
17 October 2021

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A Data-Driven Based Dynamic Rebalancing Methodology for Bike Sharing Systems / Cipriano, Marco; Colomba, Luca;
Garza, Paolo. - In: APPLIED SCIENCES. - ISSN 2076-3417. - ELETTRONICO. - 11:15(2021). [10.3390/app11156967]

Original

A Data-Driven Based Dynamic Rebalancing Methodology for Bike Sharing Systems

Publisher:

Published
DOI:10.3390/app11156967

Terms of use:
openAccess

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2915734 since: 2021-07-29T09:58:12Z

MDPI

applied
sciences

Article

A Data-Driven Based Dynamic Rebalancing Methodology for
Bike Sharing Systems

Marco Cipriano, Luca Colomba * and Paolo Garza

����������
�������

Citation: Cipriano, M.; Colomba, L.;

Garza, P. A Data-Driven Based

Dynamic Rebalancing Methodology

for Bike Sharing Systems. Appl. Sci.

2021, 11, 6967. https://doi.org/

10.3390/app11156967

Received: 6 July 2021

Accepted: 27 July 2021

Published: 28 July 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Department of Control and Computer Engineering (DAUIN), Politecnico di Torino, 10129 Torino, Italy;
marco.cipriano@studenti.polito.it (M.C.); paolo.garza@polito.it (P.G.)
* Correspondence: luca.colomba@polito.it (L.C.)

Abstract: Mobility in cities is a fundamental asset and opens several problems in decision making
and the creation of new services for citizens. In the last years, transportation sharing systems have
been continuously growing. Among these, bike sharing systems became commonly adopted. There
exist two different categories of bike sharing systems: station-based systems and free-floating services.
In this paper, we concentrate our analyses on station-based systems. Such systems require periodic
rebalancing operations to guarantee good quality of service and system usability by moving bicycles
from full stations to empty stations. In particular, in this paper, we propose a dynamic bicycle
rebalancing methodology based on frequent pattern mining and its implementation. The extracted
patterns represent frequent unbalanced situations among nearby stations. They are used to predict
upcoming critical statuses and plan the most effective rebalancing operations using an entirely
data-driven approach. Experiments performed on real data of the Barcelona bike sharing system
show the effectiveness of the proposed approach.

Keywords: bike sharing systems; dynamic rebalancing; itemset mining; data mining; machine
learning; smart mobility; decision support system

1. Introduction

Bike sharing systems are public transportation systems adopted by many different
municipalities to reduce traffic congestion and pollution and provide more sustainable
means of transport within smart cities. Additionally, compared to the use of private cars,
the adoption of bicycles combined with other means of public transport (bike-and-ride)
offer environmental benefits and a number of social benefits [1]. Such systems are widely
adopted: more than 700 systems are active world-wide [2,3]. In the context of smart cities
and Sustainable Development Goals (SDG), understanding the key factors towards large
scale adoption by users is fundamental to reduce air pollution and improve quality of
life in cities [4–6], according to SDG 11 and 13. In fact, additionally to environmental
benefits and a reduced amount of pollution, Ref. [7] quantified health and economical
benefits which arose in European cities with large adoption of bicycles. Despite the benefits,
such systems require investments from companies and municipalities to be effective and
successful. The documented case of the city of Seattle [8] underlines the importance of
proper design and the need of maintenance to provide good quality of service. In this
context, we highlight the relevance of our work in developing a framework to solve the
bike rebalancing problem in bike sharing systems, which can be categorized into two
main types: (i) free-floating and (ii) station-based systems (also referred to as dock-based
systems). In free-floating systems users can find and drop bicycles at almost any location
within a delimited operational area in the city, whereas station-based systems require
the user to pick up and drop bicycles in docking stations, specifically located within the
administrative boundaries of the municipality. The main advantage of free-floating services
is that users can freely drop bicycles everywhere, especially in case their destination is
in an area far from points of interests and in outskirts of the city, but the disadvantage is

Appl. Sci. 2021, 11, 6967. https://doi.org/10.3390/app11156967 https://www.mdpi.com/journal/applsci

https://www.mdpi.com/journal/applsci
https://www.mdpi.com
https://orcid.org/0000-0003-2911-4522
https://orcid.org/0000-0002-1263-7522
https://doi.org/10.3390/app11156967
https://doi.org/10.3390/app11156967
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/app11156967
https://www.mdpi.com/journal/applsci
https://www.mdpi.com/article/10.3390/app11156967?type=check_update&version=1

Appl. Sci. 2021, 11, 6967 2 of 25

that when the user needs to pick up a bicycle, none may be available in his/her vicinity.
Station-based bike sharing systems may instead provide more reliability since there are
several stations spread across the city in the most relevant and popular locations. The
main disadvantage of such systems is that upon the arrival at the designated destination,
the station may be full, thus requiring the user to reach another (nearby) station to drop
the rented bicycle and eventually incurring in higher costs due to the additional trip, or
the station from which the trip starts may be empty, requiring the user to walk to another
station within walking distance or to use other means of transport.

Station-based bike sharing systems thus require rebalancing operations to maintain
users’ satisfaction and limit the inabilities to use a station, either for pick-up or drop of
bicycles. However, station-based bike sharing services have a great advantage compared
to free-floating competitors: easier maintenance operation planning due to the presence of
a limited number of stations in fixed locations.

The Bike sharing Rebalancing Problem (BRP) consists of using a set of vans to move
bicycles across different stations for rebalancing purposes, avoiding situations in which
stations cannot be used as starting or destination points due to them being empty or full,
respectively. The BRP problem can be tackled in two different ways, either via static
rebalancing or dynamic rebalancing. Static rebalancing strategies are performed when
the system is offline or when the system is barely used, i.e., during night time, whereas
the dynamic rebalancing strategy consists of moving bicycles across the stations when the
system is operating and is used by the users. Dynamic rebalancing operations need to be
performed in a short amount of time to avoid large amount of bicycles being unavailable
to users due to operators moving them across different stations. For this reason, bicycles
are usually moved among nearby stations (from full to empty ones).

In this paper, we propose a fully data-driven and configurable methodology that
addresses the dynamic rebalancing problem, leveraging on past data of system’s usage and
data mining techniques to identify frequent critical situations and plan quickly effective
rebalancing operations. We validated the proposed approach in a real scenario by applying
the corrective actions generated by our methodology on the Barcelona Bike sharing system.
The generated rebalancing actions for compensating system’s critical situations are sup-
ported by strong interpretable patterns which provide also an explanation of the behaviour
of the system under analysis. Specifically, we apply association rules, a well-known data
mining technique, to find frequent and relevant patterns concerning unbalanced critical
situations among nearby stations. The proposed approach extracts association rules that
correspond to recurrent situations in past data in which combinations of almost empty or
almost full nearby stations are involved. Based on the extracted rules, we plan in advance
local corrective rebalancing actions to compensate for possible future critical situations.
To extract such patterns, we apply the state-of-the-art FP-Growth [9] algorithm on a trans-
actional database generated using past stations’ status. An example of an extracted rule
is +s4, +s7 ! �s11, sup = 60%, con f = 80%, which means that in 80% of the analysed
historical data when the nearby stations s4 and s7 are positively critical (i.e., they have
significantly more bicycles than their neighbours) then station s11 is negatively critical
(i.e., it has significantly fewer bicycles than its neighbours). This rule, which is also highly
frequent (it occurs in 60% of the historical data), highlights a frequent critical unbalanced
behaviour and can be used to plan rebalancing operations among the nearby stations s4, s7,
and s11 moving bicycles from stations s4 and s7 to s11.

The contributions of this paper are as follows:

• Characterization and identification of historical critical unbalanced situations among
nearby stations through frequent geospatial patterns, leveraging on the definitions of
positively and negatively critical station status.

• Proposal of a rebalancing approach, based on the extracted patterns, to address the
dynamic bike sharing rebalancing problem. The proposed rebalancing approach
(i) trains contextualised models offline and (ii) plans the rebalancing operations in few
seconds online when rebalancing actions are needed.

Appl. Sci. 2021, 11, 6967 3 of 25

• Contextualised rebalancing operations.

This paper is structured as follows. Section 2 introduces the problem statement and
preliminaries, while Section 3 describes the related work and compares previous work with
our methodology. Then, Section 4 explains the proposed methodology adopted to solve the
online BRP problem, while Section 5 describes the Barcelona bike sharing dataset on which
we evaluated our methodology, describing the preprocessing steps adopted and the results
we achieved. Finally, Section 6 draws conclusions and presents ideas for future work.

2. Problem Statement and Preliminaries

In this work, we propose a rebalancing methodology that reduces the situations in
which bike sharing stations are unusable because of critical status. Specifically, we aim to
plan online rebalancing operations subject to the constraint that such actions are performed
in a short amount of time to limit any new critical situation or station unavailability. The
rebalancing operations are planned by analysing historical data about the occupancy of the
stations under analysis. In the following paragraphs, we formalize the addressed problem.

Let S be the set of stations of the bike sharing system under analysis. Each station
s 2 S is characterized by its geographical position.

Let D be a structured dataset containing the historical information about the num-
ber of bicycles and free slots available for each station s 2 S . The schema of D is
ft, s, used_slots, f ree_slotsg, where t is a timestamp, s 2 S is a station, used_slots 2 N
is a natural number that represents the number of bicycles available in s at time t, and
f ree_slots 2 N is the number of free slots available in s at time t.

Let B be a structured batch of records, with the same schema of D, containing the
information about the number of bicycles and free slots available for each station s 2 S at
the new timestamp tnew.

Let treb be the time needed for a truck to reach the set of stations we need to rebalance
and move bicycles from them to apply the planned rebalance action.

Problem statement. Given the input data S , D, and B, the problem addressed in this
work consists of planning at time tnew which rebalancing actions should be made within at
most treb minutes from time tnew to minimize the number of stations in a critical situation
at time tnew + treb.

To limit the amount of time during which some bicycles are unavailable because they
are on a truck that is moving them from one station to another, the rebalancing problem is
subject to the constraint that only local rebalancing operations can be planned, where each
local rebalancing operation moves bicycles only among neighbouring stations, i.e., among
stations at a maximum distance of d meters from each other.

Before describing the proposed methodology, we provide preliminary definitions.

2.1. Neighbourhood of a Station

As stated previously, the planned rebalancing operations must be local and redistribute
bicycles among nearby stations which distance is not greater than a maximum distance
threshold d. Thus, we define the neighbourhood of a station N(s) as the set of stations within
a range of d meters from its position. The station s itself belongs to its neighbourhood.
More formally, given a set of stations S, the neighbourhood of a station si 2 S is defined as:

N(si) = fsj 2 Sjdist(si, sj) � dg

The distance is computed using the haversine distance and thus does not take into
account streets and pedestrian areas.

2.2. Station Neighbourhood and Criticality

Rebalancing operations are fundamental to manage or potentially avoid in advance
critical situations in which some stations are critically empty whereas some others are
critically full. The entire framework leverages on the definition of critical station that takes

Appl. Sci. 2021, 11, 6967 4 of 25

into account the occupancy status of neighbouring stations. To this aim, we first define the
occupancy rate OR of a station s at a given timestamp t as:

ORs(t) =
used_slotss(t)

used_slotss(t) + f ree_slotss(t)

A station is critical if its occupancy rate is either “much higher” or “much lower”
compared to the average occupancy rate of its neighbouring stations. A station in one of
those two critical situations can be, or quickly become, full or empty and hence unavailable.
To identify stations in a critical situation, we define the critical rate of a station s at timestamp
t and we compare it with a user defined threshold cr. The critical rate of a station s at
timestamp t is defined as follows:

CRs(t) = ORs(t)� 1
jN(s)j å

si2N(s)
ORsi (t)

As can be seen from the previous equation, the critical rate CRs(t) can be either
positive or negative, depending on the fact that the occupancy rate of station s at time t is
higher or lower than the average occupancy rate of its neighbourhood, respectively. Given
a criticality threshold cr, if CRs(t) > cr we say that the station, at time t, is positively critical
(i.e., it hosts, with respect to its capacity, “too many” bicycles compared to its neighbouring
stations), otherwise if CRs(t) < �cr we say that the station is negatively critical (i.e., “too
few” bicycles are present in the station compared to the average occupancy rate of its
neighbourhood). The criticality threshold was introduced to let the system identify critical
situations and compensate/react before the bike stations become either completely full or
completely empty, i.e., the system performs a sort of “predictive maintenance” operation
and tries to act when the stations are already in a critical situation but before the stations
become completely unusable.

As we will describe in Section 4, the proposed methodology addresses positively and
negatively critical situations and applies rules to balance the number of bicycles stored
in those stations, trying to flatten the local occupancy rate using a single vehicle for each
unbalanced neighbourhood such that all the critical stations belonging to a subset of a
neighbourhood achieve (almost) the same occupancy rate and hence either completely full
or completely empty statuses are avoided or at least limited.

2.3. Frequent Itemsets and Association Rules

In this paper, we will use an established data mining technique, called association
rule mining, that describes the frequent co-occurrence of sets of items in a large amount
of collected data. Association rules have been initially exploited to identify correlations
among items in the market basket data analysis context. However, they have been used
also in several other contexts such as network traffic data analysis, functional diagnosis,
and medical data analysis. The input data, in the association rule mining context, is a
dataset T R composed of a set of transactions tr of arbitrary length, where each transaction
tr 2 T R is a set of items. Given an arbitrary dataset T R as input, the association rule
mining problem consists of mining the set of rules of the form X ! Y that are frequent in
T R, i.e., it consists of mining the most frequent correlations among items in T R and the
“direction” of the extracted implications. More formally, an association rule r is represented
as an implication in the form X ! Y, where both X and Y are arbitrary sets of items,
called antecedent and consequent of the rule, respectively. X and Y are disjoint sets, i.e.,
X \Y = ˘.

The quality of an association rule is usually measured by means of support and
confidence. The support measure corresponds to the frequency of the set X [Y in T R
(i.e., the percentage of transactions in T R that contain both X and Y) while the confidence
measure corresponds to the estimation of the conditional probability of finding Y in T R,
having found X, and is given by sup(X[Y)

sup(X)
(i.e., the confidence of X ! Y is the percentage

Appl. Sci. 2021, 11, 6967 5 of 25

of transactions containing both X and Y among those transactions containing X). Only
the association rules with a support higher than a minimal support threshold min_sup are
mined in order to extract only statistically significant rules.

In our context, each pair (station, critical status) is an item that represents a specific
critical status of a station. Hence, in our application, each transaction tr 2 T R is a set of
pairs (station, critical status) and represents the set of stations that are in a critical status in
a specific timestamp t. T R contains one transaction for each timestamp of the time period
under analysis. The rules mined by our approach represent frequent co-occurrences among
stations that are simultaneously critical.

3. Related Work

In this section, the state-of-the-art techniques adopted for both the static and dynamic
BRP problem and the association rules extraction algorithms are discussed.

3.1. The BRP Problem

Designing a proper rebalancing strategy for a station-based bike sharing system is
not a trivial task: the operation’s planning depends on the city, the number of people
which are actively using the system, the season, the elevation, the weather conditions, and
the number of trucks available for the rebalancing operation. Considering for example
a city with a hilly territory [10] and stations at higher altitude, it is very likely that the
number of bicycles taken from such station is much higher than the number of bicycles
users dropped throughout the day. Such situation would not appear in a city in which all
the stations are placed in a flat area [11]. Different research activities analysed bike sharing
systems with different point of views and focusing on different aspects: strategic planning,
socio-demographic analyses, predictive modelling, operational research, urban planning,
demand and economical analyses [4].

The solution to the BRP problem must consider different aspects of the system and the
city, analyse the stations’ behaviour and plan the rebalancing policy according to the usage
of the system and eventual offline periods. It is important to underline the difficulty of
properly comparing different rebalancing techniques, which often minimize or maximize
different criteria, such as the travel cost or the users’ satisfaction.

3.1.1. Static Rebalancing

The Static Bike Rebalancing (SBR) problem consists of performing maintenance and
rebalancing operations when the system is unavailable or rarely used by users, e.g., during
the night. Static rebalancing techniques have the advantage to guarantee perfectly balanced
stations the moment the system restarts, but does not compensate any anomaly at day time.
Furthermore, static rebalancing operations can usually be performed in a larger time span
compared to dynamic rebalancing strategies in which the operations need to be performed
as fast as possible to not cause disservices to customers. In the literature, previous research
papers analysed the static bike rebalancing problem as NP-complete [12] optimization
problems known as the Travelling Salesman Problem (TSP) [13,14] or the NP-hard [15]
Vehicle Routing with Pickup and Delivery Problem [16–18]. In general, the bike sharing
system is modelled as a complete undirected and weighted graph in which the stations
and the depot represent the nodes and each edge between node i and node j represents
the travelling cost from node i to node j. Since bicycles represent a discrete quantity, such
problem is often solved as an integer or mixed integer programming problem, in which
one or multiple paths for each vehicle need to be identified to relieve unbalanced bike
distribution. To solve such problems, different heuristics and metaheuristics such as the
branch and cut method [19] are adopted.

Dell’Amico et al. [11] formulates the static bike rebalancing problem as a special
case of the one-commodity pickup and delivery problem, in which a number of vehicles
used for rebalancing operations needs to rebalance the stations, minimizing the travelling
cost. In the formulation, multiple visits are allowed. The problem is presented with 4

Appl. Sci. 2021, 11, 6967 6 of 25

different mathematical formulations which are solved with branch and cut algorithms.
The same author analysed the SBR problem with different approaches: in [2], a Destroy
and Repair (D&R) metaheuristic algorithm is adapted to solve the routing problem with
maximum duration constraint. The D&R algorithm starts from a greedy solution [20]
and modifies it using a local search procedure. Then, destroy and repair procedures [21]
are applied iteratively until a stop criterion is met. Similarly, Ref. [22] proposed two
mixed integer programming formulations, improving existing solutions proposed by
Dell’Amico et al. The optimization problem, which includes depot inventory costs, is
solved by implementing an improved general variable neighbourhood search algorithm.
Dell’Amico et al. [23] also proposed a stochastic programming model to solve the SBR
problem, modelling stations’ demands and allowing some of stations’ requests to not be
satisfied [24] by adding a penalty term.

Ref. [25] presented an intractable formulation of the single vehicle route identification
problem and proposed two relaxations, solved through branch and cut. The same variant
of the problem was dealt by [26,27]. Cruz et al. [27] identifies a solution using an iterated
local search-based heuristic. The developed search procedure starts from an initial greedy
solution, modified via local search and a perturbation mechanism to escape from local
optimal solutions.

An additional and explicit state information to the graph model is introduced by [28],
modelling the vehicle’s location and the status of all stations. By defining adjacent states
and moves between adjacent states, Benchimol et al. formulates the SBR problem as the
identification of the sequence of least-cost moves to transit from an initial state to a desired
balanced state. The proposed solution adapts the Chalasani–Motwani algorithm [29],
developing a 9.5-approximation and a 2-approximation algorithms.

A different approach was proposed by [30]: stations are grouped into several clus-
ters and the original routing problem is decomposed into many separate single-vehicle
routing problems. Each cluster represents a group of self-sufficient stations, i.e., bike
rebalancing operations are performed within stations of the same cluster. The authors
model the stochastic demand of each station and determine target inventory bounds,
i.e., service level requirements. The solution is identified by means of mixed integer
programming techniques.

3.1.2. Dynamic Rebalancing

The dynamic bike rebalancing problem requires the system administrators to perform
the bike repositioning operations to avoid critical situations in certain part of the city
when the system is actively used by users. For such reasons, operations need to be timely
performed. Compared to the static rebalancing problem, the dynamic counterpart presents
more difficulties. In general, it is necessary to predict either the future status of stations,
identify common groups of unbalanced stations or determine possible unsatisfied users’
requests by modelling future demands. Then, in case rebalancing operations are scheduled
to rebalance multiple stations at once, heuristics and meta-heuristics are generally adopted
for path planning.

Ref. [31] reformulates the dynamic rebalancing problem as an optimization problem
on the complete directed graph associated to the system. More in depth, considering
such graph and the number of vehicles adopted for rebalancing purposes, three different
mathematical formulations are provided based on space-time networks, arc-flow formula-
tion and the Dantzig–Wolf [32] and Benders [33] decompositions to handle medium and
large systems. The problem is formulated as a minimization problem over the total unmet
demand with different constraints.

Another approach is analysed by [34], solving the 1-vehicle dynamic regulation prob-
lem by dividing the urban area into several regions, one per each rebalancing truck. The
authors built a theoretical framework to reduce the imbalance throughout the day by
modelling users’ demands as a Poisson process. The dynamic bike rebalancing problem is
analysed and evaluated in terms of user’s satisfaction: the main goal is to identify rebalanc-

Appl. Sci. 2021, 11, 6967 7 of 25

ing tours by analysing the complete directed graph and maximize the probability that the
first m users find a bike at the designated stations. Different 1- and 2-step heuristics are
formulated considering future demands prediction and rebalancing missions are conse-
quently assigned. At most, operators know the next two stations to visit at every mission.
Such approach continuously reassign new missions to trucks to keep the system balanced.
Contrarily, in our proposed approach the path for each operator and the maximum number
of stations involved in the rebalancing process is known and fixed.

Other approaches are based on demand prediction, such as [35]. They trained neural
network models to predict future demands and estimate the number of lost and waiting
users and the waiting time at each station. The problem is formulated as an optimization
problem, taking into account relocation costs and unmet demands costs. Similarly, Ref. [36]
builds a demand prediction model and evaluates the importance of each station to pri-
oritize rebalancing actions. Several criteria are analysed and weighted differently by an
entropy-based technique to improve rebalancing operations policies. Ref. [37] formulated
a mathematical model to solve the rebalancing problem, considering route optimization
and users satisfaction and developed a priority-based evolutionary algorithm. Priority
evaluation is performed by considering stations’ inventory and safe intervals.

An interesting and alternative formulation is given by Chiariotti et al. [38] where,
instead of modelling the stochastic users’ demand, they use Birth–Death processes [39] to
model stations’ occupancy and analyse the amount of time a station is self-sufficient, i.e.,
the amount of time the station is able to satisfy users’ requests autonomously. To minimize
system failures and rebalancing costs, the system maximizes the survival time for each
station and plans rebalancing operations accordingly. The aforementioned survival time
is modelled via a Markov–Modulated Poisson process [40], whereas the rebalancing path
identification problem is formulated as an optimization problem which takes into account
the time remaining till the next predicted system failure. Other works analyse the active
users participation in automatic system rebalance through users incentives [41], eventually
allowing hybrid approaches with intervention of operators [42].

Hulot et al. [43] include in their analyses weather information in addition to stations’
status and focus on the prediction of the number of expected trips per station. In particular,
the authors leverage on machine learning models to analyse and predict the hourly arrivals
and departures at each station. The predictions are performed on a simplified problem and
at test time, the simplified predictions are used to estimate hourly arrivals and departures
for each station and determine inventory intervals, i.e., number of bicycles needed. The
intervals are used to assign rebalancing operations: a single truck is used to instantaneously
compensate an imbalanced station whenever such station does not satisfy the inventory
intervals, potentially leading to higher costs associated to rebalancing operations. On the
contrary, the framework developed in this paper tries to reduce such costs by moving
bicycles between neighbouring stations.

Indeed, many of the previously cited works make some assumptions on the demand
or self-sufficiency distribution, eventually leading to lower performances in case such
hypotheses do not hold on real systems. Instead, the proposed approach presented in this
paper leverages on data mining techniques to identify common critical patterns among the
system and thus does not make any prior assumption on data distribution.

3.2. Association Rule Mining

As we introduced in Section 2.3, association rule mining is one of the most used data
mining technique to discover relevant and common patterns among data.

An association rule is a fully interpretable pattern identified among the input data
with a given strength.

Over the years, different association rule mining algorithm were proposed [44–47].
Two popular choices are the Apriori algorithm [45] and the Frequent Pattern Growth (FP-
Growth) algorithm [9]. Apriori is the first algorithm that has been proposed to address the

Appl. Sci. 2021, 11, 6967 8 of 25

association rule problem, while FP-Growth is the state-of-the-art one in terms of efficiency.
To extract the rules quickly, we used FP-Growth in our approach.

4. Methodology and Methods

To address the problem described in Section 2, we propose a methodology that
(i) identifies frequent unbalanced sets of nearby stations in critical situations, representing
recurrent critical patterns, analysing past data D offline and then (ii) plans rebalancing
actions to apply online (in at most treb minutes) leveraging on the mined historical patterns.

The general methodology proposed in this work is fully configurable according to
system administrators’ needs and can be adapted through time by performing offline
periodic updates to find potential new patterns that could emerge due to changes in the
city assets or people’s habits.

The proposed methodology is composed of two main phases: (i) pattern-based model
training on historical data and (ii) online planning of rebalancing operations and their
application. The first phase extracts frequent patterns (association rules) that represent sets
of recurrent critical situations among nearby stations. Each of the considered pattern con-
tains both positively and negatively critical stations and can be used to plan a rebalancing
operation. Those patterns model recurrent critical situations in the analysed data. Based on
the patterns extracted from historical data, rebalancing actions can be planned and applied
to dynamically manage critical stations status.

For instance, suppose that during the fist phase the frequent pattern +s4, +s7 !
�s11, sup = 60%, con f = 80% is mined. This rule highlights a frequent critical unbalanced
behaviour and can be used to plan at time tnew a rebalancing operation among the nearby
stations s4, s7, and s11 moving bicycles from stations s4 and s7 to s11, supposing s11 is
negatively critical while s4 and s7 are positively critical at time tnew.

Since different time periods are characterized by different behaviours, the proposed
methodology trains and applies a set of contextualised models, each one tailored for a
specific time period.

4.1. Pattern-Based Model Training

Given the input datasetD containing information about the historical stations’ statuses
and the set S containing the stations and their geographical locations, the pattern-based
model training phase (depicted in Figure 1) is based on the following steps:

Neighbourhood identification. Given the stations’ geographical locations and the neigh-
bourhood radius d, the neighbourhood N(s) for each station s 2 S is computed.

Occupation rate computation. Given the input dataset D and the neighbourhood N(s) for
each station s 2 S , the occupation rate ORs(t) for all stations s 2 S and all timestamps
t 2 D is computed, i.e., the occupation is computed for each pair (s, t) 2 D.

Identification of critical stations. Given the criticality threshold cr, the occupation rate
for each pair (s, t) 2 D and the identified neighbourhoods, the critical rate for all the
pairs (s, t) is computed. Then, only the pairs (s, t) associated with either a positively
or a negatively critical situations are selected and stored in the dataset DCR, enriched
with the critical status (positive or negative).

Contextualised data partitioning. Given a contextualised partitioning schema based on
timestamp,DCR is split into N non-overlapping partitions Pi. A partition Pi is a logical
group defined on input data, related to a specific temporal context, on which we are
interested in training a tailored model, e.g., if we are interested in a contextualised
model for each of day of the week, DCR is split in seven partitions (one for each day
of the week).

Generation of transactional datasets. Given the partitions Pi, a transactional dataset T Ri
that encodes the critical stations in each timestamp t is built from Pi. Each transaction
trt 2 T Ri includes the set of stations that are positively or negatively critical at
timestamp t and their status (positive or negative).

Appl. Sci. 2021, 11, 6967 9 of 25

Rule extraction. Finally, the association rules are mined from each transactional dataset
T Ri to extract for each context the set of frequent patternsRi representing recurrent
critical situations among nearby stations.

Figure 1. Framework structure at training time.

The set of extracted association rules represents the training model that is used to plan
online rebalancing actions using the approach described in Section 4.2.

In the following subsections we provide more details about the contextualised data
partition step and the rule mining one, which are the building blocks of the proposed
methodology.

4.1.1. Contextualised Data Partitioning and Models

The rebalancing framework proposes different contextualised data partitioning strate-
gies to extract meaningful insights at different time partitioning groups and to let the
framework adapt according to different habits of users and contexts. Each partition in-
cludes the data used to train a tailored model for a specific temporal context. The proposed
contextualised partition-based approach allows to model more precisely the characteristics

Appl. Sci. 2021, 11, 6967 10 of 25

of each context and hence plan more effective rebalancing strategies, as shown in the
experimental section.

The data partitioning component of our framework receives an input dataset DCR
with the timestamp t information associated to each record and divides the dataset into N
non-overlapping partitions Pi, based on the value of t, such that[

i
Pi = D

It is useful to notice that, given a contextualised temporal partition strategy, a specific
timestamp t belongs to only one single partition Pi.

Different partitioning strategies lead to different frequent patterns and different con-
textualised models. Using different time partitioning strategies, our framework is able to
collect meaningful information about users’ usage patterns in different moments of the
day, week, and month and allows us to understand how the usage behaviour changes in
different temporal contexts. Considering different partitioning strategies, we can under-
stand if finer or coarser temporal contexts should be used in the bike sharing domain. Finer
partitioning strategies should provide more tailored and precise models but overfitting
could occur with a higher probability. Conversely, coarser partitioning strategies avoid
overfitting but could be too general and do not perform well for all contexts.

We proposed and evaluated the following temporal contextualised data partitioning strategies:

Per month partitioning. Data belonging to the same month are kept together and monthly
models are trained.

Per day of the week partitioning. Data belonging to the same day of the week are in-
cluded in the same partition and analysed together. By doing this, the mined patterns
are able to get insights about critical stations within the same day of the week. A total
number of seven groups P1, ...,P7 are generated.

Per time slot partitioning. Three timeslots are defined: 5:00–13:00, 13:00–21:00, and 21:00–05:00.
One partition for each timeslot is defined. Association rules in this case gather in-
sights about frequent critical stations in certain time slots of the day, independently
of the day of the week.

Per day of the week and time slot partitioning. This approach combines together the lat-
ter two partitioning approaches, defining one partition for each combination (timeslot,
day of the week).

We consider the time information the most relevant context in this domain and for
this reason we decided to partition data based on the timestamp dimension. However, the
proposed methodology can be easily adapted also to other contextual dimensions.

4.1.2. Transactional Dataset Generation and Rule Extraction

The proposed methodology uses the association rules mined from historical data
as a model of recurrent behaviours to plan the rebalancing operations. However, since
the itemset and association rule mining algorithms operate on transactional datasets, the
original data needs to be manipulated to obtain the input in a transactional format. Each
partition Pi must be mapped to a transactional dataset T Ri. Specifically, for each partition
Pi and for each distinct timestamp t in Pi, we generate a transaction trt that is stored in the
transactional dataset T Ri. The transaction trt contains all the stations that are in a critical
status at time t and their critical status. In particular, we associate the plus sign (+) to
station s if the station is positively critical at time t and the minus sign (�) if it is negatively
critical. A single transaction in T Ri thus represents the list of positively and negatively
critical stations present in partition Pi at timestamp t.

For instance, suppose that at timestamp t1 the stations s4 and s7 are positively critical,
station s11 is negatively critical, and all the other stations in S are not in a critical status.
It follows that the following transaction trt1 = f+s4, +s7,�s11g will be inserted in the
transactional dataset.

Appl. Sci. 2021, 11, 6967 11 of 25

Given the N transactional datasets, the FP-growth algorithm is used to extract frequent
itemsets and the set of association rules, given a minimum support threshold minSupport
and a minimum confidence threshold minConfidence. Specifically, a set Ri of association
rules is extracted from each transactional dataset T Ri, i.e., a set of contextualised rules is
mined for each (temporal) context.

The extracted rules are characterized by a set of stations, with the associated critical
status, in the antecedent and one single station, with its critical status, in the consequent.
Some examples of neighbourhoods and mined rules are reported in Tables 1 and 2.

Among the extracted rules, only a subset of them can be used to plan local rebalancing
operations. Specifically, only the rules (i) that contain only stations belonging to the same
neighbourhood and (ii) such that the critical status of the stations in the antecedent of the
rule is of opposite sign with respect to the critical status of the station in the consequent of
the rule are useful for planning local rebalancing operations. We refer to the rules satisfying
the second constraint as discordant rules. The interesting rules must contain only nearby
stations because, as we introduced in the problem statement, we want to apply only local
rebalancing operations. Moreover, they must be discordant because only if the critical
status of the stations is opposite we can plan to move bicycles from positively critical
stations to the negatively critical ones to remove the critical situations.

Let us consider the extracted rules reported in Table 2. Rule 2 and 5 are the only
discordant rules. Rule 2 has support 60% and confidence 80% and it can be interpreted as
“the combination f+s4, +s7,�s11g is present in 60% of the input transactions and in 80% of
the cases when s4 and s7 are both positively critical, it follows that s11 is negatively critical”.
Stations s4, s7, s11 belong to neighbourhood 2 (Table 1). Hence, Rule 2 satisfies also the first
condition and it can be used to plan a local rebalancing operation. Rule 5 is very similar
to Rule 2, but it is discarded by our approach because a neighbourhood containing the
stations s1, s4, s7, s11 does not exist. All the other example rules are discarded because they
are not discordant rules.

Table 1. Example of neighbourhoods definition.

Id Neighbourhood

1 s45, s22, s6, s87
2 s4, s7, s11, s91
3 s103, s1, s47
4 s31, s72, s134
5 s10, s40, s91, s52

Table 2. Example of extracted association rules.

Extracted Rules Support Confidence

1 +s6, +s45, +s22 ! +s87 30% 73%
2 +s4, +s7 ! �s11 60% 80%

3 +s103, +s47, +s31, +s72 !
+s134

23% 90%

4 �s10,�s40,�s91 ! �s52 82% 50%
5 +s4, +s7, +s1 ! �s11 31% 60%

4.2. Planning of Rebalancing Operations by Means of Association Rules

In this section, we describe how the mined association rules are used to plan at a given
time tnew the rebalancing actions to apply in the next treb time. This phase is composed
of two steps: (i) identification of critical stations at time tnew and (ii) definition of the
rebalancing operations needed to address the identified critical situations.

Let B be a batch of records containing the (new) online information about the status of
all the stations of the system at timestamp tnew. B is gathered using a streaming real-time
system. First, for each station si 2 B, its critical rate at timestamp tnew is computed and the

Appl. Sci. 2021, 11, 6967 12 of 25

set of positively and negatively critical stations are identified. The set of critical stations at
timestamp tnew, with the associated critical status, is denoted as CStnew . Each element in
CStnew is a pair (s, cs) where s is a station and cs is the critical status of s at time tnew.

Now we have the set of stations for which a rebalancing operation should be planned
at time tnew and executed in at most treb time. To define the rebalancing operations we
consider the association rules mined in the training phase. Let Ri be the sorted list of
association rules extracted from partition Pi to which tnew is associated (e.g., if we are using
the day of the week partitioning strategy, the day of the week of timestamp tnew is used to
decide which contextualised partition of the historical data and which set of rules must be
considered). For each rule r 2 Ri, we search whether all the items (i.e., all the pairs (station,
critical status)) belonging to the rule are contained in CStnew . In such case, the rule r can be
used to define a rebalancing operation that fixes the critical situations of the stations in r. A
rule that satisfies such constraint is defined as applicable rule. Specifically, rule r represents
a recurrent frequent critical pattern: by moving bikes from positively critical to negatively
critical stations it is possible to fix critical situations. Movements are allowed only from
stations in the antecedent to stations in the consequent or vice versa. The strength of the
pattern is numerically represented by the support and confidence values of the extracted
rule. For example, suppose stations s4 and s7 are positively critical at timestamp tnew
while station s11 is negatively critical at the same timestamp. Suppose that those stations
are in the same neighbourhood and the rule +s4, +s7 ! �s11 has been extracted from
the historical data. This rule can be used to plan a rebalancing operation that fixes the
critical situations of stations s4, s7, and s11, moving bicycles from s4 and s7 to s11. Since the
extracted patterns are frequent, we can suppose that, with a high probability, the stations
that are in a critical situation at time tnew will still be in the same critical status in the next
treb minutes. Hence, the rebalancing operation planned at time tnew would be probably
applicable and useful when the truck will actually reach the critical stations. Since each rule
is composed solely of neighbouring stations, our methodology performs local rebalancing
operations (Figure 2) such that the final occupancy rate of every station present in the rule
is the same across stations in the neighbourhood. Thus, the goal of our framework is to
flatten the occupancy rate of identified critical neighbourhoods by moving bicycles from
positively critical to negatively critical stations or vice versa, fixing critical situations. Each
bike station is visited only once during the operation.

Figure 3 shows the framework’s structure at reallocation time.

Figure 2. Example of local rebalancing. The extracted rule r contains 4 stations: 3 in the body of the
rule and 1 in the head. Blue stations are positively critical; the red station is negatively critical. Once
such pattern is detected in the new batch of data B, the frameworks suggests to move bicycles from
blue stations to the red stations such that the final occupancy rate of the 4 stations is the same.

Appl. Sci. 2021, 11, 6967 13 of 25

Figure 3. Framework’s structure when the system is operating.

The list of applicable rules represents potential rebalancing operations that should be
planned at timestamp tnew and executed in at most treb time to fix imbalanced situations
across stations. However, due to the limited amount of trucks, operators and time, not
all critical stations CStnew can be fixed and thus a priority needs to be defined. Such
priority is determined by the quality indices of the mined and applicable association rules.
Specifically, we consider the applicable extracted association rules in descending order
using the following quality indices: confidence, support, and length of the rule. The higher
the confidence, the stronger the pattern is among the training data. Hence, given two rules,
the confidence is initially considered and the one with the highest confidence is selected
first. Given two rules with equal confidence, the one with higher support (i.e., the rule
which is more frequent in the historical data) is considered first. In case also the support
value is the same among the two considered rules, the length of the rule is considered. If
also the length is the same, the lexicographical order is considered.

We decided to impose the number of rebalancing operations planned at time tnew
to be equal to the number of trucks Nt available, i.e., among all the extracted association
rules, only the top Nt applicable rules with highest priority will be applied. Moreover,
since the trucks used for the actual rebalance require time to travel from the deposit
to critical neighbourhoods, we distinguish between the operation planning time tnew
and the actual rebalancing operation time, namely the reallocation time, which must be
at most treb minutes after tnew. Specifically, we define as the operation planning time
the time tnew in which the system analyses the online data B collected by the stations,
computes the occupancy rate and performs the match operations between the extracted
rules and identified critical stations to select the top Nt applicable rules. During the bicycles
reallocation, due to the system being online, the status of the bike stations involved in the
rebalancing operation may change within treb minutes. For such reason, the system checks
whether the planned rebalancing operation is still applicable at reallocation time (i.e., when
the truck reaches the stations to rebalance) and in case it is not, the system tries to identify
the largest subset of stations for which the rule still holds, i.e., identify a subset of critical
stations to rebalance. If no subset is found, the rule is not applied.

Consequently, the association rules extracted at training time are used as an associative
classifier to detect at test time recurrent critical neighbourhoods that need to be fixed. Given
the set of rules, only the applicable ones are selected by analysing the patterns of critical
stations at a new time instant tnew. By sorting the applicable rules with the aforementioned
criterion, we prioritize certain neighbourhoods with respect to others by selecting only the
top Nt rules. Then, the framework generates the set of bicycle movements that need to be
performed to flatten the occupancy rate across such problematic neighbourhoods.

Considering a real scenario, it is not feasible to perform a rebalancing operation at
every timestamp. Because of such reason, we propose to apply our rebalancing methodol-

Appl. Sci. 2021, 11, 6967 14 of 25

ogy a limited number of times per day. The number of times and the timestamps at which
such operations are planned and performed are fully configurable and can be decided by
systems’ administrators according to the city and the population’s habits.

4.3. Parallelization, Frameworks, Hardware and Tools

Due to the highly intensive computation required by data mining and association rule
mining tasks, the project’s workload can be divided twofold: (1) local workloads and (2)
distributed jobs. Local workloads include the neighbourhood identification, application
of contextualized data partitioning and rule application to assess the performances of
the proposed approach. Distributed workloads are represented by data cleaning and
preprocessing operations, which are introduced in the experimental section, critical stations
identification, transactional database generation and association rules extraction. The
second set of operations are more computationally expensive and easily parallelizable
using a big data framework such as Spark.

All the local workloads are performed using python and pandas [48,49]. Instead,
all the distributed computing were performed using Apache Spark [50] 2.4 on the Big-
Data@PoliTO cluster [51] managed by the SmartData center. Local workloads were exe-
cuted on a single virtual machine hosted on a master node of the cluster and thus did not
take advantage of the distributed environment. The virtual machine has 4 CPU cores and
16 GB of RAM. The distributed cluster has a total of 53 worker nodes equipped with 2 CPUs
each, either with Intel Xeon or AMD EPYC processors. The amount of RAM available per
node ranges from 96 GB to 512 GB. For more information about the computing facilities,
readers can refer to [51].

5. Experiments and Results

In this section, the experimental setup is described, starting from the characteristics of
the data used in this paper. Then, the performed experiments and the achieved results are
reported and discussed. We analysed the effect of all the parameters on the system and
how they affect the rebalancing operations in terms of number of critical stations fixed.

This section describes the results of the following analyses:

• The dataset used to test the developed framework is described and analysed, together
with the preprocessing steps made to clean the data.

• The effect of different input parameters are evaluated to properly define the prepro-
cessing pipeline for the data cleaning process. In particular, we analysed the effects of
the thresholds f and varianceThreshold.

• The effects of the framework’s parameters on the rule extraction process are analysed.
• The effects of all the framework’s parameters and the number of available vehicles Nt

on the rebalancing process are analysed.

For these analyses, all the data partitioning approaches introduced in Section 4.1.1 are
considered and compared to determine the most prominent approach for the analysed dataset.

5.1. Dataset Description

The dataset used for the experiments in this paper is the Barcelona Bike Sharing
dataset, which contains information about stations’ location and their status at a specific
point in time. More specifically, the dataset consists of two separate tables. The first table
stores information about the ID and geographical location, expressed in terms of longitude
and latitude, of each station of the bike sharing system. The second table contains the
following columns: station ID, timestamp, used slots, and free slots. The latter can be
interpreted as a table containing the logged information for each station at regular time
intervals of two minutes: at a specific point in time and for a certain station, the number
of used slots (i.e., bikes available for new trips) and the number of free slots (i.e., slots
available to park a rented bike) is reported. A sample of the content of the two tables is
shown in Tables 3 and 4 respectively. Station information is available from 15 May 2008
to 30 September 2008. The dataset was split into train and test according to the following

Appl. Sci. 2021, 11, 6967 15 of 25

criterion: the last 7 days of each month were assigned to the test dataset, the remaining
days constitute the train dataset and are used to extract association rules. The test set is
used to evaluate the quality of the proposed methodology on unseen data.

Table 3. Example of stations’ information.

StationId Longitude Latitude Name

1 2.180019 41.397978 Gran Via Corts Catalanes
2 2.176414 41.394381 Plaça de Tetuan
3 2.181164 41.393750 Ali Bei

Table 4. Random sample of stations’ status extracted from the dataset.

StationId Timestamp Used Slots Free Slots

280 2008-08-24 21:44:00 8 19
223 2008-09-25 04:52:00 5 22
108 2008-06-16 17:20:00 3 24
67 2008-06-26 10:24:00 5 16

5.2. Preprocessing and Data Cleaning

The Barcelona Bike Sharing dataset is a noisy dataset with some anomalies and thus
preprocessing is necessary to remove noise. In particular, analysing the stations’ status
over time, it is possible to notice irregularities among the total number of slots for certain
stations. In fact, high oscillations were present in the dataset, having the station a variable
amount of available slots, ranging from 0 to a maximum value of 59. Moreover, some
information is missing because not all the stations were able to log their status every two
minutes. Hence, the following points were addressed by our preprocessing step:

• Removal of data associated to total number of slots for a specific station equal to 0 or
1. Such situations can possibly be associated with the system not working properly or
maintenance operations ongoing during the time the data was collected.

• Removal of some bike stations from the dataset due to them being logged rarely. In
particular, we removed stations that were not present in at least f % of the available
timestamps, being f an input parameter for our framework. We refer to such stations
as infrequent stations.

• Removal of some bike sharing stations due to high fluctuation of total number of slots.
Specifically, we analysed the variance of the total number of slots for each station and
filtered out stations whose variance was higher than a specific threshold denominated
as varianceThreshold. We refer to such stations as unstable stations.

As representative examples of unstable stations, Figures 4a and 4b show the total num-
ber of slots of station 8 and station 29 over the entire time span available, respectively. The
total number of slots oscillates between 0 and more than 30 confirming the instability of the
information associated with those two representative unstable stations. Unstable stations
must be removed in order to extract robust patterns not affected by noisy input data.

Appl. Sci. 2021, 11, 6967 16 of 25

(a) Station 8. (b) Station 29.

Figure 4. Total number of slots of stations over time.

After the removal of the data points associated with a total number of slots equal
to 0 and 1, we analyse the impacts of the f and varianceThreshold parameters on the
cleaning operations. Hence, hereafter we discuss the effects of every parameter on the
dataset and the final outcome on the prediction and rebalancing phase, starting from the
cleaning operations.

5.3. Analyses of Parameters’ Impact on Data Cleaning Operations

Considering all the input data except for those data points associated with total
number of slots �1, we evaluate the number of filtered stations based on the thresholds f
and varianceThreshold. Table 5 lists the values considered for f and varianceThreshold.

Table 5. Parameter list for f and varianceThreshold.

Parameter Values

f 0.1, 0.8, 0.85, 0.9
varianceThreshold 3, 5, 7

5.3.1. Effect of the Frequency Threshold

The effect of the frequency threshold f is limited due to the fact that most of the
stations correctly log their status. Given a total number of 284 stations, Table 6 reports the
number of infrequent stations (i.e., the stations with many missing data) given the threshold
parameter f and a varianceThreshold = 5 (this is the default value for varianceThreshold).

Table 6. Number of filtered infrequent stations with variable f and fixed varianceThreshold = 5.

f = 0.1 f = 0.8 f = 0.85 f = 0.9

infrequent stations 1 4 8 12

Therefore the effect of the frequency threshold is limited. As a consequence of this
analysis, we set the frequency threshold f to 0.9 for our framework, which means that
only the stations for which their status is available in less than 90% of the timestamps are
discarded. In other words, at most 10% of missing log data are allowed for each of the
considered station.

5.3.2. Effect of the Variance Threshold

The variance threshold is used to filter unstable stations from the dataset, i.e., stations
with an unstable total number of slots over time. The variance parameter is computed for
each station on the total number of slots. The number of unstable stations filtered using a
fixed value for f of 0.9 is shown in Table 7.

Appl. Sci. 2021, 11, 6967 17 of 25

Table 7. Number of filtered unstable stations with variable varianceThreshold and fixed f .

varianceThreshold = 3 varianceThreshold = 5 varianceThreshold = 7

unstable stations 232 155 114

Setting the threshold to 3, the amount of stations identified as unstable is high,
thus reducing the analysis to very few stations and, consequently, limiting the amount
of data on which the pattern extraction process is performed. On the contrary, using
varianceThreshold = 7, an excessive amount of stations with high variability on the to-
tal number of slots is present in the dataset. In conclusion, as a good compromise
between quantity of data and limited variability of total number of slots, we choose
varianceThreshold = 5.

In the following section we discuss the effects of neighbourhood radius d and critical
threshold cr in the problem definition, since they both influence the way critical stations are
determined, as well as the influence of the minimum support and confidence thresholds
on the number of extracted association rules.

5.4. Impact of Parameters on Rule Extraction

The outcome and the quality of rule extraction process depend on the distance d
used to define the stations’ neighbourhood, on the critical threshold cr used to mark a
station as critical, and on minSupport and minConfidence thresholds. Whereas the first two
parameters are intrinsic of the problem itself, defining the way the stations are critical and
the operational range of the rebalancing operations, the latter two parameters are related
to the association rule mining algorithm and define the minimum strength of the patterns
to be mined. All rules extraction in this subsection are performed by considering Mondays
of June using the per day partitioning approach.

We set the neighbourhood radius empirically to 500 m and 1 km, considering it a
reasonable distance for users to be travelled on foot/by bicycle in a reasonable amount of
time in case the designated station for pick-up is empty or the one designated for drop is
full. Moreover, by doing so, the operators in charge of the actual rebalance need a short
amount of time to travel between bike stations to move bicycles.

We analysed the performance of the framework with critical threshold cr values of 0.1,
0.2 and 0.3. The higher the cr value, the smaller the number of critical situations because,
by increasing cr, a higher absolute difference between the occupancy level of a station and
the average occupancy rate of its neighbourhood is needed to highlight a critical status.
Considering that almost all stations have a total number of slots in range 25–30, lower
or higher threshold values are not meaningful for the detection of critical situations. Too
many stations will become critical even if the difference in terms of number of used slots
is only one or two slots if cr values lower than 0.1 are considered. Conversely, few or no
critical situations would be identified if higher values of cr are considered.

The impact of these two parameters can be evaluated using two metrics: number of
critical stations identified per timestamp and number of rules extracted by the framework.
Figure 5a represents on the horizontal axis the amount of critical stations and on the
vertical axis the amount of timestamps having that number of critical stations. The two
curves represent two different values of neighbourhood radius values d with fixed critical
threshold cr of 0.2. As can be seen, increasing the radius shifts the curve to the right, with
higher amount of critical stations. In fact, by increasing the radius d also the cardinality of
the neighbourhood increases and consequently the probability that at least one station has
significantly more or less used slots with respect to its neighbours.

Figure 5b uses the same axis notation to show the impact of the critical threshold cr
on the number of critical stations per timestamp. The results reported in Figure 5b were
computed by setting d to 500 m. The chart shows the expected behaviour. Specifically, as
the critical threshold cr shrinks, the amount of critical stations increases (stations that are
critical with a threshold of 0.2 are also critical with a threshold of 0.1).

Appl. Sci. 2021, 11, 6967 18 of 25

10 20 30 40 50 60
Number of stations in transaction

0

250

500

750

1000

1250

1500

1750

2000

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

Variable d, cr = 0.2
d = 500m
d = 1000m

(a) Effect of neighbourhood radius on number
of critical stations. Critical threshold is fixed
at 0.2.

10 20 30 40 50 60 70 80
Number of stations in transaction

0

500

1000

1500

2000

2500

3000

3500

4000

Nu
m

be
r o

f t
ra

ns
ac

tio
ns

d = 500m, variable cr
cr = 0.1
cr = 0.2
cr = 0.3

(b) Effect of critical threshold on number of
critical stations. Neighbourhood radius is
fixed at 500 m.

Figure 5. Number of critical stations with varying d and cr.

A similar analysis can be performed on the number of discordant rules extracted by
the framework by varying d and cr. It is possible to notice in Figure 6a that, by increasing d
from 500 m to 1 km, the number of extracted rules increases noticeably. A similar trend is
observed independently from the applied partitioning strategy and also in Figure 6b as
cr decreases.

500m, 0.2 1km, 0.2
Configuration (d, cr)

0

100

200

300

400

500

130

477

Effect of neighbourhood radius on
number of extracted rules

(a) Number of extracted rules with vari-
able neighbourhood radius.

500m, 0.1 500m, 0.2 500m, 0.3
Configuration (d, cr)

0

50

100

150

200

250

300

350

400 403

130

35

Effect of critical threshold on
number of extracted rules

(b) Number of extracted rules with vari-
able critical threshold.

Figure 6. Number of extracted rule with variable parameters.

The aforementioned analyses about the number of extracted rules confirm the expected
behaviour evidenced in Figure 5a,b. By lowering cr and/or increasing d, more critical
stations are detected and more discordant patterns are mined.

The two input parameters of the association rule mining algorithm also impact on the
quantity and the quality of the rules extracted. Their effects can be measured by analysing
the quantity of the mined rules and the resulting quality of rebalancing operations.

The former effect is analysed in the following paragraph, whereas the latter is dis-
cussed in Section 5.5.

As denoted in [9], an exponential decay of number of extracted rules can be observed
as the value of minSupport increases. As an example, we observed that by increasing the
support threshold from 10% to 20% the number of rules drops from 120 to 40. Contrarily,
variations in minConfidence do not determine a great reduction of number of rules, but
usage of rules with extremely high values of confidence is harmful to the system since they
represent specific patterns that can be applied only to few critical situations. Considering

Appl. Sci. 2021, 11, 6967 19 of 25

the limits imposed by minSupport and minConfidence parameters in terms of quantity of
quality of rules, we set the minimum confidence threshold to 50% and minimum support
threshold to 10% as default parameters for our system.

5.5. Quality of the Rebalancing Operations

Our final goal consists of applying rebalancing operations to fix critical situations. In
this section, we will analyse the quality of the proposed methodology with respect to this
goal. Evaluation metrics were computed on the test set, i.e., the last 7 days of each month,
whereas the remaining data was used to extract the association rules.

To evaluate the performances of the proposed approach on rebalancing operations,
it is necessary to consider all the previously mentioned parameters in addition to the
difference between the operation planning time and the reallocation time (which must be
at most treb minutes), the data partitioning strategy and the number of trucks Nt adopted
for the rebalancing operations. Table 8 contains all the range of values evaluated in our
experiments for the mentioned parameters.

We performed the evaluation supposing to rebalance the stations two times per day:
at 6 a.m. and at 15 p.m. Those are two moments of the day frequently associated with
many critical situations. Hence, rebalancing operations at those moments of the day are
crucial to provide a good quality of experience. All experiments have been performed
setting treb to 1 h. Based on the topology of Barcelona, this is the average time we assume a
truck takes to go to the neighbourhood of stations to rebalance.

Table 8. Parameters ranges.

Parameter Values

data partitioning strategy Per month partitioning,
Per day of the week partitioning,
Per timeslot partitioning,
Per day of the week and timeslot partitioning

minSupport 10%, 20%, 30%
minConfidence 50%
Nt 5, 10, 20

First, we analyse the rebalancing results achieved by the best identified configuration
for solving the dynamic rebalancing problem, namely the reference configuration. Second,
we analyse the effect of each parameter on the performance of the entire system in terms
of number of fixed critical stations and average number of fixed stations per rebalancing
operation. In these analyses, we considered the absolute number of fixed critical stations
and the number of fixed stations per rebalancing operation, which represent the grade of
efficiency of the system when performing corrective actions. The reference configuration is
used to suggest a good configuration to be used and for comparison purposes to understand
the effect of each of the parameters in taking decisions.

We initially performed the experiments setting d to 500 m and cr to 0.2. These two pa-
rameters, as we discussed before, are not associated with the configuration of the proposed
methodology. They are two characteristics of the problem. We will analyse their impact on
the complexity of the problem later.

5.5.1. Best Performing Configuration

Among all the possible configurations, the chosen reference configuration is the following:

• minSupport = 10%;
• minCon f idence = 50%;
• Nt = 5;
• data partitioning strategy = Per day of the week partitioning.

The default configuration achieves the best result in terms of fixed critical stations/critical
status. Specifically, it was able to fix 225 critical station status out of 1377 by performing 151

Appl. Sci. 2021, 11, 6967 20 of 25

rebalancing operations. Thus, on average, each rebalancing operation fixed 1.49 stations in
a critical status.

5.5.2. Effect of the Contextualised Data Partitioning Strategy

The results obtained varying the data partitioning strategy, and the default configura-
tion for the other parameters, are shown in Figures 7 and 8.

0 50 100 150 200
Stations fixed

Da
ta

 p
ar

tit
io

ni
ng

 st
ra

te
gy

225

173

160

132

perDay
perDayAndTimeSlot
perMonth
perTimeSlot

Figure 7. Reference configuration performances in terms of absolute number of station fixed on
different data partitioning approaches.

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stations fixed per bike movement

Da
ta

 p
ar

tit
io

ni
ng

 st
ra

te
gy

1.52

1.49

0.91

0.6

perDayAndTimeSlot
perDay
perMonth
perTimeSlot

Figure 8. Reference configuration performances in terms of fixed stations per movement on different
data partitioning approaches.

Figure 7 shows that the per day of the week partitioning strategy is the best one in
terms of absolute number of fixed stations and is the second best one when considering the
stations fixed per rebalancing operation metric (see Figure 8). The per day of the week and
timeslot partitioning strategy is slightly better than the per day of the week one in terms
of stations fixed per rebalancing operation. However, it is significantly worse in terms of
total number of fixed stations (173 vs. 225 fixed critical station status). The rules mined
considering the per day of the week partition strategy are more general and robust with
respect to those mined using the per day of the week and timeslot partitioning strategy.
Hence, in the majority of the cases the operations planned at time tnew are still useful and
can be applied at the reallocation time tnew + treb. Differently, when other contextualised
partition strategies are considered, the operations planned at time tnew are more frequently
no longer applicable at time tnew + treb because they are too much specific (per timeslot,
per day of the week and timeslot) or too much general (per month partitioning).

5.5.3. Effect of Minimum Support

As mentioned in Section 5.4, a small increase of minSupport is likely to cause a signifi-
cant decrease in the number of rules mined and, consequently, decrease the performance
and quality of the rebalancing methodology we proposed because fewer rebalancing oper-
ations can be planned. This trend is shown in Figure 9. As the minimum support threshold
increases, the total number of fixed stations drops in all the considered data partitioning
approaches. It was observed that a small drop of fixed stations, for example in the per day
of the week and timeslot strategy, was due to the fact that many of the first rules in the
ranking applied by the proposed methodology are also the most frequent ones, which are
therefore not affected by the increasing value of minSupport. This consequence is confirmed

Appl. Sci. 2021, 11, 6967 21 of 25

by Figure 10, in which the fixed stations per movement is plotted. A reduction in the
number of rules enforces the framework to apply rules with higher support, which can be
associated with stronger patterns. We underline also the fact that the per day of the week
and per day of the week and timeslot approaches are the most effective ones. Even though
increasing the minimum support threshold increases the quality in terms of fixed stations
per rebalancing operation, we opted to prioritize the absolute total number of fixed stations
to maintain overall a better quality of service.

0 50 100 150 200
Stations fixed

10%

20%

30%

M
in

im
um

 su
pp

or
t m

in
Su

pp

225

178

143

173

162

137

160

94

52

132

119

51

perDay perDayAndTimeSlot perMonth perTimeSlot

Figure 9. Number of fixed stations with varying minSupport.

0.0 0.5 1.0 1.5 2.0
Stations fixed per movement

10%

20%

30%

M
in

im
um

 su
pp

or
t m

in
Su

pp

1.52

1.8

2.17

1.49

1.71

2.34

0.91

0.93

1.58

0.6

0.74

0.81

perDayAndTimeSlot perDay perMonth perTimeSlot

Figure 10. Number of fixed stations per bike movement with varying minSupport.

5.5.4. Effect of Number of Trucks Nt

In our analyses we imposed the constraint that a single truck is used to rebalance a
single neighbourhood, i.e., to apply a single rebalancing operation. Figures 11 and 12 show
the performances obtained for 3 different values of Nt.

0 50 100 150 200
Stations fixed

5

10

20

Nu
m

be
r o

f t
ru

ck
s N

t

225

228

228

173

174

174

160

187

188

132

227

228

perDay perDayAndTimeSlot perMonth perTimeSlot

Figure 11. Number of fixed stations with varying Nt.

Appl. Sci. 2021, 11, 6967 22 of 25

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
Stations fixed per movement

5

10

20

Nu
m

be
r o

f t
ru

ck
s N

t

1.52

1.49

1.49

1.49

1.48

1.48

0.91

0.94

0.94

0.6

0.68

0.65

perDayAndTimeSlot perDay perMonth perTimeSlot

Figure 12. Number of fixed stations per bike movement with varying Nt.

As the value of Nt changes, the average value of fixed stations per movement remain
almost stable. This means that the top Nt rules used to plan the Nt rebalancing operations
assigned to the Nt trucks (one rebalancing operation per truck) are characterized by a
similar rebalancing quality.

In this case, the trend of the total number of fixed critical stations is dependent on
the data partitioning strategy. Those strategies that have worse performances in terms
of total number of fixed stations when five trucks are considered are the ones that are
more positively affected by the increase of the number of trucks and planned rebalancing
operations. To understand this trend, we analysed the top Nt rules in the ranking for
each partitioning strategy and we noticed that some strategies (e.g., the per timeslot
partitioning one) have a higher number of complementary association rules among the
top rules related to different set of nearby stations. This means that the selected top
Nt rules are related to rebalancing operations that impact on different neighbourhoods,
increasing the overall number of fixed critical stations. Conversely, the top Nt rules in the
ranking when the per day of the week or the per day of the week and timeslot strategies
are applied are significantly overlapped and many of them are related to subsets of the
same neighbourhood. It implies that similar redundant rebalancing operations should
be simultaneously assigned to more trucks, reducing the overall benefit of increasing the
number of trucks. This result suggests that an analysis of the overlaps among rules could
be beneficial to further improve the quality of our methodology.

Given the small difference in terms of absolute performance (from 225 to 228), we
chose to keep Nt = 5 in the reference configuration to limit the number of trucks used and
hence the costs.

5.5.5. Effect of Neighbourhood Radius d and Critical Threshold cr

The neighbourhood radius d and the critical threshold cr define the problem itself and
its complexity. Changing either one or both of them results in a different number of critical
stations. Consequently, to properly compare approaches with differing d and cr values we
compared the percentage of fixed stations instead of the absolute number of fixed stations.
While an increase in d can easily justify the lower performances achieved due to the fact
that a greater radius may induce new critical situations, no qualitative explanation can be
provided for cr. Considering the results shown in Figures 13 and 14, we chose d = 500m
and cr = 0.2.

Appl. Sci. 2021, 11, 6967 23 of 25

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Percentage of critical stations fixed

0.5 km

1 km

Di
st

an
ce

 th
re

sh
ol

d
d

16.3%

12.6%

12.6%

12.0%

11.6%

9.9%

9.6%

7.9%

perDay perDayAndTimeSlot perMonth perTimeSlot

Figure 13. Percentage of fixed stations with 500 m and 1 km neighbourhood radius.

0.00 0.02 0.04 0.06 0.08 0.10 0.12 0.14 0.16
Percentage of critical stations fixed

0.1

0.2

0.3

Cr
iti

ca
l t

hr
es

ho
ld

 c
r

12.0%

16.3%

13.3%

11.4%

12.6%

11.3%

8.1%

11.6%

4.2%

5.1%

9.6%

11.7%

perDay perDayAndTimeSlot perMonth perTimeSlot

Figure 14. Percentage of fixed station varying cr.

6. Discussion and Conclusions

In this paper, a rebalancing framework for the dynamic bike sharing problem was
presented, leveraging on data mining techniques applied on past data. The approach is
configurable both in terms of problem definition, i.e., neighbourhood radius and critical
threshold, and the data mining process itself, assuring diverse degrees of versatility. To
solve the problem, we provided the definition of critical stations and identified frequent
critical neighbourhoods by means of association rules. Depending on the city and the
system to which the framework is applied on, we provide four different data partitioning
approaches to extract meaningful patterns from past usage data, enabling further degree of
flexibility and contextualization. The rebalancing process takes into account the past sys-
tem’s information and users’ frequent patterns by leveraging on the extracted association
rules and performs a configurable amount of rebalancing operations at different time of
the day. The framework was validated on Barcelona bike sharing data. Furthermore, the
outputs generated by the proposed framework and the obtained rebalancing policies are
fully interpretable by domain experts and administrators of bike sharing systems. Each
rebalancing operation scheduled by the framework is supported by an association rule
with a given support and confidence, underlining the strength of the pattern. Conse-
quently, interpretation does not require any knowledge in data mining algorithms. The
main drawbacks of the proposed approach are the difficulty of (i) learning new patterns
incrementally as the system receives new data, (ii) handling and rebalance critical situations
caused by special events (e.g., football matches), (iii) the fact that a fixed rule ordering
criterion pre-determined by confidence and support, computed at training phase, may
cause the framework to constantly rebalance few, highly frequent critical neighbourhoods
and (iv) limited predictive capabilities of critical stations caused by the absence of temporal
sequences, especially in case of long-term predictions.

As future works, we plan to incorporate spatio-temporal sequence mining into our
methodology by leveraging on sequence and graph mining algorithms, such as [52,53]. In

Appl. Sci. 2021, 11, 6967 24 of 25

particular, by analysing frequent occurrences of critical stations throughout the city in the
temporal dimension, we are interested in identifying temporal sequences of critical stations
and plan the rebalancing policy according to medium and long-term predictions. Such
approach would allow for timely identification of imbalanced stations and compensate the
lack or excess of bicycles before the occurrence of critical situations.

Author Contributions: Conceptualization, M.C. and P.G.; methodology, M.C. and P.G.; software,
M.C.; investigation, M.C., P.G., and L.C.; writing—original draft preparation, L.C. and P.G.; writing—
review and editing, P.G. and L.C.; visualization, M.C. and L.C.; supervision, P.G. All authors have
read and agreed to the published version of the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not Applicable.

Data Availability Statement: The data presented in this study are available on request from the
corresponding author.

Acknowledgments: The research leading to these results is supported by the SmartData@PoliTO
center for data analysis and Big Data technologies.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. Martens, K. The bicycle as a feedering mode: experiences from three European countries. Transp. Res. Part D Transp. Environ.

2004, 9, 281–294.
2. Dell, M.; Iori, M.; Novellani, S.; Stützle, T. A destroy and repair algorithm for the bike sharing rebalancing problem. Comput.

Oper. Res. 2016, 71, 149–162.
3. DeMaio, P. Bike-sharing: History, impacts, models of provision, and future. J. Public Transp. 2009, 12, 3.
4. Eren, E.; Uz, V.E. A review on bike-sharing: The factors affecting bike-sharing demand. Sustain. Cities Soc. 2020, 54, 101882.
5. Zhang, Y.; Mi, Z. Environmental benefits of bike sharing: A big data-based analysis. Appl. Energy 2018, 220, 296–301.
6. Qiu, L.Y.; He, L.Y. Bike sharing and the economy, the environment, and health-related externalities. Sustainability 2018, 10, 1145.
7. Otero, I.; Nieuwenhuijsen, M.; Rojas-Rueda, D. Health impacts of bike sharing systems in Europe. Environ. Int. 2018, 115, 387–394.
8. Sun, F.; Chen, P.; Jiao, J. Promoting public bike-sharing: A lesson from the unsuccessful Pronto system. Transp. Res. Part D Transp.

Environ. 2018, 63, 533–547.
9. Han, J.; Pei, J.; Yin, Y. Mining frequent patterns without candidate generation. ACM Sigmod Rec. 2000, 29, 1–12.
10. Kaltenbrunner, A.; Meza, R.; Grivolla, J.; Codina, J.; Banchs, R. Urban cycles and mobility patterns: Exploring and predicting

trends in a bicycle-based public transport system. Pervasive Mob. Comput. 2010, 6, 455–466.
11. Dell’Amico, M.; Hadjicostantinou, E.; Iori, M.; Novellani, S. The bike sharing rebalancing problem: Mathematical formulations

and benchmark instances. Omega 2014, 45, 7–19.
12. Karp, R.M. Reducibility among combinatorial problems. In Complexity of Computer Computations; Springer: Boston, MA, USA,

1972; pp. 85–103.
13. Hoffman, K.L.; Padberg, M.; Rinaldi, G., Traveling Salesman Problem. In Encyclopedia of Operations Research and Management

Science; Springer US: Boston, MA, USA , 2013; pp. 1573–1578, doi:10.1007/978-1-4419-1153-7_1068.
14. Flood, M.M. The traveling-salesman problem. Oper. Res. 1956, 4, 61–75.
15. Toth, P.; Vigo, D. The Vehicle Routing Problem; SIAM: Philadelphia, PA, USA, 2002.
16. Dantzig, G.B.; Ramser, J.H. The truck dispatching problem. Manag. Sci. 1959, 6, 80–91.
17. Savelsbergh, M.W.; Sol, M. The general pickup and delivery problem. Transp. Sci. 1995, 29, 17–29.
18. Berbeglia, G.; Cordeau, J.F.; Gribkovskaia, I.; Laporte, G. Static pickup and delivery problems: a classification scheme and survey.

Top 2007, 15, 1–31.
19. Padberg, M.; Rinaldi, G. A branch-and-cut algorithm for the resolution of large-scale symmetric traveling salesman problems.

SIAM Rev. 1991, 33, 60–100.
20. Clarke, G.; Wright, J.W. Scheduling of vehicles from a central depot to a number of delivery points. Oper. Res. 1964, 12, 568–581.
21. Ropke, S.; Pisinger, D. An adaptive large neighborhood search heuristic for the pickup and delivery problem with time windows.

Transp. Sci. 2006, 40, 455–472.
22. Ren, Y.; Meng, L.; Zhao, F.; Zhang, C.; Guo, H.; Tian, Y.; Tong, W.; Sutherland, J.W. An improved general variable neighborhood

search for a static bike-sharing rebalancing problem considering the depot inventory. Expert Syst. Appl. 2020, 160, 113752.
23. Dell’Amico, M.; Iori, M.; Novellani, S.; Subramanian, A. The bike sharing rebalancing problem with stochastic demands. Transp.

Res. Part B Methodol. 2018, 118, 362–380.

https://doi.org/10.1007/978-1-4419-1153-7_1068

Appl. Sci. 2021, 11, 6967 25 of 25

24. Gendreau, M.; Jabali, O.; Rei, W. 50th anniversary invited article—Future research directions in stochastic vehicle routing. Transp.
Sci. 2016, 50, 1163–1173.

25. Chemla, D.; Meunier, F.; Calvo, R.W. Bike sharing systems: Solving the static rebalancing problem. Discret. Optim. 2013,
10, 120–146.

26. Erdoğan, G.; Battarra, M.; Calvo, R.W. An exact algorithm for the static rebalancing problem arising in bicycle sharing systems.
Eur. J. Oper. Res. 2015, 245, 667–679.

27. Cruz, F.; Subramanian, A.; Bruck, B.P.; Iori, M. A heuristic algorithm for a single vehicle static bike sharing rebalancing problem.
Comput. Oper. Res. 2017, 79, 19–33.

28. Benchimol, M.; Benchimol, P.; Chappert, B.; De La Taille, A.; Laroche, F.; Meunier, F.; Robinet, L. Balancing the stations of a self
service “bike hire” system. RAIRO Oper. Res. 2011, 45, 37–61.

29. Chalasani, P.; Motwani, R. Approximating capacitated routing and delivery problems. SIAM J. Comput. 1999, 28, 2133–2149.
30. Schuijbroek, J.; Hampshire, R.C.; Van Hoeve, W.J. Inventory rebalancing and vehicle routing in bike sharing systems. Eur. J. Oper.

Res. 2017, 257, 992–1004.
31. Contardo, C.; Morency, C.; Rousseau, L.M. Balancing a Dynamic Public Bike-Sharing System; Cirrelt: Montreal, QC , Canada, 2012;

Volume 4.
32. Dantzig, G.B.; Wolfe, P. Decomposition principle for linear programs. Oper. Res. 1960, 8, 101–111.
33. Benders, J. Partitioning procedures for solving mixed-variables programming problems. Numer. Math. 1962, 4, 238–252.
34. Chemla, D.; Meunier, F.; Pradeau, T.; Calvo, R.W.; Yahiaoui, H. Self-Service Bike Sharing Systems: Simulation, Repositioning, Pricing

; 2013.
35. Caggiani, L.; Ottomanelli, M. A dynamic simulation based model for optimal fleet repositioning in bike-sharing systems. Procedia

Soc. Behav. Sci. 2013, 87, 203–210.
36. He, M.; Ma, X.; Jin, Y. Station Importance Evaluation in Dynamic Bike-Sharing Rebalancing Optimization Using an Entropy-Based

TOPSIS Approach. IEEE Access 2021, 9, 38119–38131.
37. Hu, R.; Zhang, Z.; Ma, X.; Jin, Y. Dynamic Rebalancing Optimization for Bike-Sharing System Using Priority-Based MOEA/D

Algorithm. IEEE Access 2021, 9, 27067–27084.
38. Chiariotti, F.; Pielli, C.; Zanella, A.; Zorzi, M. A dynamic approach to rebalancing bike-sharing systems. Sensors 2018, 18, 512.
39. Karlin, S.; McGregor, J. The classification of birth and death processes. Trans. Am. Math. Soc. 1957, 86, 366–400.
40. Fischer, W.; Meier-Hellstern, K. The Markov-modulated Poisson process (MMPP) cookbook. Perform. Eval. 1993, 18, 149–171.
41. El Sibai, R.; Challita, K.; Bou Abdo, J.; Demerjian, J. A New User-Based Incentive Strategy for Improving Bike Sharing Systems’

Performance. Sustainability 2021, 13, 2780.
42. Chiariotti, F.; Pielli, C.; Zanella, A.; Zorzi, M. A bike-sharing optimization framework combining dynamic rebalancing and user

incentives. ACM Trans. Auton. Adapt. Syst. TAAS 2020, 14, 1–30.
43. Hulot, P.; Aloise, D.; Jena, S.D. Towards station-level demand prediction for effective rebalancing in bike-sharing systems. In

Proceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data Mining, London, UK, 19–23
August 2018; pp. 378–386.

44. Zaki, M.J. Scalable algorithms for association mining. IEEE Trans. Knowl. Data Eng. 2000, 12, 372–390.
45. Agrawal, R.; Srikant, R. Fast algorithms for mining association rules. In Proceedings of the 20th International Conference on

Very Large Data Bases, VLDB, Santiago, Chile, 12–15 September 1994; Citeseer: State College, PA, USA, 1994; Volume 1215,
pp. 487–499.

46. Agrawal, R.; Imieliński, T.; Swami, A. Mining association rules between sets of items in large databases. In Proceedings of the
1993 ACM SIGMOD International Conference on Management of Data, Washington, DC, USA, 25–28 May 1993; pp. 207–216.

47. Houtsma, M.; Swami, A. Set-oriented mining for association rules in relational databases. In Proceedings of the Eleventh
International Conference on Data Engineering, Taipei, Taiwan, 6–10 March 1995; IEEE: Piscataway, NJ, USA, 1995; pp. 25–33.

48. The pandas development team. pandas-dev/pandas: Pandas. Zenodo 2020, doi:10.5281/zenodo.3509134.
49. Wes McKinney. Data Structures for Statistical Computing in Python. In Proceedings of the 9th Python in Science Conference,

Austin, TX, USA, 28 June–3 July 2010; van der Walt, S., Millman, J., Eds.; pp. 56–61, doi:10.25080/Majora-92bf1922-00a.
50. Zaharia, M.; Chowdhury, M.; Franklin, M.J.; Shenker, S.; Stoica, I. Spark: Cluster computing with working sets. HotCloud 2010,

10, 95.
51. Available online: https://smartdata.polito.it/computing-facilities/ (accessed on 02/04/2021).
52. Han, J.; Pei, J.; Mortazavi-Asl, B.; Pinto, H.; Chen, Q.; Dayal, U.; Hsu, M. Prefixspan: Mining sequential patterns efficiently by

prefix-projected pattern growth. In Proceedings of the 17th International Conference on Data Engineering, Heidelberg, Germany,
2–6 April 2001; Citeseer: State College, PA, USA, 2001; pp. 215–224.

53. Zaki, M.J. Efficiently mining frequent embedded unordered trees. Fundam. Informaticae 2005, 66, 33–52.

https://doi.org/10.5281/zenodo.3509134
https://doi.org/10.25080/Majora-92bf1922-00a
https://smartdata.polito.it/computing-facilities/

