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Abstract

In this report, we describe the technical details of our
submission to the EPIC-Kitchens-100 Unsupervised Do-
main Adaptation (UDA) Challenge in Action Recognition.
To tackle the domain-shift which exists under the UDA set-
ting, we first exploited a recent Domain Generalization
(DG) technique, called Relative Norm Alignment (RNA).
It consists in designing a model able to generalize well to
any unseen domain, regardless of the possibility to access
target data at training time. Then, in a second phase, we
extended the approach to work on unlabelled target data,
allowing the model to adapt to the target distribution in
an unsupervised fashion. For this purpose, we included in
our framework existing UDA algorithms, such as Temporal
Attentive Adversarial Adaptation Network (TA3N), jointly
with new multi-stream consistency losses, namely Temporal
Hard Norm Alignment (T-HNA) and Min-Entropy Consis-
tency (MEC). Our submission (entry ‘plnet’) is visible on
the leaderboard and it achieved the 1st position for ‘verb’,
and the 3rd position for both ‘noun’ and ‘action’.

1. Introduction
First person action recognition offers a wide range of op-

portunities which arise from the use of wearable devices.
In fact, since it intrinsically comes with rich sound infor-
mation, due to the strong hand-object interactions and the
closeness of the sensors to the sound source, it encourages
the use of auditory information. Moreover, the continuous
movement of the camera, which moves around with the ob-
server, strongly motivates the use of secondary modalities
capturing the motion in the scene, such as optical flow.

Our idea is that exploiting the intrinsic peculiarities of
all these modalities is of crucial importance, especially in

*The authors equally contributed to this work. This paper is partially
supported by the ERC project RoboExNovo. We also acknowledge that the
research activity herein was carried out using the IIT HPC infrastructure.
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Figure 1. The correlation between the distinctive sound of an ac-
tion and its corresponding visual information or motion is not al-
ways guaranteed across different domains. Thus, effectively com-
bining multi-modal information from multiple sources is funda-
mental to increase the capability to recognize daily actions.

cross-domain scenarios. In fact, these modalities suffer
from a domain shift which is not of the same nature. For in-
stance, the optical flow modality, by focusing on the motion
in the scene rather than on the appearance, is less sensitive
to environmental changes, and thus potentially more robust
than the visual modality when changing environment [10]
(Figure 1). On the other side, the domain shift of auditory
information is very different from the visual one (e.g., the
sound of ‘cut’ will differ from a plastic to a wooden cutting
board). For all those reasons, the classifier should be able to
measure and understand which modality is informative and
should rely on in the final prediction, and which is not.

To this purpose, authors of [11] recently proposed a
multi-modal framework, called Relative Norm Alignment
network (RNA-Net), which aims to progressively align the
feature norms of audio and visual (RGB) modalities among
multiple sources in a Domain Generalization (DG) set-
ting, where target data are not available during training.
In that work, they bring to light that simply feeding all
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the source domains to the network without applying any
adaptive techniques leads to sub-optimal performance. In-
deed, a multi-source domain alignment allows the network
to promote domain-agnostic features.

Interestingly, the availability of multiple sources in the
official challenge dataset make it perfect to tackle the prob-
lem under a DG setting. To this purpose, we extended
RNA-Net to the Flow modality, obtaining remarkable re-
sults without accessing target data. In a second stage, we
further adapted it to work with unlabelled target data under
the standard Unsupervised Domain Adaptation (UDA) set-
ting. Finally, our final submission was obtained by ensem-
bling different model streams by means of DA-based con-
sistency losses, namely Temporal Hard Norm Alignment
(T-HNA) and Min-Entropy Consistency (MEC).

2. Our Approach
In this section, we first describe the DG approach we

used. Then, we illustrate its extension to unlabelled tar-
get data under the standard UDA framework. Finally, we
repurpose existing DA-based losses to induce consistency
between different architectures.

2.1. Domain Generalization

The multi-source nature of the proposed challenge set-
ting makes it perfect to deal with the domain shift using
DG techniques. Thus, we first exploited a method which
has been recently proposed to operate in this context, called
Relative Norm Alignment (RNA) [11]. This methods con-
sists in performing an audio-visual domain alignment at
feature-level by minimizing a cross-modal loss function
(LRNA). The latter aims at minimizing the mean-feature-
norm distance between the audio and visual features norms
among all the source domains, and it is defined as

LRNA =

(
E[h(Xv)]

E[h(Xa)]
− 1

)2

, (1)

where h(xmi ) = (‖·‖2 ◦ fm)(xmi ) indicates the L2-norm
of the features fm of the m-th modality, E[h(Xm)] =
1
N

∑
xm
i ∈Xm h(xmi ) for the m-th modality and N denotes

the number of samples of the set Xm = {xm1 , ..., xmN}.
Authors of [11] proved that the norm unbalance between

different modalities might cause the model to be biased to-
wards the source domain that generate features with greater
norm and thus causing a wrong prediction. Indeed, by si-
multaneously solving the problem of classification and rel-
ative norm alignment on different domains, the network ex-
tracts a shared knowledge between the different sources, re-
sulting in a domain-agnostic model.

In our submission to the EPIC-Kitchen UDA challenge,
we extended the RNA-Net framework to the optical flow
modality, and we exploited the multiple sources available

from the official training splits to show the effectiveness of
RNA loss in a multi-source DG setting.

2.2. Domain Adaptation

In this section, we describe the UDA techniques that are
integrated in our approach.

Relative Norm Alignment Network. We followed the
extension towards the UDA setting proposed in [11], which
is possible thanks to the unsupervised nature of RNA. In
order to consider the contribution of both source and target
data during training, we redefined LRNA under the UDA
setting as

LRNA = Ls
RNA + Lt

RNA, (2)

where Ls
RNA and Lt

RNA correspond to the RNA formula-
tion in Equation 1 illustrated above, when applied to source
and target data respectively.

Temporal Attentive Adversarial Adaptation Network
(TA3N). Authors of [2] proposed an UDA technique based
on three components. The first one, called Temporal Adver-
sarial Adaptation Network (TA2N), consists in an extension
of DANN [5], aiming to align the temporal features on a
multi-scale Temporal Relation Module (TRM) [14] through
a gradient reversal layer (GRL). The second component is
based on a domain attention mechanism which guides the
temporal alignment towards features where the domain dis-
crepancy is larger. Finally, the third component uses a mini-
mum entropy regularization (attentive entropy) to refine the
classifier adaptation.

2.3. Ensemble UDA losses

For our final submission, different models are used in
order to exploit the potentiality of popular video architec-
tures. Training individually each backbone with standard
UDA protocols results in an adapted feature representa-
tion which varies from stream to stream. Our intuition is
that this aspect could impact negatively the training pro-
cess and the performance on target data. In fact, since
the domain adaption process acts on each architecture inde-
pendently, different prediction logits are obtained on target
data. When combining them, this could cause a mismatch
between the final scores, increasing the level of uncertainty
of the model. Thus, we impose a consistency constraint be-
tween feature representations from different models, by re-
purposing existing UDA loss functions to operate between
multiple streams. Those are:

Temporal Hard Norm Alignment (T-HNA). It re-
balances the contribution of each model during training by
extending HNA [11] to align the norms of features coming
from the different streams towards the same value R. This
is applied on features extracted from multiple scales of each
TRN module. The resulting LT-HNA is defined as
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UNSUPERVISED DOMAIN ADAPTATION LEADERBOARD

Rank Verb Top-1 Noun Top-1 Action Top-1 Verb Top-5 Noun Top-5 Action Top-5

chengyi 1 53.16 34.86 25.00 80.74 59.30 40.75
M3EM 2 53.29 35.64 24.76 81.64 59.89 40.73
plnet 3 55.22 34.83 24.71 81.93 60.48 41.41
EPIC TA3N [3] 6 46.91 27.69 18.95 72.70 50.72 30.53
EPIC TA3N SOURCE ONLY [3] 12 44.39 25.30 16.79 69.69 48.40 29.06

Table 1. Leaderboard results of EPIC-Kitchens Unsupervised Domain Adaptation Challenge. The results obtained by the top-3 participants
and the provided baseline methods are reported. Bold: highest result; Green: our final submission.

ENSEMBLE UDA LOSSES

Top-1 Top-5

Verb Noun Action Verb Noun Action

Ensemble 52.83 30.82 21.96 81.04 52.67 46.66

Ensemble+T-HNA 53.84 32.54 22.65 80.63 54.86 48.03

Ensemble+T-HNA+MEC 54.02 33.53 23.58 81.00 55.03 48.27

DOMAIN GENERALIZATION

Target Verb Top-1 Verb Top-5

Source Only 7 44.39 69.69

EPIC TA3N [3] 3 46.91 72.70

RNA-Net [11] 7 47.96 79.54

EPIC TA3N+RNA-Net 3 50.40 80.47

Table 2. Left. Results on the EPIC-Kitchen validation set with different ensembling UDA losses. Right. Results on EPIC-Kitchen test set
under the DG setting. Bold highest result.

LT-HNA =
∑
b

(
E[ht(Xb)]−R

)2
, (3)

where ht denotes the L2-norm of features extracted from
the t-th multi-scale level of the b-th backbone network.

Min Entropy Consensus (MEC loss). We extended the
loss proposed in [12] to encourage coherent predictions be-
tween different models. The resulting loss is defined as:

LMEC = − 1

m

m∑
i=1

1

b
max
y∈Y

∑
b

logpb(y|xti) (4)

where m is the cardinality of the batch size of the target
set, y is the predicted class, and logpb(y|xti) is the predic-
tion probability of the b-th backbone network. The intuitive
idea behind the proposed approach is to encourage different
backbones to have a similar predictions.

3. Framework

In this section, we describe the architectures of the fea-
ture extractors used to produce suitable multi-modal video
embeddings, and the fusion stategies adopted to combine
them. We complete this section with the description of the
hyper-parameters used for the training.

3.1. Architecture

Backbone. For our submission, we adopted different
network configurations. In the first one, corresponding to
the RNA-Net framework in [11], we used the Inflated 3D
ConvNet (I3D), pre-trained on Kinetics [1], for RGB and
Flow streams, and a BN-Inception model [7] pre-trained

λRNA λHNA R λMEC γ β
1 0.0006 40 0.01 0.003 0.75, 0.75, 0.5

Table 3. UDA losses hyper-parameters used during training.

on ImageNet [4] for the auditory information. Each fea-
ture extractor produces a 1024-dimensional representation
which is fed to an action classifier. In the second configu-
ration, we used BNInception for all the three streams, using
pre-extracted features from a TBN [10] model trained on
EPIC-Kitchens-55. In the last configurations, we used stan-
dard ResNet50 [6] for all the streams using TSN [13] and
TSM [9] models pre-trained on Epic-Kitchen551.

Multi-modal fusion strategies. In all the above men-
tioned configurations, each modality is processed by its own
backbone, and the corresponding extracted representations
are then fused following different strategies. For RNA-Net,
we followed a standard late fusion strategy, consisting in
averaging the final score predictions obtained from two dif-
ferent fully-connected layers (verb, noun) from each modal-
ity. In the other configurations, we adopted the mid-fusion
strategy proposed in [8], to generate a common frame-
embedding among the modalities and used a Temporal Re-
lation Module (TRM) [14] to aggregate features from differ-
ent frames before feeding the final embeddings to the verb
and noun classifiers.

3.2. Implementation Details

We trained I3D and BNInception models with SGD op-
timizer, with an initial learning rate of 0.001, dropout 0.7,

1https://github.com/epic-kitchens/
epic-kitchens-55-action-models
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and using a batch size of 128, following [11]. Instead,
when using pre-extracted features from ResNet50 or BN-
Inception, we trained the TRM modules on top of them for
100 epochs with an initial learning rate of 0.03, decayed af-
ter epochs 30 and 60 by a factor of 0.1. We used a batch
size of 128 with SGD optimizer. In Table 3 we report the
other hyper-parameter used. Specifically, we indicate with
λRNA, λT−HNA and λMEC the weights of RNA, T-HNA
and MEC losses respectively, and with R the values of the
radius of T-HNA (see Equation 4). In addition, we report
the values used in TA3N to weight the attentive entropy loss
(γ) and the domain losses at different levels (β).

4. Results and Discussion

In Table 1 we report our best performing model on the
target test, achieving the 1st position on ‘verb’, 3rd on
‘noun’ and ‘action’, and 1st position on Top-5 accuracy on
all categories. In Table 2 (left) we show an ablation on the
contribution of the proposed ensemble UDA losses, T-HNA
and MEC respectively, on the official validation set. As it
can be seen, they improve Top-1 accuracy on all categories
by up to 2%, proving the effectiveness of imposing a con-
sistency between features from different streams.

How well do DG approaches perform? We show in Ta-
ble 2 (right) the results obtained under the multi-source DG
setting, when target data are not available during training.
Noticeably, RNA outperforms the baseline Source Only by
up to 3% on Top-1 and 10% on Top-5, remarking the im-
portance of using ad-hoc alignment techniques to deal with
multiple sources in order to effectively extract a domain-
agnostic model. Moreover, it outperforms the very recent
UDA technique TA3N without accessing to target data. In-
terestingly, when combined with EPIC TA3N, it further im-
proves performance, proving the complementarity of RNA
to other existing UDA approaches.
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