Model
for Realizing E�cient Universal Feature Selection in Breast Cyst Image Acquired via Ultrasound Sensing
Systems. Sensors 2020, 20, 432. [CrossRef]

35. Baghaie, A.; Yu, Z. An optimization method for slice interpolation of medical images. arXiv 2014,
arXiv:1402.0936.

36. Chenevert, T.L.; Malyarenko, D.I.; Newitt, D.; Li, X.; Jayatilake, M.; Tudorica, A.; Fedorov, A.; Kikinis, R.;
Liu, T.T.; Muzi, M.; et al. Errors in quantitative image analysis due to platform-dependent image scaling.
Trans. Oncol. 2014, 7, 65�71. [CrossRef]

37. Rousseeuw, P.J.J. A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math.
1987, 20, 53�65. [CrossRef]

38. Del Re, E.C.; Gao, Y.; Eckbo, R.; Petryshen, T.L.; Blokland, G.A.M.; Seidman, L.J.; Konishi, J.; Goldstein, J.M.;
McCarley, R.W.; Shenton, M.E.; et al. A New MRI Masking Technique Based on Multi-Atlas Brain
Segmentation in Controls and Schizophrenia: A Rapid and Viable Alternative to Manual Masking.
J. Neuroimaging 2016, 26, 28�36. [CrossRef]

39. Russako�, D.B.; Tomasi, C.; Rohl�ng, T.; Maurer, C.R. Image similarity using mutual information of regions.
In Proceedings of the European Conference on Computer Vision, Prague, Czech Republic, 11 May 2004;
pp. 596�607. [CrossRef]

40. Chaddad, A.; Tanougast, C. Quantitative evaluation of robust skull stripping and tumor detection applied to
axial MR images. Brain Inf. 2016, 3, 53�61. [CrossRef] [PubMed]

41. Rajinikanth, V.; Satapathy, S.C.; Fernandes, S.L.; Nachiappan, S. Entropy-based segmentation of tumor from
brain MR images�A study with teaching learning-based optimization. Pattern Recognit. Lett. 2016, 94, 87�94.
[CrossRef]

42. Thanaraj, P.; Parvathavarthini, B. Multichannel interictal spike activity detection using time�frequency
entropy measure. Australas. Phys. Eng. Sci. Med. 2017, 40, 413�425. [CrossRef] [PubMed]

89



Electronics 2020, 9, 475

43. Rajinikanth, V.; Dey, N.; Satapathy, S.C.; Ashour, A.S. An approach to examine magnetic resonance
angiography based on Tsallis entropy and deformable snake model. Future Gener. Future Comput. Syst. 2018,
85, 160�172. [CrossRef]

44. Roopini, I.T.; Vasanthi, M.; Rajinikanth, V.; Rekha, M.; Sangeetha, M. Segmentation of tumour from brain
MRI using fuzzy entropy and distance regularised level set. In Proceedings of the Computational Signal
Processing and Analysis, Singapore, 3 April 2018; pp. 297�304.

45. Rajinikanth, V.; Satapathy, S.C.; Dey, N.; Vijayarajan, R. DWT-PCA Image fusion technique to improve
segmentation accuracy in brain tumour analysis. In Microelectronics, Electromagnetics and Telecommunications;
Springer: Singapore, 2018; pp. 453�462. Available online: https://link.springer.com/chapter/10.1007/978-981-
10-7329-8_46 (accessed on 5 February 2020). [CrossRef]

46. Krishnan, P.T.; Balasubramanian, P.; Krishnan, C. Segmentation of brain regions by integrating meta heuristic
multilevel threshold with markov random �eld. Curr. Med. Imaging 2016, 12, 4�12. [CrossRef]

47. Chen, Y.H.; Chang, C.C.; Lin, C.C.; Hsu, C.Y. Content-based color image retrieval using block truncation
coding based on binary ant colony optimization. Symmetry 2019, 11, 21. [CrossRef]

48. Kalaiselvi, T.; Selvi, S.K. Investigation of Image Processing Techniques in MRI Based Medical Image Analysis
Methods and Validation Metrics for Brain Tumor. Curr. Med. Image Rev. 2018, 14, 489�505. [CrossRef]

49. Rajinikanth, V.; Thanaraj, K.P.; Satapathy, S.C.; Fernandes, S.L.; Dey, N. Shannon�s entropy and watershed
algorithm based technique to inspect ischemic stroke wound. In Smart Intelligent Computing and Applications;
Springer: Singapore, 2019; pp. 23�31.

50. Suresh, K.; Sakthi, U. Object Tracking based 3d Modelling and Quanti�cation of Abnormal Contours in Brain
MRI DICOM Study. J. Eng. Sci. Technol. 2019, 14, 2098�2115.

51. Shanthakumar, P.; Ganesh Kumar, P. Computer aided brain tumor detection system using watershed
segmentation techniques. Int. J. Image Syst. Technol. 2015, 25, 297�301. [CrossRef]

52. Chan, T.F.; Vese, L.A. Active contours without edges. IEEE Trans. Image Proc. 2001, 10, 266�277. [CrossRef]
53. Memon, F.; Unar, M.A.; Memon, S. Image quality assessment for performance evaluation of focus measure

operators. arXiv 2016, arXiv:1604.00546.
54. Moga, A.N.; Gabbouj, M. Parallel marker-based image segmentation with watershed transformation.

J. Parallel Distrib. Comput. 1998, 51, 27�45. [CrossRef]
55. Suresh, K.; Sakthi, U. A soft-computing based hybrid tool to extract the tumour section from brain MRI.

Multimed. Tools Appl. 2019, 1�5. [CrossRef]
56. Raja, N.S.; Fernandes, S.L.; Dey, N.; Satapathy, S.C.; Rajinikanth, V. Contrast enhanced medical MRI evaluation

using Tsallis entropy and region growing segmentation. J. Ambient Intel. Hum. Comput. 2018, 1�12. [CrossRef]
57. Chang, C.Y.; Srinivasan, K.; Hu, H.Y.; Tsai, Y.S.; Sharma, V.; Agarwal, P. SFFS�SVM based prostate carcinoma

diagnosis in DCE-MRI via ACM segmentation. Multidim. Syst. Sign. Process. 2019, 1�22. [CrossRef]
58. Kathiravan, S.; Kanakaraj, J. A Review of Magnetic Resonance Imaging Techniques. Smart Comput. Rev. 2013,

3, 358�366. [CrossRef]
59. Hua, K.; Dai, B.; Srinivasan, K.; Hsu, Y.H.; Sharma, V. A hybrid NSCT domain image watermarking scheme.

J. Image Video Proc. 2017, 2017, 10. [CrossRef]
60. Srinivasan, K.; Sharma, V.; Jayakody, D.N.K.; Vincent, D.R. D-ConvNet: Deep learning model for enhancement

of brain MR images. In Proceedings of the Basic & Clinical Pharmacology & Toxicology, Hoboken, NJ, USA,
23�24 December 2018; Volume 124, pp. 3�4. [CrossRef]

61. Srinivasan, K.; Ankur, A.; Sharma, A. Super-resolution of Magnetic Resonance Images using deep
Convolutional Neural Networks. In Proceedings of the 2017 IEEE International Conference on Consumer
Electronics�Taiwan (ICCE-TW), Taipei, China, 12�14 June 2017; pp. 41�42. [CrossRef]

62. Kathiravan, S.; Kanakaraj, J. A Review on Potential Issues and Challenges in MR Imaging. Sci. World J. 2013,
2013, 10. [CrossRef]

63. Srinivasan, K.; Kanakaraj, J. A Study on Super-Resolution Image Reconstruction Techniques. Comput. Eng.
Intell. Syst. 2011, 2, 222�227.

90



Electronics 2020, 9, 475

64. Srinivasan, K.; Kanakaraj, J. An Overview of SR Techniques Applied to Images, Videos and Magnetic
Resonance Images. Smart Comput. Rev. 2014, 4, 181�201. [CrossRef]

65. Hua, K.-L.; Trang, H.T.; Srinivasan, K.; Chen, Y.-Y.; Chen, C.-H.; Sharma, V.; Zomaya, A.Y. Reduction of
Artefacts in JPEG-XR Compressed Images. Sensors 2019, 19, 1214. [CrossRef] [PubMed]

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

91





electronics

Article

Automated Volume Status Assessment Using Inferior
Vena Cava Pulsatility
Luca Mesin 1,*, Silvestro Roatta 2, Paolo Pasquero 3 and Massimo Porta 3

1 Mathematical Biology and Physiology, Department of Electronics and Telecommunications, Politecnico di Torino,
10129 Turin, Italy

2 Integrative Physiology Lab, Department of Neuroscience, UniversitÆ di Torino, 10125 Turin, Italy;
silvestro.roatta@unito.it

3 Department of Medical Sciences, UniversitÆ di Torino, 10126 Turin, Italy; pasquerop@gmail.com (P.P.);
massimo.porta@unito.it (M.P.)

* Correspondence: luca.mesin@polito.it; Tel.: +39-011-090-4085

Received: 14 September 2020; Accepted: 7 October 2020; Published: 13 October 2020

Abstract: Assessment of volume status is important to correctly plan the treatment of patients admitted
and managed by cardiology, emergency and internal medicine departments. Non-invasive assessment of
volume status by echography of the inferior vena cava (IVC) is a promising possibility, but its clinical use
is limited by poor reproducibility of current standard procedures. We have developed new algorithms to
extract reliable information from non-invasive IVC monitoring by ultrasound (US) imaging. Both long
and short axis US B-mode video-clips were taken from 50 patients, in either hypo-, eu-, or hyper-volemic
conditions. The video-clips were processed to extract static and dynamic indexes characterizing the IVC
behaviour. Different binary tree models (BTM) were developed to identify patient conditions on the
basis of those indexes. The best classi�er was a BTM using IVC pulsatility indexes as input features.
Its accuracy (78.0% when tested with a leave-one-out approach) is superior to that achieved using indexes
measured by the standard clinical method from M-mode US recordings. These results were obtained with
patients in conditions of normal respiratory function and cardiac rhythm. Further studies are necessary
to extend this approach to patients with more complex cardio-respiratory conditions.

Keywords: inferior vena cava; ultrasound imaging; binary tree model; pulsatility; fluid volume assessment

1. Introduction

The intravascular volume status (i.e., the extent of vascular �lling) is a relevant cardiovascular
parameter related to the cardiac preload (i.e., the stretch of cardiac tissue in relaxed conditions), which in
turn affects cardiac output and arterial blood pressure. Its assessment in critically ill patients is essential to
establish and carefully balance the appropriate �uid therapy, whereby �uid supplementation may favor
cardiac ef�ciency, but also increase the rate of complications and mortality [1�3]. Various pathological
conditions are characterized by alteration of the volume status, e.g., heart failure causes overload while
dehydration leads to volume depletion.

The non invasive evaluation of the volume status is very important, as it allows to inspect a patient in
emergency conditions or during the follow-up. An approximate assessment of the volemic condition can
be obtained from US imaging of the IVC [4,5]. In fact, the pulsatility of the IVC was found to correlate
with the intravascular �uid volume [6]. Moreover, it can be useful for the non-invasive estimation of the
central venous pressure [7�9].
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However, this non-invasive method has shown limitations [10,11]. Important problems are due to
the lack of standardization [12] and to the subjectivity of the measurement [13]. Indeed, both B-mode
and M-mode US scans have been used, followed by a subjective identi�cation of the IVC maximal and
minimal diameters [6,14]. Speci�cally, IVC pulsatility can be expressed in terms of the caval index (CI),
de�ned as the variation of the vessel diameter during a respiratory cycle relative to the maximum diameter:
minimum and maximum diameters are measured by the operator from a B-mode video or an M-mode
trace considering inspiration and expiration, respectively. This clinical approach is not standardized [12,15]
(e.g., either long [16] or short axis [17] visualizations are used), and is operator-dependent [13] and prone
to measurement errors, e.g., due to movements [18] and non-uniform pulsatility of IVC [15]. In particular,
the M-mode registration allows to visualize a section of the vein over time at high frequency along a �xed
direction in space [19]. As the IVC moves during respiration, the M-mode approach fails to constantly refer
to the same section of the vein. On the other hand, measuring diameters from a B-mode video requires
that the operator chooses the frames corresponding to the end of inspiration and expiration, in addition to
selecting the sections along which to estimate the diameters (which could be different, if the operator does
not compensate for IVC movement).

Moreover, IVC pulsatility may vary considerably in different portions of the vein [15,20], so that a
single measurement taken by a manual approach provides limited information.

Some confounding factors have also been documented in case of speci�c pathologies, e.g., to the
respiratory system [21,22] or the heart [23,24]. Indeed, breathing and heartbeats provide the main
stimulations affecting IVC pulsatility. Separating the effects of the two contributions could possibly
help to counteract these limitations [13,25].

A further problem consists in the shape of the IVC: in different sections along the longitudinal
view, the IVC can exhibit very different diameters, as in the case of a saber pro�le [15,26], and different
pulsatilities [20]; the IVC cross-section can be irregular, much different from a circle or an ellipsoid
(especially in the case of hypo-volemia), with a large variation of pulsatility in different directions [27,28].
Thus, investigating IVC both in long and short axis views and averaging across different sections or
directions could be important to better characterize the vessel and its respirophasic dynamics.

We have carried out a series of studies trying to overcome some of the limitations of the US assessment
of IVC. Speci�cally, we have developed an automated method to track the movements and estimate the
borders of the IVC from US video-clips [19,20,28,29]. Data derived from both longitudinal (long axis)
and transverse (short axis) sections of the vessel can be processed. The algorithms extract information
from either a whole tract of longitudinal section of the vein or a transverse section, respectively. This way,
the overall pulsatility can be estimated. Moreover, the border of the vein is found for each frame of the
video-clip, so that the vessel pulsations can be investigated over time, obtaining time series which can
be processed to estimate further indexes characterizing pulsatility, e.g., induced by either respiration or
cardiac stimulation only. Preliminary results indicate that IVC average size and global pulsatility and its
respiratory and cardiac components estimated in long axis are strongly related to the right atrial pressure
(in contrast with size and pulsatility estimated by standard clinical approaches [30]) and are useful for its
non-invasive estimation [25,31].

However, beyond these promising correlations, there is still no stable criterion capable of recognizing
pathological problems in the volume status. With this study, we face this aspect and try to propose a
classi�cation method based on an automated processing. Speci�cally, US B-mode video-clips of IVC
from long and short axis have been acquired from patients with different volume status. They have been
processed, tracking the movements and estimating the border of the vein. Then, indexes characterizing IVC
size and pulsatility have been automatically extracted and used to build a classi�er able to discriminate
patients in either hypo-, eu-, or hyper-volemic conditions.
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2. Methods

2.1. US Video-Clip Processing

The physical dimension of a pixel was determined for each video-clip as a preliminary step,
by scanning automatically a graduated length scale present in the frames. Then, the user selected some
parameters (e.g., concerning the portion of frame to be processed, points to be tracked, etc.) needed
by two algorithms (implemented in MATLAB R2018a, The Mathworks) that processed the B-mode US
video-clips of the IVC in either long or short axis (notice that, as a preliminary interaction with the user
is needed to process the US videos, we refer to our processing algorithms as semi-automated). Figure 1
shows an example of IVC border automated delineation obtained by those algorithms, described below.
Once obtained the IVC borders in either of the two views, the mean diameter and pulsatility indexes
(de�ned below) were estimated.

Figure 1. (A) Example of single frame of a video-clip of the IVC in long axis and result of processing
(5 equidistant sections in direction orthogonal to the IVC midline are considered). (B) Example of frame in
short axis and processing (median �lter is applied on the bottom left �gure, different rays are originated
from the centre of the vein and their intersections with the border of the vessel are computed; estimated IVC
border indicated in the bottom right image). (C) Representative example of IVC diameter over time
(the average of the diameters of the case shown in A is considered, only for representation purposes):
from the time series, respiratory and cardiac components (the latter added to the average diameter,
for clearer representation) are extracted by speci�c �lters.

2.1.1. Identi�cation of IVC Borders in Long Axis

The algorithm proposed in [20] (and already applied in [13,25,31]) was used. In the �rst frame of the
clip, the user located the vein and the region of interest, indicating two reference points to be tracked to
compensate for IVC movements and deformations, the leftmost and rightmost lines to be considered and
the location of the borders of the vein in the leftmost line. In optimal conditions, the available tract was
between the con�uence of the hepatic veins into the IVC and the caudate lobe of the liver. Each frame was
�rst pre-processed with a 2D median �lter (neighborhoods of 9 × 9 pixels). Then, the software uniformly
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distributed 21 lines in the region of interest and identi�ed the borders of the vein along these lines (as a
jump of the US intensity along them). For each subsequent frame, the location and direction of those lines
were updated based on the estimated movements of the reference points from the previous one.

Once obtained the superior and inferior borders of the vein, the software computed the IVC midline
and distributed uniformly 5 points along it. For our speci�c application, the extension of the midline was
considered only from the 20% to the 80% of its length, thus excluding the edges. Sections orthogonal to the
IVC midline passing from each of these 5 points were considered and the IVC pulsatility was estimated
for each of them.

2.1.2. Identi�cation of IVC Borders in Short Axis

The algorithm proposed in [28] (and already used in [29]) was employed. The user was asked to
indicate the centre of the IVC and to draw a rectangle enclosing it in the �rst frame of the video-clip.
Subsequent frames were cropped in a rectangular region with the same dimension, centered on the IVC
estimated on the previous frame.

The image was converted in gray-scale, contrast enhanced using histogram equalization and processed
with a 2D median �lter (neighborhoods of 11 × 11 pixels). The outline of the vein was then estimated by
the algorithm. Twenty rays were de�ned, originating from the centre of the considered rectangular portion
of image and sampling uniformly the directions around it. For each ray, the intensity of the image along it
was estimated by cubic interpolation. The border of the vein was identi�ed as an abrupt increase of the
intensity (from the lumen to the outside tissues).

Once the 20 border points were found, their coordinates were low pass �ltered (Butterworth
non-causal, zero-phase IIR �lter of order 4 with cut-off at 0.3) to get a smooth boundary of the vein.
Furthermore, the maximum variation of the length of a ray was imposed to be 5 pixels; the rays which
overcame such a threshold were removed and substituted by a quadratic interpolation of the 4 closest
neighboring border points.

2.1.3. IVC Indexes

The mean diameter was estimated averaging both across different sections (i.e., 5 sections in long axis
and 10 diameters corresponding to the 20 rays in short axis) and time (i.e., considering the frames of the
video-clips).

Pulsatility was measured in terms of the CI

CI =
maxt (D(t)) Š mint (D(t))

maxt (D(t))
(1)

where D indicates the dimension over the time variable t of IVC, expressed either as diameter or equivalent
diameter (proportional to the square root of the area [28]), in the long and short axis, respectively, and
max/min indicate local extrema. Local maxima and minima were computed for each respiratory cycle.
A CI accounting for the overall pulsatility was obtained by averaging the estimations across different
respiratory cycles and different sections (the latter, only in the case of the long axis approach).

Additional indexes were also estimated by decomposing the time series re�ecting IVC pulsations
into low and high frequency components (below 0.4 Hz and above 0.8 Hz, respectively), assumed to
re�ect the stimulations induced by either respiration or heartbeats, respectively (both �lters were 4th order
Butterworth, used twice, once with time reversed, to remove phase distortion and delay). From these
�ltered time series, applying again the de�nition of CI (1) on local maxima and minima, the respiratory
caval index (RCI) and the cardiac caval index (CCI) were obtained. Stable estimations of both indexes were
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computed by averaging across either respiratory cycles or heartbeats (and on the 5 sections, in the case of
the long axis).

An example of time series extracted from a video-clip is given in Figure 1C.
IVC was also investigated by standard manual measurements, in both long and short axis, in M-mode.

Stable estimations of the minimum and maximum IVC diameter were obtained by averaging across more
measurements (up to 3). Then, the maximum and minimum diameters were used to compute the CI and
the average IVC diameter (de�ned as the mean of the two diameters).

2.2. Experimental Data

Inclusion criteria were the presence of pathological conditions in the Emergency Department and
in the Department of Medicine resulting in overload (heart failure) or volume depletion (dehydration
or moderate bleeding). As a control group, patients without the previous conditions were selected.
Exclusion criteria were chronic obstructive pulmonary disease, pulmonary hypertension, interstitial disease
or thromboembolism, tension pneumothorax, cirrhosis and/or ascitic effusion, serum creatinine >3 mg/dl,
constrictive pericarditis and cardiac tamponade. Fifty patients were included in the study. They were
selected from a database of 69 patients (Table 1). On the basis of clinical considerations (based upon physical
examination, laboratory data and imaging), each patient was associated to one of the following classes:

1. hypo-volemic condition (20 subjects);
2. eu-volemic condition (24 subjects);
3. hyper-volemic condition (25 subjects).

US B-mode video-clips of about 15 s were recorded bedside in spontaneous breathing, with subxifoideal
approach, using a MyLab Seven system (Esaote, Genova, Italy; frame rate 30 Hz, 256 gray levels) equipped
with a convex 2�5 MHz probe. M-mode scans were also recorded to allow for standard manual measurements.

According to the Declaration of Helsinki, subjects provided written informed consent for the collection
of data and subsequent analysis. The study was approved by the local Ethics Committee.

The data included here were only those for which both video-clips, recorded along either long
or short axis, could be reliably processed. They were 20 from patients in overload, 19 controls and
11 patients with volume depletion (notice that video-clips of patients with volume depletion are more
dif�cult to be processed, due to the small dimension of the IVC, which could even collapse in some frames,
hindering proper processing).

Figure 2 shows examples of patients in the 3 classes.

Table 1. Number of patients included in different groups (with indication of the entire database and of the
patients for which successful processing of both long and short axis ultrasound videos was achieved).

Hypo-Volemic Eu-Volemic Hyper-Volemic

Database 20 24 25

Successful processing 11 19 20

Rate of successful processing 55.0% 79.2% 80.0%

2.3. Automated Identi�cation of the Volemic Status

Three different classi�cation approaches were �t to our dataset, as a preliminary step:
the error-correcting output codes (ECOC) model, using support vector machines (SVM [32]) for binary
one-to-one classi�cations [33,34]; the Naive Bayes classi�er (estimating data distributions using smoothed
densities with normal kernel) [35]; the BTM [35]. For each approach, different models were �t to our data,
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considering all possible combinations of input features (detailed below). The performances of different
classi�ers were compared in terms of a 10-fold cross-validation test, which allowed to select the best input
features and classi�cation approach. Then, the selected classi�er was tested by a leave-one-out approach
and, �nally, trained on the entire dataset, to provide an ultimate prediction model. In the following, we will
focus only on the BTM, as best results were obtained using this approach.

Different BTMs were �t to our multi-class classi�cation problem (including 3 classes), selecting the
simplest one (i.e., with minimum dimension) with best performances. A BTM iteratively splits the dataset
in two groups, after comparing an index with a threshold (Gini�s diversity index was used as splitting
criterion). Thus, it is built by choosing the optimal number of splittings, the speci�c index to be considered
for each binary separation and selecting the threshold value for each splitting. Different BTMs were
developed considering all possible combinations of input indexes (exhaustive search): all possible choices
of a single index, all pairs, triplets, ... until using all indexes.

Figure 2. Examples of data from patients in either hypo-, eu- or hyper-volemic conditions. The �rst frames
of the long and short axis scans are shown (left and right, respectively), together with the IVC boundaries
identi�ed by the algorithm. Time series are also shown for the diameters in 5 sections of the IVC (in gray,
with superimposed the mean diameter in black) and for the IVC area estimated from the long and short
axis scans, respectively. In the case of long axis scans, pulsatility indexes were computed as averages
of estimations from each of the 5 sections; in the case of short axis scans, they were computed from the
equivalent diameter, proportional to the square root of the IVC cross-section area. Dm: mean diameter;
Am: mean area; CI: caval index; RCI: respiratory caval index; CCI: cardiac caval index.

Different sets of indexes were used, considering the possibility of either employing the semi-automated
processing or not (so that in the latter case only manual measurements were considered).

The set of indexes obtained by semi-automated video processing was the following:

1. mean diameter of IVC in long axis;
2. CI in long axis;
3. RCI in long axis;
4. CCI in long axis;
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5. equivalent diameter of IVC in short axis;
6. CI in short axis;
7. RCI in short axis;
8. CCI in short axis.

The set of indexes obtained by standard manual measurements was the following:

1. diameter of IVC in long axis;
2. CI in long axis;
3. diameter of IVC in short axis;
4. CI in short axis.

For each set of indexes, different BTMs were developed using all possible combinations of features
taken from it and the one with highest performance was selected (thus, they were 255 and 15, for the �rst
and second features set, respectively). Speci�cally, the best categorical predictor split was chosen from
all possible combinations of choices. As mentioned above, the models were cross-validated considering
10 folds. The order of the data was random, so that the three categories of patients had a similar
representation in each fold (however, they could not be equally represented; this problem is emphasized
by the small size of our dataset). The one providing minimum average root mean squared regression error
(or loss) on the validation sets was then selected. This speci�c model was then tested by a leave-one-out
approach, to reduce the bias in error estimation (considering our small dataset) [36].

3. Results

Indexes characterizing the IVC were extracted from long and short axis views by either
semi-automated processing or manual estimation (performed in M-mode). Then, they were used to classify
patients. As using indexes extracted with the automated processing resulted in better performances,
�gures and tables shown below refer to those data, indicating in the text some performance indexes of the
best BTM developed using the set of indexes obtained by standard manual measurements.

Figure 3 shows the BTM selected as the classi�er with best performances on our dataset. The shown
BTM was trained on the entire dataset, including the best input features selected by the cross-validation
test (described in Section 2.3), where minimum loss was obtained (equal to 0.26; the loss of the best
classi�ers using either ECOC or Naive Bayes models was 0.28).

Two pulsatility indexes are included: CCI in long axis and CI in short axis. The same loss was
obtained by other 4 BTMs: the one with minimum number of input features was selected. The CCI in
long axis was included in 4 of these BTMs with minimum loss; the CI in short axis was included in 2 of
them. Another feature which was often included was the RCI in short axis, which was used in 3 among
the 5 BTMs with minimum loss. In the case in which standard manual measurements were employed,
the best BTM was unique, it had a loss of 0.28 and included two indexes: IVC diameter estimated in long
axis and CI in short axis.

Distributions of the indexes are shown in Figure 4. The mean Fisher ratios (FR, considering all
3 binary comparisons) of the indexes selected by the best BTM between those estimated by semi-automated
processing are among the highest. However, they have not the highest FRs: indeed, the best discrimination
in terms of average FR is provided by the mean diameter estimated from the long axis view. This indicates
that the selected indexes are those that are both informative and not much redundant, allowing a peak
in performance of the classi�er using them as inputs. Notice also that the FR is an index of linear
discrimination, whereas the adopted classi�er allows for nonlinear separation.

It is interesting to see that the indexes estimated manually have even higher FRs, indicating a better
linear discrimination of the patients. The two indexes with highest FRs are those selected by the best
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BTM using only indexes measured manually. However, the semi-automated processing allows to extract
additional information: speci�cally, the two pulsatility indexes RCI and CCI re�ect the effect of different
stimulations (respiration and heartbeat, respectively). This further information (and speci�cally that
coming from the CCI) allows the BTM from automated processing to get better performances than the one
developed on the basis of the set of manually estimated indexes.

The confusion matrix of the best BTM shown in Figure 3 is given in Table 2. Notice that all hypo-volemic
patients were correctly identified. A few eu-volemic and hyper-volemic subjects were misclassified.
No hyper-volemic patient was confused as hypo-volemic or vice-versa. Common performance indexes are
the followings: mean sensitivity 90.0% (86.0% for the BTM built using the manually estimated indexes);
mean specificity 95.0% (91.9% with manual indexes); positive predictive value 90.0% (86.2% with manual
indexes); negative predictive value 94.2% (91.8% with manual indexes); mean accuracy 92.9% (89.8% with
manual indexes).

Figure 3. BTM with best performances in �tting our data. The list of tested indexes (all estimated by
automated processing) is also provided, with indication (in bold) of those selected by the BTM.
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Figure 4. Distribution of the considered IVC indexes from patients with different volemic conditions. The
FR (ratio between squared difference of means and sum of variances, computed for all 3 binary comparisons
and averaged) is indicated, as an index of linear discrimination. The indexes selected by the best BTMs
(those using either semi-automated or manually estimation approach) are emphasized.

Notice that these performances were obtained using the entire dataset to train our model. As some
misclassi�cations were obtained, we deduce that some information is still missing and/or the features
extracted by our processing contain some residual noise. To get a more faithful indication of performances,
a leave-one-out test was performed (i.e., the best features selected before were kept, but each sample was
excluded in turn from the training set and used for testing). The confusion matrix in Table 3 was obtained.
Some degradation of the performance can be observed, especially in the discrimination of the control
and hyper-volemic groups. The following performance indexes were achieved: mean sensitivity 70.0%
(66.0% for the BTM built using the manually estimated indexes and tested by a leave-one-out approach);
mean speci�city 83.2% (80.4% with manual indexes); positive predictive value 70.0% (65.1% with manual
indexes); negative predictive value 82.1% (80.5% with manual indexes); mean accuracy 78.0% (75.3% with
manual indexes).

Table 2. Confusion matrix of the best binary tree model classifying the volemic status, shown in Figure 3
(for comparison, the best error-correcting output codes and Naive Bayes classi�ers trained on the entire
dataset show a predictive value of 78% and 86%, respectively).

Predicted Target Score Predictive

Class 1: Hypo 2: Eu 3: Hyper Value

1 11 (22.0%) 2 (4.0%) 0 84.6%

2 0 15 (30.0%) 1 (2.0%) 93.8%

3 0 2 (4.0%) 19 (38.0%) 90.5%

True rate 100% 78.9% 95.0% 90.0%
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Table 3. Confusion matrix obtained by testing the best binary tree model with a leave-one-out approach.

Predicted Target Score Predictive

Class 1: Hypo 2: Eu 3: Hyper Value

1 10 (20.0%) 3 (6.0%) 0 76.9%

2 1 (2.0%) 12 (24.0%) 7 (14.0%) 60.0%

3 0 4 (8.0%) 13 (26.0%) 76.5%

True rate 90.9% 63.2% 65.0% 70.0%

4. Discussion

The accurate assessment of the volume status is of relevance for a high percentage of patients who
either access the emergency room or enter the medical wards. The development of new standardized
clinical procedures and the support of automatic algorithms can help to correctly plan the treatment and
monitor the follow-up.

We have developed two algorithms that help standardizing the assessment of IVC pulsatility.
They process B-mode video-clips, allowing to compensate for either longitudinal or transverse
respirophasic movements and to delineate the vessel edges in an entire region (either a tract of longitudinal
section or a cross-section). As detailed in the Methods section, the IVC indexes extracted are not related
to a single diameter along the IVC, but re�ect the average size and pulsatility, calculated over the whole
portion of considered IVC length (in long axis) or over the entire IVC cross-section (in short axis). Thus,
the considered IVC indexes re�ect the overall behaviour of the investigated regions (both static and
dynamic behaviour, re�ected by the size and pulsatility of the IVC, respectively). We have already
documented for the long axis scans that this approach is more reliable and repeatable than standard clinical
assessment [13,19,25]. Moreover, we have shown that the IVC in a short axis view can pulsate differently
along different directions [28], so that an average indication of cross-sectional pulsatility is preferable and
less subjective than referring to an arbitrarily chosen diameter.

Here, we have built BTMs using those indexes estimated by our algorithms to assess automatically
the volemic conditions of patients. The indexes used by the best BTM re�ect IVC pulsatility. Referring to
Figure 3, the joint integration of information from CCI from long axis US scans and CI in short axis allows
to identify the different conditions, with an accuracy of 78% in a leave-one-out test (larger than what could
be achieved with the best classi�er using only manual indexes). Notice that CCI is an index that was
introduced recently [13,25,37,38] and whose estimation is expected to be stable, as the heartbeats are much
less variable than respiratory cycles, mainly affecting the measurements of CI and RCI. Other 4 BTMs
achieved the same loss in cross-validation as the best one (which was chosen because it had the smallest
dimension). This can be interpreted as a consequence of the redundancy included in the pulsatility indexes,
whereby one index may be obtained from a combination of the others. This result may also descend
from the small sample size, which does not allow to appreciate �ne differences in performance among
models with high classi�cation rates. Hence, this should be considered as a pilot study. Augmenting the
numerosity of the sample would be important to get a more stable estimation of the classi�cation model.

We have compared the classi�cation performances of the above mentioned fully automated method
(based on indexes extracted by processing US B-mode video-clips), with a BTM using indexes measured
manually, with M-mode scans along an US ray selected either from a longitudinal or a transverse view
of the IVC. It is interesting to notice that the indexes measured manually allowed in general to get a
better linear discrimination of the volemic conditions (measured in terms of the average Fisher ratios
comparing all pairs of groups). However, the automated processing allowed to extract more indexes
describing IVC and the �nal best classi�er showed better performances than that obtained using manual
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measurements. In particular, additional information on IVC pulsatility induced by either respiratory
cycles or heartbeats was available and CCI (from long axis view) was selected by the best BTM. We deduce
that this index includes additional/not redundant information that, together with other characterizations
of IVC pulsatility (provided by the CI in short axis, in the best BTM), can be useful to disentangle the
complex/nonlinear relation between IVC dynamics and volume status of the patient.

It must be underlined that the present results were obtained from a selected group of patients in
which pathologies speci�cally affecting the respiratory system were excluded. Moreover, we expect that
the selection of CCI as optimal feature depends also on the regular hearth rhythm shown by the patients
included in our dataset; in the case of arrhythmia (typically due to atrial �brillation, not shown by our data
sample), a reliable estimation of this important parameter would be hindered. Thus, the application of our
classi�cation approach to different patient populations could result in different selections of parameters
and thresholds. Nevertheless, as an effort to overcome the subjectivity of the measurement, our approach
(but, probably, not the classi�cation model) remains valid and worth to be investigated and extended to
other patients groups.

Another limitation of the method is the need to rely on good quality imaging. Indeed, only 87% and
77% of long and short axis video-clips were properly processed, respectively, so that only 72% of our
patients could be included in this study (as the processing of both recordings was required). Improvements
could be obtained by adopting higher level US machines or by more effective image processing. We are
currently trying to optimize our algorithms in order to process US recordings in real time, providing
a feedback to the operator. We expect that this could help in getting successful processing in more US
video-clips. Indeed, our present of�ine approach requires that the operator acquires data blindly, i.e.,
without knowing if the recorded video-clip will be adequate for processing. Instead, a real time software
could guide the acquisition and indicate to the operator if there are problems in processing the data,
in which case the operator could work at improving the quality of the imaging. This is exactly what
happens in manual measurements: the operator may try different approaches and strategies to improve
image quality until he is satis�ed with the result and IVC measurement is made possible.

In summary, we have shown the joint application of long and short axis US views of the IVC, to assess
the volume status of patients. The US videos have been automatically processed by multi-section and
multi-directional algorithms, which track IVC movements and compute its size and pulsatility either
over a longitudinal portion of the vessel or a cross-section, respectively. The IVC pulsations have been
also split into two contributions, re�ecting either the respiratory cycles or the heartbeats. The algorithms
have been widely tested on healthy subjects in laboratory conditions in the past [13,19,20,28,29] and in
a single clinical study, aimed at estimating right atrial pressure based on the analysis of IVC pulsatility
[25,31]. Here, the different indexes were jointly applied in a clinical setting and used to solve the multiclass
problem of discriminating patients with different volume status, showing better performance than when
using manually measured indexes. Pulsatility indexes estimated from both long and short axis have been
included in the best classi�cation model, which supports the concept that they convey complementary
information. Even considering the preliminary nature of these results (given the small sample size),
the approach appears to be very promising. Extending the dataset and improving the processing algorithms
(e.g., allowing real time interaction with the operator) may prospectively lead to obtain ef�cient systems
for diagnostic support and follow-up.

5. Conclusions

The identi�cation of the volume condition is important for the clinical management of many patients
in the emergency room or in wards of general medicine and cardiology. We propose an automated
approach for the classi�cation of the volemic status, based on the processing of B-mode US video-clips
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of the IVC and on the extraction of pulsatility features. The presented results suggest that this approach
may be useful to get more reliable clinical indication from the US monitoring of IVC. Investigation over a
larger dataset will however be necessary to test the actual effectiveness of the proposed method. Moreover,
our results hold true in conditions of normal respiratory function and cardiac rhythm. It is reasonable
that our classi�er will not apply to patients with more complex cardio-respiratory conditions; however,
the same approach could be applied to develop models �tting their conditions.

6. Patents

An instrument implementing the algorithms for IVC delineation used in this paper was patented by
Politecnico di Torino and UniversitÆ di Torino (WO 2018/134726).
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