POLITECNICO DI TORINO
Repository ISTITUZIONALE

Maximizing the Switching Activity of Different Modules Within a Processor Core via Evolutionary
Techniques

Original

Maximizing the Switching Activity of Different Modules Within a Processor Core via Evolutionary Techniques /
Deligiannis, Nikolaos; Cantoro, Riccardo; Sonza Reorda, Matteo. - (2021), pp. 535-540. ((Intervento presentato al
convegno Digital System Design (DSD).

Availability:
This version is available at: 11583/2915752 since: 2021-07-29T710:10:03Z

Publisher:
IEEE

Published
DOI:

Terms of use:
openAccess

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Publisher copyright

(Article begins on next page)

16 August 2022

Maximizing the Switching Activity of Different
Modules Within a Processor Core via Evolutionary
Techniques

Nikolaos I. Deligiannis, Riccardo Cantoro, Matteo Sonza Reorda
Politecnico di Torino, Dip. Automatica e Informatica. Torino, Italy
{nikolaos.deligiannis|riccardo.cantoro|matteo.sonzareorda } @polito.it

Abstract—One key aspect to be considered during device
testing is the minimization of the switching activity of the circuit
under test (CUT), thus avoiding possible problems stemming
from overheating it. But there are also scenarios, where the
maximization of certain circuits’ modules switching activity could
be proven useful (e.g., during Burn-In) in order to exercise the
circuit under extreme operating conditions in terms of temper-
ature (and temperature gradients). Resorting to a functional
approach based on Software-based Self-test guarantees that the
high induced activity cannot damage the CUT nor produce
any yield loss. However, the generation of effective suitable test
programs remains a challenging task. In this paper, we consider
a scenario where the modules to be stressed are sub-modules
of a fully pipelined processor. We present a technique, based
on an evolutionary approach, able to automatically generate
stress test programs, i.e., sequences of instructions achieving
a high toggling activity in the target module. With respect to
previous approaches, the generated sequences are short and
repeatable, thus guaranteeing their easy usability to stress a
module (and increase its temperature). The processor we used
for our experiments is the Open RISC 1200. Results demonstrate
that the proposed method is effective in achieving a high value
of sustained toggling activity with short (3 instructions) and
repeatable sequences.

I. INTRODUCTION

Efficient test solutions are crucial to guarantee the target
reliability figures in an electronic system. Test of electronic
devices is performed in several different steps. The most
difficult task for a test engineer lies in selecting the right mix,
allowing to achieve the reliability targets with acceptable costs.
The whole set of test steps usually adopted by semiconductor
companies at the end of the manufacturing process may
include Burn-In (BI), whose goal is to artificially age the
Circuit Under Test (CUT) so that any weak point evolves
into an observable fault and can be detected. In this way, the
phenomenon known as Infant Mortality is greatly reduced and
does not impact the failure rate of the delivered devices, which
can be lowered and remains stable during the operational life.

In the past, BI was typically based on stressing the CUT
resorting to high temperature and voltage. More recently, the
high duration and cost of such procedures are making them
increasingly unaffordable. Tuning the key parameters of BI
(duration, temperature, voltage) is becoming more difficult
since it requires a long characterization phase for each new
technology; at the same time, process variations introduce
a significant amount of uncertainty. In this scenario, BI is

evolving to new forms, where the stress is created with
less dangerous and more controllable actions, e.g., resorting
to internal stress. In this case, the target stress is induced
in the CUT by forcing it to repeatedly execute operations
that can intensively activate the internal structures, e.g., by
maximizing the toggling activity [1]. In this way we can not
only force transistors inside the CUT to toggle at a high
rate, but also increase the CUT temperature. Both effects are
known to contribute to quick aging, thus achieving the BI
targets. In some cases, a high toggling activity can be achieved
resorting to the existing scan infrastructures. ATPG tools can
be requested to generate test vectors able to maximize the
toggling activity. However, since scan forces the CUT to work
in a configuration different than the operational one, care must
be taken not to overstress the circuit, possibly causing yield
loss. To avoid this risk, some researchers in the recent past
focused on adopting purely functional solutions [2]. In this
case, the circuit works in normal mode, and the CPU is forced
to execute some specially crafted programs to maximize the
toggling activity.

Maximizing the toggling activity, either in the whole CUT
or in some parts of it, may turn to be effective even in other
test steps. For example, it has been speculated that testing for
delay faults while the circuit temperature is at the top of the
allowed range may permit detecting a higher percentage of
defects [3] [4].

More recently, the adoption of System Level Test (SLT), to
detect defects that could escape all the traditional test steps,
leads to the search for functional stimuli able to produce par-
ticularly stressful conditions. Once again, this can be achieved
by maximizing the internal activity and/or creating temperature
gradients between different modules within the CUT [5].

Reliability of integrated circuits is one of the key attributes
of testing. A well-known testing practice to enhance the
device reliability and screen out early failures (i.e., Infant
Mortality) in device components is BI. During BI, the device
is exercised under elevated temperature and power conditions.
Work has been done in the past to maximize the heat [6]
and power [7] dissipation of the devices during BI. In [8] a
method based on formal techniques is proposed, concerning
the generation of stress vectors to be used as stimuli during BI.
As regards processor testing, an evolutionary-based technique
has been suggested in [2] to identify and extract sequences of

instructions in already existing test programs to maximize the
switching activity of certain modules.

To summarize, different steps are currently adopted for
the test of current devices, where the task of generating test
programs able to maximize the toggling activity either in the
whole CUT or in a specific target module is crucial.

This paper formalizes this problem and describes a method
to generate such maximum activity test programs for different
modules within a CPU. With respect to previous solutions,
the generated test programs not only maximize the switching
activity but can also be repeated, thus guaranteeing that a
high value is achieved over a period of any duration. In this
way, we can really use the generated test programs to control
the CUT temperature. Results gathered on an OpenRISC
1200 (OR1200) pipelined processor show that the method
can produce high-quality test programs with an acceptable
computational effort. The method is relatively easy to be
adopted since it does not require in-depth knowledge of the
processor’s architecture, but a rather good knowledge of the
instructions that compose the processor’s Instruction Set Ar-
chitecture (ISA). Also, the method generates stress programs
from the ground up and does not require any dependency
on pre-existing programs. Furthermore, the generated test
programs are relatively short in length, typically composed
of 3 instructions.

The rest of the paper is organized as follows: Section II
concerns the formalization of the problem and provides the
concept idea. In Section III we present and elaborate on the
proposed method. In Section IV we elaborate on the imple-
mentation details of the method. In Section V we provide the
experimental setup along with the respective results. Finally,
in Section VI we draw some conclusions and provide insight
on our future work.

II. PROBLEM DEFINITION

In this paper we propose a method, based on evolutionary
techniques, for the automatic generation of assembly programs
i.e., sequences of instructions able to maximize the switching
activity of a certain module (or sub-module). Since we want to
be able to maximize the toggling activity over a large number
of clock cycles (i.e., instructions) in a sustained manner, we
also enforce a further constraint on the generated sequence,
which must be repeatable. This means that, assuming that the
target module starts from an initial state 0;,;t;41, and that after
the execution of the generated sequence moves to a final state
O final> it must hold that o finai = Oinitiar- By guaranteeing
that a sequence is repeatable, we can maintain a sustained high
nodal activity within the target module for an arbitrarily long
period of time.

More specifically, given a sequence s, of m instructions
and a processor module composed of m nets, we aim at
maximizing the value of the induced switching activity on the
module’s nets by applying s,,. Since the problem can be seen
as an optimization problem, we define our objective function
as:

m

1

7=

SW =

t; - : the number of logical switches performed by net ¢

LySm *

while 5,, was executed

Equation (1) represents the normalized switching activity
for a sequence of instructions s,. The total nodal activity for
the module m is given by the sum and is normalized to the
[0.0, 1.0] range by dividing it with the theoretical maximum
given by the fraction 1/(n x m); meaning for every net of the
considered processor module to toggle when each instruction
of the sequence s, is executed. This value, which is considered
to be the maximum, in practice may be affected negatively by
the presence of uncontrollable lines inside the module [9].
Thus, it can be interpreted as a theoretical maximum. Addi-
tionally, we further require from the aforementioned sequence
to be repeatable.

The problem of the maximization of the switching activity
for a specific module of the processor can be now defined as:

r%aX{SW} (2)

While the goal is the same for every processor module,
namely, increasing the module’s switching activity over a
period of time by forcing the execution of a suitable chunk of
instructions, the complexity of the approach differs according
to the module. Let us assume for example that we wish
to stress the circuitry of the adder, which is located in
the processor’s arithmetic and logic unit. In that case, the
algorithm would have to identify pairs of operands that would
maximize the toggling activity of the adder, since the assembly
instruction that must be used on this scenario (i.e., add) is
known.

Hence, the couples of operands for the add instruction we
are looking for are supposed to maximize the toggling activity
induced when executing the ¢-th instruction with respect to
the state created by the ¢ — 1 instruction. If for example we
were focusing on the generation of a sequence composed
of n = 2 instructions, this would mean that the algorithm
would have to identify pairs of operands for maximizing the
switching activity during the transition from the first to the
second instruction and from the second instruction to the first.
Also, since the sequence is also a repeatable one, it should
hold that the final state, in which the circuit is driven after
the execution of the second instruction, should be equal to the
initial state. But if on the other hand we were interested in the
generation of sequences of composed of n > 2 instructions,
then the complexity of the search would be higher since we
would impose more maximizations during transitions between
instructions to be considered by the method.

On the other hand, assuming that we now wish to stress the
processor’s instruction decode unit, then the algorithm should
further consider the whole set of instructions and not only
the operands to be used in order to stress the module. In the

case of the latter, the complexity of the task increases, since
the search space of the algorithm is now bigger than in the
former case.

Let us assume that a repeatable stress sequence was gener-
ated from the algorithm. Since that sequence is independent,
meaning that it does not require any preliminary instructions
to setup the execution environment, one example of its appli-
cation to the processor (e.g., to increase its temperature) can
be via loop unrolling. We repeat the sequence a discrete and
finite amount of times and at the end of the unrolled segment
we place an unconditional jump to transfer the code execution
back to the start. In this way, the generated stress sequence
can be applied an arbitrarily large number of times until an
interrupt is issued.

III. EVOLUTIONARY APPROACH CONCEPT

As mentioned in Section II we aim at identifying a short
sequence of instructions able to maximize the switching ac-
tivity of a given processor’s module. For the purposes of this
task, we developed an algorithm based on the evolutionary
paradigm. Given a well defined problem, the evolutionary
algorithms generate and propose solutions in a manner inspired
by nature. The approach can be seen as an optimization of a
mathematical function. The algorithm initially generates solu-
tions to the problem i.e., individuals in a random manner. The
generated individuals compose a generation. Every individual
of the population is assigned a fitness value. The fitness is
a function which takes as input the individual and returns a
value according to how “good” this individual is with respect
to the problem consideration. After the assignment of the
fitness values a ranking of the population takes place in order
to distinguish between the “good” and the “bad” solutions.
The individuals with the better fitness values are undergoing a
selection process to become parent individuals and to produce
offsprings, which will be part of the next generation. The
generation of new individuals is primarily the result of the
application of the genetic operators on the parent individuals.
One of the most common genetic operator is the cross-over,
during which, the new individuals are generated from the
splicing of the parents characteristics. Finally, the mutation
procedure takes place, which is a probabilistic alternation on
the characteristics of the individuals.

The proposed algorithm takes as input a set of constraints
and is able to produce individuals, i.e., assembly programs
for the target processor. Given the gate-level description of
the processor and a certain module that we wish to stress,
we obtain individuals and compute the stress they cause on a
certain processor module via logic simulation. Specifically, we
can aggregate the overall nodal activity, meaning the number
of HL (High to Low) and LH (Low to High) transitions that
were performed by every net of the processor’s module during
the execution of the stress program.

The stress program generation procedure is summarized in
Figure 1. The routine takes as input parameters a triplet, a set
of population settings (), a set of population constraints (C')

and an integer that is used as a stop criterion by the algorithm
(Max).

input : A triplet (S,C,Max) where
S is the set of population settings
C' is the set of population constraints
Mazx is the maximum allowed steady generations

: A collection of assembly programs L

null
null

L < GenerateIndividuals (S,C)
Lprr < FitnessEvaluation (L)

TR S S
=9
=]

7 bestnew = FindMaxFitnessValue (L,Lprr)

8 if best,;q == best,ew then
// best fitness didn’t change
steady.. = steady.c + 1

10 end
11 else
// new best fitness
12 steady.. = 0
13 end
14 best,;q = bestnew

—

s while (steady.. # Max)
return best,;4

—
EN

Fig. 1: Stress Program Generation Routine

A. Fitness Function and Metrics

Until the halt criterion is met, individuals are generated
for the maximization of the switching activity of the defined
processor module. A logic simulation for every individual is
performed in order to evaluate the stress that the program
induces on the processor’s module in order to assign a fitness
value to it.

Given that the module of the processor consists of m nets
and the assembly program consists of n instructions, we define
the fitness function for the individual X as:

>y [HL(i) + LH(i)]

nxm

fitness(X) := (3)

and it holds:
fimess(X) ¢ [0.0,1.0]

HL(i)/LH (i) is a function that takes as input the index ()
of the processor’s module net and returns the total amount of
HL/LH transitions that line performed during the execution
of the test program. The nominator of Equation (3) represents
the switching activity induced by the program, while the
denominator represents the maximum, meaning for every net
of the processor’s module to toggle when each instruction is
executed.

For the best individuals generated from the procedure for
every processor module considered, we introduce the follow-
ing metrics:

e HL AN LH: The percentage of nets that performed both

transitions at least once.

e HL: The percentage of nets that performed only the HL

TABLE I: Population Settings

transition. Parameter | Context | Value
e LH: The percentage of nets that performed only the LH
. v | Initial size of the population | 320
transition - — -
e "HLA—-LH: The percentage of nets that did not perform K | Maximum Sz of the population | 200
any transition. A | Number of genetic operators per every step | 120
o | Strength of mutation operators | 09
IV. IMPLEMENTATION DETAILS o | Inertia of the self adapting parameters | 09
maxzAge | After this limit the individual is forcibly killed | 15
elite | Number of best individuals that do not get killed | 2

Simulation 1
| Fitness
Evaluator

Simulation N

1 J
Fig. 2: Proposed Approach Implemented with ;GP3

Assembly
Programs

EH-eper3 [y
[EH-® engine

In order to implement the proposed method we developed
a framework that utilizes the puGP [10] (version 3) as an
underlying engine. ©GP is an evolutionary optimizer that was
initially developed to produce assembly programs maximizing
a given fitness function for a variety of processors. It takes
as input a user-defined set of rules and parameters (e.g., sets
S, C of fig. 1) and initially provides random solutions that
get refined during the evolution process. Furthermore, the tool
depends heavily on an external module that must be also given
as a parameter to the engine and performs the fitness evaluation
of the generated individuals. The external fitness evaluator is
a user-provided module responsible of describing the fitness
function and providing a fitness value for every individual to
the evolutionary core.

Figure 2 illustrates the flow of our experiments. The first
step is to define a target, namely, the processor module we
wish to stress in order to generate the two sets S and C,
which are given as input to the tool. Next, the evolution
process begins. On every iteration a population of individuals
is generated based on an amount of genetic operations and
mutations taking place. Then, a call on the external fitness
evaluation takes place in order to assign a fitness value to the
individuals and proceed to the next evolutionary step. Besides
the two configuration sets (S and C), we further specify a
number (M ax) to the algorithm, which is used as a termination
criterion. Specifically, on every new generation we observe if
the best fitness value has changed. If the best fitness value
remains unchanged Maz times, then the algorithm halts and
returns the best individual.

A. Population Settings (Set S)

The first of the two sets given to the evolutionary tool as
input corresponds to the population settings. It is a collection
of parameters that are linked directly to the genetic algorithm
such as the population size, the number of genetic operators to
be applied on each iteration, and so on. A detailed description
of the basic parameters along with their respective values on
our experiments are reported in Table I below.

The number of individuals to be generated on the initial
population during the first iteration is defined by the parameter

v. On every evolutionary step forward) individuals are being
generated by the application of genetic operators and mutation
operations. The impact the latter has on the individuals is
defined by the parameter o. After the ranking of the individuals
an elimination phase on the population follows in order to
comply with the size limit defined by the parameter p. Also, if
a certain individual is within the g limit, and is not substituted
by any of his successors, he gets forcibly eliminated after
maxAge generations. The parameter « defines the rate of
change of the internal evolutionary core parameters. It is
set to a high value in order to prohibit random changes on
the self-adapting parameters of the tool. Lastly, we protect
from the forced elimination after the maxAge generations
elite individuals. These individuals are kept alive until new,
improved individuals replace them.

B. Constraints Settings (Set C)

The set of constraints given as the second parameter to
the tool regards the set of rules and formats the tool has
to consider in order to generate valid individuals. In other
words, to ensure that the tool will generate syntactically correct
assembly programs. Although the population settings remains
unchanged in our experiments, the set of constraints has to
be tailored according to the processor module that we aim to
stress. In this paper, we are focused on three modules:

e The adder
o The multiplier
e The instruction decode unit

This means that three separate sets must be generated.
Besides ensuring syntactical correctness on the generated
solutions, the constraints are also used to guarantee that
the generated sequences of instructions will be repeatable.
Let us assume that we aim to stress the adder module.
Assuming that there is a rule within the constraints that
mandates the generation of a sequence of n add instructions
s = < addy,...,add,_1 > we further specify that the gen-
erated individual must have the following structural property:
5,8, ..., 5. Meaning, that the individual will be composed by
the repetition of the sequence s a discrete amount of times.

C. External Fitness Evaluator

The external fitness evaluator is responsible for receiving a
list of individuals and providing back to the evolutionary core
their respective fitness values. In our case, the evaluator has to
calculate the fitness value according to the Equation (3). The

TABLE II: Experimental Results

Performance of Best Individuals

Processor Module | Fitness (%) | Clock Cycles || HLALH | HL | LH | -HLA-LH
Adder | 6134% | 113 || 72.02% | 0.00% | 0.00% | 27.98%
Multiplier | 5477% | 137 || 7492% | 0.00% | 0.09% | 25.08%
Decoding Unit | 62.57% | 93 | 7511% | 0.00% | 0.00% | 24.89%
Performance of Test Program Segments
Processor Module | Fitness (%) || HLALH | HL | LH | -HLA-LH
Adder \ 24.00% H 31.51% \ 3.36% \ 0.00% \ 65.13%
Multiplier | 634% || 2178% | 659% | 697% | 64.66%
Decoding Unit | 4443% || 1523% | 0.57% | 2.50% | 81.7%
nominator value is calculated by launching a logic simulation Fitness Behaviour
for every individual in order to determine the exact amount of
logical switches.
V. EXPERIMENTAL SETUP AND RESULTS -

All the experiments were performed on a machine using 2
Intel Xeon CPUs running at 2.40GHz. Since the evaluation
of every individual can be performed in a parallel manner,
we parallelized each experiment by assigning 20 cores to our
external fitness evaluator. For the purposes of logic simulation
we used QuestaSIM by Mentor Graphics.

The processor used in our experiments is the OR1200.
The OR1200 is a 32-bit scalar RISC with Harvard micro-
architecture and 5 stage integer pipeline. The OR1200 core
is mainly intended for embedded, portable and networking
applications. The RT-level description of the core from [11]
was synthesized using the Silvaco 45nm Open Cell Library
[12].

As mentioned before, in this paper we focus on the adder
the multiplier and the decoding unit of the processor. The
modules were selected in that order, in order to show that the
method can be applied to simple modules (e.g., adder), but
also in more complex modules such as the decoding unit of
a processor. As a compromise between complexity, in terms
of CPU time, and performance, in terms of induced stress in
the aforementioned modules, we selected the length of the
repeatable stress sequences to be 3.

Approximately 500 lines of code were written in bash, tcl
and python, which account for the external fitness evaluator,
the logic simulations, the linking with the evolutionary core
and the data extraction.

The progress of the evolution for each experiment is il-
lustrated in Figure 3. We can see that the algorithm con-
verged for the adder and the multiplier after approximately
700 generations while for the decoder after approximately
1,200 generations. The plotted lines show the behavior of
the fitness value of the best individuals on each generation.
The experiments for the adder and the multiplier required
approximately 19 hours to converge, while for the case of the
decoding unit the algorithm converged in 24 hours.

Adder Best Fitness
Multiplier Best Fitness
Decoder Best Fitness

Generations

Fig. 3: Fitness Behaviour per Generation

Table II reports the results of our experiments. The upper
half of the table lists the performance of the best individuals
generated from the evolutionary tool for every processor
module. The total stress induced on the modules of the adder
the multiplier and the decoding unit is 61.34%, 54.77% and
62.57% respectively.

Figure 4 contains the stress sections taken from the best
individuals generated by the algorithm for every module that
was considered. Before the execution of each stress section,
an initialization sequence takes place which begins with the
activation of the RES ET signal, which initializes every regis-
ter with the value 0. Afterwards, a jump instruction is issued
that stirs the flow of the program to the stress section. Note,
that for the cases of the adder and the multiplier individual,
besides the initialization stemming from the activation of
the asynchronous RESET signal, an additional initialization
phase takes place in order to load the operand values, which
will be then used to stress the respective module, to the
processor’s registers.

In order to compare with our results, we performed a logic
simulation of a test program for our processor that reaches
85% fault coverage. For every module of interest, we isolated
sequences of instructions of the same size with the generated
individuals and measured the switching activity they produced
on the modules. Specifically, we evaluated every sequence
of instructions by applying the same fitness function which
calculates the total stress, induced by the sequence, over the

1

_stress: | _stress:
> /* Setting up the Operands =/ > /* Setting up the Operands =/
3 movhi r3,28444 3 movhi r3, 48638
ori r3, r3, 45727 4 ori r3, r3, 60926
movhi r4, 36228 5 movhi r4, 30328
ori r4, r4, 29078 6 ori r4, rd4, 49735
movhi r5, 35571 7 movhi r5, 54743
ori r5, r5, 42079 8 ori r5, r5, 14163
movhi r6, 13317 9 movhi r6, 23908
ori r6, r6, 8555 10 ori r6, r6, 37219
movhi r7, 21419 11 movhi r7, 56247
ori r7, r7, 25387 12 ori r7, r7, 47987
movhi r8, 53731 13 movhi r8, 14108
ori r8, r8, 24000 14 ori r8, r8, 19615
15 | _stress:

/+ Repeatable Stress Section x/ 16 /* Repeatable Stress Section */ > /+ Repeatable Stress Section x/
add r9, r6, r3 17 mul r9, r6, r7 addi r23, r31, -6172
add r9, r8, r8 18 mul r9, r4, r3 4 and r8, r8, r3
add r9, r3, r5 19 mul r9, r5, r5 5 xori r26, rl4d, -6554

(a) Adder (b) Multiplier (c) Decoding Unit
Fig. 4: Best Individuals for Every Module
(theoretical) maximum. The results are reported in the lower REFERENCES

half of Table II. If we compare with the stress programs
generated we can see that they not only induce higher stress on
the respective pipeline modules, but also in terms of number
of nets being sensitized.

VI. CONCLUSIONS

While in most scenarios the minimization of a circuit’s
switching activity is crucial during the device testing to avoid
effects such as overheating, there are cases e.g., during BI,
where the goal is the maximization of the switching activity
(of the whole CUT or certain sub-modules). During BI the
sustained maximization of the system’s switching activity via
functional stimuli could aid to maximize the stress and thus
to screen out early failures.

We proposed an algorithm based on an evolutionary tech-
nique able to produce high quality stress programs which
consist of short repeatable sequences of instructions. In this
paper we focused on the case that the CUT is a fully pipelined
processor and showed the effectiveness of the proposed solu-
tion in generating stress instruction sequences targeting the
adder, the multiplier and the decoding unit. The proposed
algorithm can be further applied to more complex processors,
given the functional units (sub-modules) of the system whose
stress is of interest.

The proposed method does not rely on any kind of depen-
dencies (e.g., pre-existing code). It generates stress sequences
from the ground up with acceptable CPU times and implemen-
tation complexity. The stress induced generated programs for
the adder, the multiplier and the decoding unit was found
to be 61.34%, 54.77% and 62.57%, respectively while also
managing to sensitize most of the modules nets.

Work is currently conducted to extend the proposed method
by considering the generation of stress programs for more
modules (or sub-modules) of the processor.

[1]

[2]

[4]

[5]

[6]

[7]

[8]

[9]

[10]

[11]
[12]

C. He, “Advanced Burn-In - An Optimized Product Stress and Test
Flow for Automotive Microcontrollers,” in 2019 IEEE International Test
Conference (ITC). Washington, DC, USA: IEEE, Nov. 2019, pp. 1-6.
R. Cantoro, M. Sonza Reorda, A. Rohani, and H. Kerkhoff, “On the
maximization of the sustained switching activity in a processor,” in
2015 IEEE 21st International On-Line Testing Symposium (IOLTS).
Halkidiki, Greece: IEEE, Jul. 2015, pp. 34-35.

Y. Zhang, Z. Peng, J. Jiang, H. Li, and M. Fujita, “Temperature-Aware
Software-Based Self-Testing for Delay Faults,” in Design, Automation
& Test in Europe Conference & Exhibition (DATE), 2015. Grenoble,
France: IEEE Conference Publications, 2015, pp. 423-428.

N. Hage, R. Gulve, M. Fujita, and V. Singh, “Instruction-based self-test
for delay faults maximizing operating temperature,” in 2017 IEEE 23rd
International Symposium on On-Line Testing and Robust System Design
(IOLTS). Thessaloniki, Greece: IEEE, Jul. 2017, pp. 259-264.

I. Polian, J. Anders, S. Becker, P. Bernardi, K. Chakrabarty, N. EI-
Hamawy, M. Sauer, A. Singh, M. Sonza Reorda, and S. Wagner, “Ex-
ploring the Mysteries of System-Level Test,” in Asian Test Symposium
(ATS), 2020. Virtual Conference: IEEE, Nov. 2021.

A. Sagahyroon, “Maximizing heat dissipation for burn-in testing,” in
IEEE CCECE2002. Canadian Conference on Electrical and Computer
Engineering. Conference Proceedings (Cat. No.02CH37373), vol. 1.
Winnipeg, Man., Canada: IEEE, 2002, pp. 399-402.

Kuo Chan Huang, Chung Len Lee, and J. Chen, “Maximization of power
dissipation under random excitation for burn-in testing,” in Proceedings
International Test Conference 1998 (IEEE Cat. No.9SCH36270). Wash-
ington, DC, USA: Int. Test Conference, 1998, pp. 567-576.

F. Aloul and A. Sagahyroon, “Using SAT techniques in dynamic burn-in
vector generation,” in 2010 15th IEEE Mediterranean Electrotechnical
Conference (MELECON). Valletta, Malta: IEEE, Jul. 2010, pp. 1448-
1452.

N. L. Deligiannis, R. Cantoro, M. Sauer, B. Becker, and M. Sonza Re-
orda, “New Techniques for the Automatic Identification of Uncontrol-
lable Lines in a CPU Core,” in VLSI Test Symposium (VTS), 2021.
Virtual Conference: IEEE, Apr. 2021.

E. Sanchez, M. Schillaci, and G. Squillero, Evolutionary Optimization:
the uGP toolkit, 2011th ed. Berlin ; New York: Springer, Apr. 2011.
“OpenRISC,” https://openrisc.io, [Online; accessed 15-Apr-2021].
“Silvaco 45nm Open Cell Library,” https://si2.org/open-cell-library, [On-
line; accessed 15-Apr-2021].

