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Abstract—Turbomolecular pumps are devices designed to 

obtain and maintain high vacuum. These are based on the 

principle that momentum can be given to gas molecules by 

collision with a moving solid surface. Hence, a multiple-stages 

fan rotor must spin at very high speeds to obtain the desired 

effect, leading to critical issues related to friction. When rolling 

elements bearings are employed to support the rotor shaft, these 

become the weakest link in the chain, so that diagnostic systems 

could be desirable to monitor the health state of such 

components. In this work temperature and vibration sensors are 

tested for this purpose using an endurance test rig running a 

turbomolecular pump to failure.  
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I. INTRODUCTION 

Turbomolecular pumps (TMPs) are key apparatus for 
obtaining and maintaining high and ultrahigh vacuum (i.e., 
10−3  to 10−11  mbar), which is fundamental in many 
industrial and scientific processes, from electronics and 
semiconductor manufacturing [1] to laboratory equipment as 
particle colliders and electron microscopes [2]. Classical 
TMPs are axial multistage compressors and achieve high 
vacuum transferring momentum (i.e., mass by velocity 𝑚�̅�) to 
the molecules through collision with the solid surface of a 
turbine rotor. Stator blades canalize then the molecules, 
leading them to the next stage, so that the operation is repeated 
as many times as the number of stages [3]. In order to ensure 
effective and efficient operation, the rotor is required to rotate 
up to 90.000 rpm, so that its supports must be accurately 
designed. In general, three architectures can be found: a) fully 
active magnetic suspension, b) one passive magnetic bearing 
on the high vacuum side of the rotor and a mechanical rolling 
bearing on the low vacuum side, c) two mechanical Rolling 
Element Bearings (REBs) on the low vacuum side [4]. If 
active magnetic suspensions are able to introduce damping in 
the system by proper control, passive and hybrid solutions are 
comparable to the coupling obtained with the more traditional 
REBs, so that a damping element becomes fundamental to 
lower the otherwise intolerable vibration levels induced by 
even small, unavoidable static unbalance, combined to such 
high rotational speeds. The state of the art involves then the 
addition of an annular elastomeric element (i.e., the square 
ring) press-fitted between the bearing and its non-rotating 
support [5]. 

If, on one hand, vibration is unavoidable, and generally 
associated with negative, undesired effects (i.e., noise, wear, 

fatigue, etc.), on the other hand, it can be used to take 
diagnostic information out of a rotating machine. Thanks to 
cost effective sensors (i.e., accelerometers) and minimum 
impact on machines operation, Vibration Monitoring (VM) is 
becoming the state of the art for implementing damage 
detection in most of maintenance regimes of machines 
involving rotating shafts [6-10]. 

With these premises, the present work aims at assessing 
the ability of VM to infer the state of health of REBs in Agilent 
TwisTorr 304 FS turbomolecular pumps, featuring 
architecture c) and Agilent Floating Suspension, as displayed 
in fig.1. Exploiting vibration acquisitions from the test rig 
described in section II, the diagnostic ability of VM will be 
evaluated in terms of pattern recognition [7] (semi-supervised 
or supervised techniques, as described in section III) and 
compared to a reference methodology based on temperature 
sensors integrated in the pump REBs supports. 

As demonstrated by the results in section IV, using the 
diagnostic information from acceleration acquisitions, it is 
possible to anticipate REB failure of a couple of weeks, 
outmatching the diagnostic information obtained by the 
temperature acquisitions. 

 

(A)                                                   (B) 

Fig. 1. A) Cutaway image of an Agilent turbomolecular pump, B) 
Scheme of its cantilever rotor supported by two REBs on the low vacuum 

side and the elastomeric dampers characterizing the Agilent Floating 

Suspention [4,5]. 

II. DESCRIPTION OF THE TEST RIG AND OF THE ACQUISITIONS 

In order to assess the diagnostic ability of temperature and 
vibration for TMPs, an accelerated-life, endurance 
experimental test rig was set up. In particular, several 



sensorized TMPs were connected in a vacuum circuit (fig. 2) 
and run to failure, while temperature and vibration level were 
continuously acquired. 

The TMPs featured one radial accelerometer mounted on 
each bearing support (i.e., the upper and lower bearing, 
accordingly to fig.1) and an additional radial accelerometer 
mounted on the body. The temperatures of the supports were 
also acquired (i.e., upper and lower thermistor), as well as the 
body temperature and the temperature of the high vacuum side 
of the rotor (i.e., rotor temperature, acquired with an infrared 
temperature sensor). 

Three TMPs were selected for this analysis: T4, whose 
upper bearing failed on 2017/05/15, was chosen to be 
compared to T1 and T6, which were used as a healthy 
reference in the considered period of time from 2017/01/01 
(which is taken as the initial time of the test, even if some 
machine was ran at reduced load starting from 2016/09/16) to 
2017/05/30. 

 

Fig. 2. Test rig vacuum circuit. 

Temperatures were measured once every couple of 
minutes, while 10s of accelerations at 25,6 ksps were acquired 
every hour. Anyway, a more balanced dataset was obtained by 
extracting six features to summarize each 10s vibration 
acquisition, while the temperature measurements were down-
sampled so as to match the one-per-hour sampling frequency. 
The selected features are well known level indicators such as 
RMS, Peak value and crest factor, as well as time-series 
statistical moments such as: Variance, Skewness, and Excess 
kurtosis (refer to appendix A for the mathematical 
formulation). The average temperature (i.e., the mean of the 
four acquired temperatures: body, rotor, lower bearing and 
upper bearing) for the three selected TDMs are shown in fig.4, 
while the RMS vibration trends (given as z-scores: centered 
over their mean value and normalized by their standard 
deviation) are reported in fig.5. 

In order to accelerate the bearings’ life, the test rig was 
initially set so as to keep the bearings working at their upper 
limit temperature (i.e., 𝑇𝑠𝑒𝑡), while the rotational speed was 
kept stationary at its nominal value of 1000Hz. This implied 
an almost stationary load due to a 𝑃ℎ𝑖𝑔ℎ  always around 2 −
3 𝑡𝑜𝑟𝑟. Anyway, as several TMPs were run in parallel, the real 
temperatures of the different pumps could differ, as shown in 
fig.4, where the temperature trends normalized over 𝑇𝑠𝑒𝑡  are 
given. Notice that the downward temperature spikes 
correspond to run-up transients, as the TMPs were 
periodically stopped. These transients were removed from the 
data (i.e., the rotational speed is always the nominal one), but 
still remain visible in the temperatures due to the thermal 
capacity of the pumps. 

 

Fig. 3. 𝑃ℎ𝑖𝑔ℎ pressure. The vertical red dash-dotted line corresponds to T4 

upper bearing failure. 

 

 

Fig. 4. The different temperatures for T4 and the average temperature 

trends for all the three TMPs. The vertical red dash-dotted line corresponds 

to T4 failure. 

 

 

 

Fig. 5. RMS z-scores trends for the 3 TMPs under analysis. The vertical red 

dash-dotted line corresponds to T4 failure. 

Even from such quite raw data, a couple of interesting 
considerations can be deduced: 



• At the end of April (27/4), the load is reduced (in 
fig.3 𝑃ℎ𝑖𝑔ℎ visibly drops); this does not influence 

much the temperatures, and just marginally 
affects the acceleration trends, so that the 
hypothesis of stationarity does not fail.  

•  At the beginning of April (8/4) the mean 
temperature 𝑇𝑚4  shows a local peak at 1,09 
°C/°C (fig.4). If the mean temperature was stable 
around 1,01 °C/°C before this event, it settles to 
1,03 °C/°C later. Even if this could seem a minor 
event, the vibration signals (fig.5) clearly 
highlight that a huge variation in the machine 
condition happened, having an impact also on the 
body accelerometer. 

• On 13/5 a second and more important 
temperature peak at 1,12 °C/°C anticipates the 
bearing failure of a couple of days, but no other 
particular indication can be obtained from 
temperature. 

As the scope of the health monitoring is that of picturing 
the damage evolution of the TMPs, vibration signals seemed 
to be more suitable for obtaining a more resolved monotonic 
trend from the healthy state to failure. With this target in mind, 
some data processing strategies are proposed in the next 
section.  

III. DATA PROCESSING AND RESULTS 

For the purpose of diagnostics, the temperature data was 
processed so as to produce the average temperature trend 
visible in fig.4. computed as the mean value of the body 
temperature, the two bearings temperatures and the rotor 
temperature. In particular, the rotor temperature, which was 
acquired with an infrared temperature sensor, was cleaned of 
the many unphysical outliers (probably due to disconnections 
of the sensor) by means of an Hampel median filter. 
Furthermore, the data was later down-sampled to the 
frequency of 1 datum per hour. 

Considering the accelerometric signals on the contrary, 
given the very high rotational speeds of the shaft, a black box 
approach based on Pattern Recognition was preferred to the 
more traditional envelope demodulation. In other words, 
assuming that the operating and environmental conditions are 
sufficiently stationary not to affect the acquisitions (i.e., not to 
behave as confounders), any difference detected with respect 
to a normal reference condition can be reliably attributed to 
the presence of damage (fig. 6). If just data from the healthy 
state are used to train the difference-detecting algorithm (i.e., 
a semi-supervised technique), we will speak about Novelty 
Detection, while we will speak about classification if both data 
from the healthy and the damaged state are fed to the training 
together with the membership information (i.e., the label 
“healthy” or “damaged”). 

Hence, each 10s accelerometric acquisition will be 
substituted by the six selected features described in section II 
and appendix A. In this M-dimensional space (i.e., 𝑀 = 18 if 
three accelerometers and 6 features are considered) some 
transform can be later used to compress the multivariate 
information to a univariate variable which will take the name 
of Novelty Index (NI). Ideally, the final NI, sampled at the 
frequency of 1 datum per hour, should be a monotonic 
increasing function depicting the wear of the bearing, 
degrading over time until failure. Hence, the proposed 

transforms which could enable to obtain such a result are 
briefly described hereinafter. 

 

 

Fig. 6. Novelty Detection scheme. 

A. Non-linear Combination of features: Mahalanobis 

Distance NI 

Derived from probability theory, a data point can be 
considered abnormal (i.e., novel) if it is far enough from the 
centre of the reference distribution. For example, in the 1D 
case, points further than 3 times the standard deviation from 
the mean can be considered outliers according to the 3𝜎 rule. 
If this consideration is extended to a multivariate case, the 
problem corresponds to finding the 3𝜎 -equivalent, limit 
hyper-ellipsoid, beyond which a data-point can be considered 
novel. This problem can be turned into an equivalent 1-D 
problem if the multivariate space is whitened (i.e., the hyper-
ellipsoid is transformed into a hypersphere via rotation and 
rescaling), as in this case, the only relevant information 
becomes the distance from the centre (i.e., the radius in polar 
coordinates). Hence, the limit hyper-ellipsoid simplifies to a 
limit radius or a simple threshold. According to such 
considerations, the Mahalanobis Distance (MD) is the perfect 
candidate, as it exactly corresponds to the points-to-centre 
distance in such a whitened space [7]. In fact, if 𝑋 is a matrix 
collecting in its columns the extracted features over time 
(centred by removing their mean values 𝜇 ), and 𝑆  is the 
covariance matrix of 𝑋, it is easy to write: 

𝑁𝐼 ≡ 𝑀𝐷 = √𝑋′𝑆−1𝑋  (1) 

Notice that MD is dimensionless as the data is whitened 
(i.e., it is standardized in the multivariate space). 

Finally, what is left is the selection of the reference data on 
which to estimate the covariance matrix 𝑆  and the mean 
values 𝜇  to centre the data, and the selection of a proper 
threshold [7,11,12].  

B. Linear Combination of features: Principal Component 

Analysis and Linear Discriminant Analysis NIs 

Even if the MD-NIs are not too complex to compute, the 
MD remains a non-linear transform, so that it could be 
interesting to find whether the use of a linear combination of 
features is able to lead to satisfactory results [13,14]. One 
possibility is to conduct a Principal Component Analysis 
(PCA) [15], which is strictly related to MD as it is meant to 
find the rotation matrix used in the first step of the whitening 
(i.e., the eigenvector matrix 𝑉), and the rescaling coefficients 
involved in the whitening (i.e., the eigenvalues 𝜆), solving the 
eigenproblem: 

𝑆𝑉 = 𝑉𝜆   (2) 

The first eigenvector is then summarizing most of the 
variance of the dataset, which, excluding the presence of 



confounders, is related to the health condition. Hence, the 
corresponding eigenvector is a good candidate for 
transforming the multivariate data into a 1-D PC1-NI. Notice 
that this is possible because we have available acquisitions 
from TMP – T4 from the healthy state until failure, so that 
PC1 eigenvector points towards the damage-evolution 
direction. Furthermore, in order to have a dimensionless 
measure, PCA should be applied to standardized data (N.B., 
standardized univariately, i.e., each column-data is divided by 
its own standard deviation after having removed its mean 
value). This characterization should be done on TMP – T4 and 
extended to the other healthy pumps T1 and T6 for validation. 

Notice that this approach is still semi-supervised as the 
previously proposed MD-NI analysis, but in this case the 
whole T4 data (i.e., healthy to damaged) is used to find the 
linear combination weights (i.e., for training). Anyway, it 
could be interesting to test also a linear supervised approach. 
In particular, Fisher’s Linear Discriminant Analysis [16,10,8] 
can be easily implemented for finding the direction in the 
multivariate space along which the separation among the 
damaged and the healthy T4 data is maximum. If the data 
before failure are labelled as damaged, then, it is easy to find 
the optimal LDA weights [16,10]: 

𝑆𝑤 = ∑(𝑥ℎ − 𝜇1)(𝑥ℎ − 𝜇1)′

𝑛1

ℎ=1

+ ∑(𝑥𝑘 − 𝜇2)(𝑥𝑘 − 𝜇2)′

𝑛2

𝑘=1

 

𝑑(𝑤) =
𝑤′(𝜇2 − 𝜇1 )(𝜇2 − 𝜇1)′𝑤

𝑤′𝑆𝑤𝑤
 

 arg max
𝑤

 𝑑(𝑤) : 𝑤 ∝ 𝑆𝑤
−1(𝜇2 − 𝜇1)   (3) 

Hence, as stated by (3), the maximization of the measure 
of separation d(w) results in a direction w that can be 
computed as the inverse within-class covariance matrix 𝑆𝑤 by 
the distance of the two classes (i.e., damaged vs healthy) 
centroids 𝜇2 − 𝜇1 . The corresponding weights can then be 
used for transforming the multivariate data into a 1-D LDA-
NI. 

IV. VIBRATION MONITORING RESULTS 

According to what described in section III, the dataset was 
first analysed by computing MD-NIs referred to a training 
from 2017/01/01 to 2017/02/28. In particular, the analysis was 
first conducted using all the three available accelerometers 
(i.e., Upper & Lower bearing + Body), and later reduced 
neglecting the body information. As it can be clearly noticed 
in fig.7, the two results are very similar, apart from some peak 
(e.g., T1 peak around 2017/05/01). This suggests that the body 
information is not particularly relevant for diagnostic 
purposes, and is just introducing noise from the outside, so 
that it will be neglected in the further analyses. 

The second step was to run a PCA on the standardized data 
of each pump. At first, PCA was run independently on the 3 
TMPs, to explore the dataset. The result, limited to the first 
two principal components (explaining roughly the 50% of the 
data variability) is shown in fig.8. As it is easy to notice, a 
clear evolution is present along the first principal component 
of T4. Since the only source of variability left uncontrolled is 
related to the wear of the TMP, the variance pictured along 
PC1 must correspond to the health-state evolution of T1. 
According to this consideration, the weights describing the 
PC1 related eigenvector could be used to produce a PC1-NI, 

if the data is standardized according to the mean value and the 
standard deviation obtained from T4 pump. 

 

 

Fig. 7. MD-NIs considering all the three accelerometers compared to the 

result neglectinf the body accelerometer. The training involves data until 

February 2017 (dashed line). 

 

Fig. 8. PCA: 2D plot (PC2 vs PC1) of the whole standardized dataset of 

each TMP. Notice that the first two components explain 55% of the variance 
for T1, 60% of the variance for T4 and 40% of the variance for T6. The color, 

running from blue to red, denotes the evolution over time. 

If PC1-NIs are computed for T1 and T6 using the training 
information obtained from T4, then, the plot in fig.9 can be 
produced. Comparing fig.9 to fig.7, two important 
considerations can be made: 

• T1 and T6 (healthy data) are flatter for PC1-NIs 
rather than considering MD-NIs. This enables a 
better early detection of the critical situation for T4, 
which stands out more clearly. In particular, from 
PC1-NIs, the critical health condition can be noticed 
at the very beginning of April, while MD-NIs enable 
a clear detection only after April 8 (N.B., 
corresponding to the first peak in the mean 
temperature signal Tm4 in fig.4). 

• It must be remembered that PC1_NIs were computed 
exploiting the entire T4 data (i.e., until failure) in the 
training, while each turbine was trained only on its 
own healthy data (i.e., until the end of February) for 
the MD-NIs computation. The improvement 
obtained with PC1-NIs is then justified. 



 

Fig. 9. PC1_NI trained using T4, and validated using T1 and T6. 

To conclude LDA-NIs were tested. Exploiting the 
knowledge produced from the previous analyses, the healthy 
and the damaged data were labelled taking the beginning of 
April as a discriminant. LDA was then trained on T4 
standardized data and the result (i.e., the computation of the 
linear combination weights 𝑤) was validated on T1 and T6 
standardized data, using the training information obtained 
from T4. 

The result is reported in fig.10. Comparing it to fig.9 and 
fig.7 it can be seen that the so obtained result is slightly (even 
if just marginally) improved, as a consequence of the addition 
of further external information to the training (i.e., the T4 
labels of healthy or damaged). 

 

Fig. 10. LDA_NI trained using T4 data and labels created using the healthy 

to damaged threshold represented as a dashed line (2017/04/4), validated 

using T1 and T6. 

V. CONCLUSIONS 

To summarize, Agilent TMPs were monitored in terms of 
temperature and vibration. The mean temperature of the 
turbine was able to highlight two critical moments of T4 life 
(i.e., two anomalous peaks), nevertheless it was not good for 
tracking the damage evolution over time, nor it could be used 
to find unique limit values for all the pumps, which were 
proved to work at very different mean temperatures. 

On the contrary, vibration monitoring data seemed to 
better picture the evolution of the TMPs’ health state, leading 
to a more resolved monotonic trend from the healthy reference 
state to the final failure of T4. In particular, three Pattern 
Recognition strategies were adopted to reduce the multivariate 
vibration-features dataset to a 1-D novelty information: 

• Semi-supervised MD-NIs with a training on the 
healthy data alone (i.e., from 2017/01/01 to 
2017/02/28). 

• Semi-supervised PC1-NIs with a training on T4 
data from healthy-state to failure. 

• Supervised LDA-NIs with training on T4 data 
from healthy-state to failure and membership 
labels. 

 

As the amount of information used in the three approaches 
increases from the first to the last, this is reflected by the 
moment when the T4 anomaly can be detected, which occurs 
in advance. Nevertheless, the PC1-NIs describe a better 
health-state evolution, so that this methodology results the 
most promising. 

VI. APPENDIX A 

The extracted vibration features were: 

• The peak value of the signal: 

𝑝(𝑥(𝑡)) =
1

2
[𝑚𝑎𝑥(𝑥(𝑡)) − 𝑚𝑖𝑛(𝑥(𝑡))]  (4) 

• The Root Mean Square (RMS) of the signal: 

𝑅𝑀𝑆(𝑥(𝑡)) = √𝐸[𝑥2(𝑡)]                           (5) 

• The crest factor, defined as: 

𝐶. 𝐹. (𝑥(𝑡)) =
𝑝(𝑥(𝑡))

𝑅𝑀𝑆(𝑥(𝑡))
                           (6) 

• The standard deviation of the signal: 

𝑠𝑡𝑑 (𝑥(𝑡)) = 𝐸[(𝑥(𝑡) − 𝐸[𝑥(𝑡)])2]0,5     (7) 

• The skewness of the signal: 

𝑠𝑘𝑒𝑤(𝑥(𝑡)) =  𝐸 [
(𝑥(𝑡)−𝐸[𝑥(𝑡)])3

𝑠𝑡𝑑 (𝑥(𝑡))
3 ]         (8) 

• The excess kurtosis of the signal: 

𝑘𝑢𝑟𝑡(𝑥(𝑡)) = 𝐸 [
(𝑥(𝑡)−𝐸[𝑥(𝑡)])4

𝑠𝑡𝑑 (𝑥(𝑡))
4 ] − 3     (9) 
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