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Abstract 

A real-time model-based approach for the control of BMEP (Brake 
Mean Effective Pressure) has been developed and assessed for a Euro 
6 1.6L GM diesel engine. The model provides the fuel quantity 
necessary to achieve a desired BMEP target. The engine features 
complex injection patterns, including pilot, main and multi-after 
injections.  

The approach is based on the use of feed-forward ANNs (artificial 
neural networks), which have been trained using virtual tests 
simulated by a previously developed, low-throughput, mean-value, 
physical combustion model.  

The physical combustion model is based on an improved version of 
the accumulated fuel mass approach, and is capable of predicting the 
heat release and the in-cylinder pressure. The latter quantity is in turn 
used to extract the IMEP (Indicated Mean Effective Pressure). The 
BMEP is then obtained from the IMEP, while taking into account the 
friction and accessory-related contributions. A novelty of this study is 
the assessment of the low-throughput physical combustion model for 
complex injection patterns, including not only pilot and main shots, 
but also multi-after pulses. 

The physical model and the ANN-based model have been assessed 
considering experimental data acquired at the GM-GPS (General 
Motors – Global Propulsion Systems) facilities, under steady-state 
and transient conditions, over several driving cycles. 

Introduction 

The need to comply with the increasingly stringent pollutant emission 
regulations (such as the current Euro 6d limits in Europe) and CO2 
emission constraints (the EU fleet-wide average emission target for 
new cars will be 95 gCO2/km to be reached by 2021) has led to a 
growth in the complexity of the engine hardware and software.  

Some of the recent trends which may produce remarkable benefits for 
both pollutant and CO2 emissions include engine downsizing [1], 
alternative fuels, such as CNG (Compressed Natural Gas) and 
biofuels [2], innovative combustion concepts, such as HCCI 
(Homogeneous Charge Compression Ignition) and PCCI (Premixed 
Charge Compression Ignition) [3], advanced high-pressure common 
rail systems [4-5], innovative combustion controls [6-13] and 
powertrain electrification [14-16]. 

Interest in model-based combustion control has been growing in the 
last few years, due to the increasingly high performance of ECUs 
(engine control units). Model-based combustion controllers offer 
several advantages over the traditional map-based approach, such as a 
reduction in the experimental effort required for calibration, the 
possibility of setting and achieving the desired  combustion 
parameter (e.g., brake mean effective pressure) and pollutant 
emission targets (e.g., engine-out NOx) in real-time, and the potential 
of being integrated with  emerging V2X (vehicle-to-everything) 
technologies. 

Model-based combustion controllers are interesting, especially for 
diesel engines, which are characterized by a higher degree of 
complexity than spark-ignition ones. Although the current social and 
political attitude towards diesel  technology is negative, it should be 
pointed out that recent innovations have led to a dramatic reduction 
in NOx emissions, far below those set in European standards for after 
2020 [17]. Moreover, the diesel technology is expected to remain the 
best solution for light-duty and heavy-duty applications, where it 
offers advantages in terms of both fuel consumption (as well as CO2 
emissions) and fuel costs. Moreover, these advantages may be 
amplified by means of powertrain electrification. 

Low computationally demanding simulation models are generally 
required for the development of model-based combustion controllers. 

Therefore, multidimensional or one-dimensional approaches are 
currently unsuitable for this purpose. The best candidates for the 
development of model-based combustion controllers are mean-value 
zero-dimensional physical models and artificial intelligent systems 
[8] 

Mean-value zero-dimensional models [18-23] are capable of 
simulating combustion and/or pollutant formation processes on the 
basis of a physical approach, and at the same time require a much 
lower computational effort than that required for 3D-CFD or 1D-
CFD approaches. These models are usually highly accurate under 
steady-state operation conditions, and their performance is still 
acceptable for mildly transient conditions [19]. In general, they do 
not require a great calibration effort, due to their physics-based 
nature, and are quite robust outside the calibration range. 

Artificial intelligence systems [24-34] include different 
methodologies, such as the SVM (support vector machine), fuzzy 
logics and ANNs (artificial neural networks). These methods belong 
to the black-box category and are often used for model-based control 
purposes since they require a low computational effort. They are 
capable of capturing the non-linear behaviors of complex systems, 
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without the need to model the physics of the system. The main 
drawback of these types of models is that they in general require a 
large number of experimental tests for robust training and tend to lose 
accuracy when extrapolating outside the calibration range. Moreover, 
they can be subject to overfitting. Among the artificial intelligent 
systems that are available, ANNs have been shown to play an 
important role for engine simulation and performance prediction. 

Background and contribution of the present study 

Given the previous background, a Neural Network-based Real-Time 
(NNRT) model, which can predict BMEP (Brake Mean Effective 
Pressure) in diesel engines, was previously developed in [10] for a 
1.6L diesel engine. The approach consisted in the use of feed-forward 
neural networks, which are trained using a large dataset of engine 
conditions simulated by a mean-value physical combustion model. 
The resulting ANN-based model had the aim of replicating the 
outcomes of the mean-value physical model, but with the advantage 
of requiring a much shorter computational time, in view of its 
onboard implementation in the engine ECU for cycle-by-cycle BMEP 
control. Two different versions of the NNRT model were realized in 
[10], i.e., fuel-to-torque (F2T) and torque-to-fuel (T2F) models. The 
T2F version can be potentially used as a BMEP controller, since it 
provides the fuel quantity that has to be injected into the combustion 
chamber in order to achieve a desired BMEP (or torque) target, which 
is provided as input. 

In this study, the mean-value physical model and the NNRT models 
have been further developed, starting from the versions developed in 
[10]. In particular, the following novelties are proposed: 

1. Mean-value physical combustion model: an improved version 
has been developed, assessed and validated for test conditions 
featuring complex injection patterns, including not only pilot 
and main pulses, but also multi-after injection shots, under both 
steady-state and transient conditions. To the best of the authors’ 
knowledge, there is a lack of low-throughput predictive 
combustion models in the literature that have been validated 
adopting multi-after injection pulses. It should be noted that the 
capability of accurately simulating the combustion process when 
adopting complex injection strategies, including multi-after 
pulses, is a requirement that has to be satisfied in order to 
implement a model-based BMEP controller in a commercial 
engine. 

2. F2T and T2F NNRT models: new versions, which include the 
injection parameters related to the after injection pulses among 
the inputs, have been developed. The newly developed NNRT 
models have been trained using a virtual test dataset generated 
from the improved mean-value physical model, and have been 
assessed and validated for test conditions featuring multi-after 
injection shots, under both steady-state and transient conditions. 
A sensitivity analysis was carried out during the training phase  
to identify the optimal number of hidden layers and neurons. 

The basic idea of the proposed approach is to reduce the calibration 
effort that is required for engine calibration, especially when several 
combustion modes and several injection strategies are adopted. In 
fact, in the traditional map-based approach, several torque-to-fuel 
ECU maps have to be calibrated (at least one for each combustion 
mode) at the test bench, and this requires an extensive and costly 
experimental activity. Instead, a model-based approach for torque 
control needs a much reduced effort for calibration, since a physical 
model does not require many experimental tests to be tuned, and the 
T2F NNRT model is calibrated using the data simulated by the 
physical model, according to a meta-modeling approach. This can 
potentially lead to significant cost savings. 

Figure 1 shows a flow chart of the proposed methodology. 

 

 

 
Figure 1. Flow chart of the developed methodology 

The paper is organized as follows. First, the engine, experimental 
setup and the acquired experimental tests are described. Then, the 
description of the physical combustion model and of the 
improvements that were adopted in order to make it accurate for the 
prediction of operating conditions that feature multi-after injection 
strategies is provided. The description of the NNRT models and of 
their training procedure is subsequently presented. In the results and 
discussion section, first, the accuracy of the physical combustion 
model in terms of heat release and in-cylinder pressure prediction is 
shown. Then, the performance of the physical combustion model and 
of the F2T NNRT models, in terms of BMEP prediction, are 
compared. Finally, the performance of the T2F NNRT model, that 
can potentially be used as a BMEP controller, is shown. 

Engine setup and experimental activity 

The experimental tests for the calibration and validation of the 
models were conducted on a 1.6L Euro 6 GM diesel engine. The 
main technical specifications of the engine are reported in Table 1. 
The engine was fueled with standard diesel oil characterized by an 
average density of 835 kg/m3 at 14°C, an average viscosity of 2 
mm2/s at 40°C and an average cetane number equal to 43. 

Table 1. Main engine specifications. 

Engine type Euro 6 diesel engine 

Displacement 1598 cm3 

Bore x stroke 79.7 mm x 80.1 mm 

Rod length 135 mm 

Compression ratio 16.0 

Valves per cylinder 4 

Turbocharger VGT type 

Fuel injection system Common Rail 

EGR system Long route + short route 

 

The engine is equipped with short-route and long-route EGR 
(Exhaust Gas Recirculation) systems, each of which includes a 
cooler. A throttle valve is installed upstream from the intake manifold 
and EGR junction, in order to allow high EGR rates to be obtained 

Physical mean engine
model, improved to 
simulate operating

conditions with multi-
after strategies 

Used as a virtual engine
Training 
dataset

Fuel-to-torque (F2T) 
NNRT model

Experimental bench tests

(calibration)

Torque-to-fuel (T2F) 
NNRT model
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when the pressure drop between the exhaust and intake manifolds is 
not sufficient.  

The test engine was instrumented with piezoresistive pressure 
transducers and thermocouples to measure the pressure and 
temperature at different locations, such as upstream and downstream 
from the compressor, turbine and intercooler, and in the intake 
manifold. Piezoelectric transducers were installed to measure the 
pressure time-histories in the combustion chamber of the cylinders. 
Several consecutive cycles (ranging from 50 to 200) were acquired 
for each steady-state test, using a crank angle step of 0.1 deg, and the 
average in-cylinder pressure trace was evaluated and used for model 
calibration. The in-chamber pressure traces were pegged on the basis 
of the pressure in the intake manifold, which was measured by means 
of a high-frequency piezoresistive transducer. 

Several tests were conducted under steady-state and transient 
conditions. Details of the steady-state tests are provided hereafter: 

- Full engine maps were carried out for different combustion modes, 
including or not including multi-after injections strategies, with the 
engine warmed up. Details about the number and type of combustion 
modes that are implemented in the ECU, as well as the injection 
strategies (number of injections and type of injections) which are 
adopted within each combustion mode,  could not be provided for 
confidentiality reasons of the engine OEM. Therefore, it was only 
possible to classify the available dataset by splitting it into two sub-
datasets, i.e., with and without the use of multi-after strategies. The 
speed range was between 750 and 3500 rpm, and the BMEP range 
was between 0 and 23 bar. A total of 521 tests was run. 

- Full-factorial sweep tests of the multi-after injection parameters 
were conducted. Several injection patterns were considered at fixed 
speed and main injection quantity conditions, several injection 
patterns were considered, featuring a single after, a double after, a 
triple after and a quadruple after strategy. The fuel quantity and the 
SOI of each after pulse was varied (considering 3 levels for each 
parameter) for each injection pattern, and the other parameters were 
kept fixed (i.e., fuel quantity of the pilot, main and remaining after 
pulses, injection timing of the pilot and main pulse and dwell-time of 
the remaining after pulses). The engine was warmed up. A total of 
327 points were considered. The overall engine speed range was 
between 1000 and 2000 rpm, while the overall BMEP variation was 
between 2 and 15 bar. Table 2 reports the upper and lower values of 
the injection timings and quantities for the after pulses. 

Table 2. Upper and lower values of the injection timings and quantities for the 
pilot and after pulses. The angles are indicated in crank angle degrees after top 
dead center (ATDC) 

Type of 
injection pulse 

Min SOI 
(deg 

ATDC) 

Max SOI 
(deg 

ATDC) 

Min qaft 
(mm3/cyc/cyl) 

Max qaft 
(mm3/cyc/cyl) 

After 1 ~10 ~60 ~1  ~9 

After 2 ~20 ~70 ~1 ~10 

After 3 ~30 ~90 ~1 ~8 

After 4 ~50 ~80 ~1 ~9 

- Low and negative brake torque tests were run, with the engine 
warmed up, over a speed range of between 1000 rpm and 4000 rpm, 
and a BMEP range of between -2.5 and 2.5 bar (72 tests). 

- Engine map tests were conducted in combustion modes featuring 
multi-after injection strategies under cold engine conditions (coolant 
temperature around 40°C). The speed range was between 1000 and 

3750 rpm, and the BMEP range was between 0 and 23 bar. A total of 
39 tests were considered. 

The overall dataset included a total of 959 steady-state tests. 

A list of the transient tests is provided in Table 3. 

Table 3. List of the acquired transient tests 

Type of transient test Engine 
thermal state 

Combustion mode (with or w/o 
multiafter injection strategy) 

Time-to-boost ramps Warm 
-w/o (N = 1000, 1500, 2500, 
2750, 3250 rpm) 
-with (N=1000, 1500, 2250, 
3250 rpm) 

Accelerator pedal position 
ramps (0-30%, 0-60%, 0-90%) Warm 

-w/o (N = 1000, 1500, 2000, 
2500, 3000, 3500 rpm) 
-with (N = 1000, 1500, 2000, 
2500, 3000, 3500 rpm) 
 Accelerator pedal position 

ramps (0-30%, 0-60%, 0-90%) 
Cold -w/o (N = 1000, 3000 rpm) 

-with (N = 1000, 3000 rpm) 
  

Physical and NNRT models 

Mean-value physical combustion model 

The mean-value physical combustion model was used for the training 
of the F2T and T2F NNRT models. The model had been developed in 
previous studies [19]. However, it has been improved and assessed in 
the present study in order to simulate test conditions featuring 
complex injection patterns with multi-after strategies. The conceptual 
scheme of the model is reported in Fig. 2. 

 
Figure 2. Scheme of the mean-value physical combustion model 

The physical model includes the simulation of: 

1. Chemical energy release: the simulation  is based on the 
accumulated fuel mass approach (AFM). The input data of the model 

Heat release 
model:  AFM

Qch
Heat transfer 

model Qnet

Pressure modelPressure 
trace

Pumping and 
friction models

(including 
ancillaries)

IMEPn, 
BMEP

IMEPg, PFP

Virtual Pressure Model 
(VPM)

N, pIMF, ΤIMF, pEMF,
(DTpil,j, qpil,j DTaft,j, qaft,j)∀j, pf, SOImain, qf
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are the injection parameters, the main thermodynamic conditions in 
the intake manifold and the engine operating parameters.  

2. In-cylinder pressure: this approach is based on the inversion of a 
single-zone heat release model that requires the net energy release as 
input; the latter is derived from the predicted chemical energy release 
and the heat transfer between the charge and the walls. Polytropic 
evolutions are assumed during the compression and expansion 
phases. The simulation of the in-cylinder pressure allows several 
parameters, such as PFP (peak firing pressure) and IMEPg (gross 
indicated mean effective pressure), to be evaluated. 

3. Pumping and friction losses: the net IMEP (IMEPn) and BMEP 
(Brake Mean Effective Pressure) are estimated on the basis of friction 
(FMEP) and pumping (PMEP) models. The Chen-Flynn approach 
was used to predict FMEP as a function of the engine speed and PFP. 

A detailed description of the model is given in [19]. However, the 
main equations are synthetically reported in Table 4 (Qch and Qnet 
models) and in Table 5  (pressure model) to render the paper self-
consistent. The model parameters are highlighted in the tables. 

Table 4. Main equations of the Qch and Qnet models. 

Qch 
model 

ch,pil , j
pil , j fuel ,pil , j pil , j ch,pil , j

dQ
( t ) K [Q ( t ) Q ( t )]

dt
τ= − −  

,
1, , ,

,
2,

( ) [ ( ) ( )]

( )

ch main
main fuel main main ch main

fuel main main
main

dQ
t K Q t Q t

dt
dQ t

K
dt

τ

τ

= − − +

−
+

 

ch,aft , j
aft , j fuel ,aft , j aft , j ch,aft , j

dQ
( t ) K [Q ( t ) Q ( t )]

dt
τ= − −  

( )
SOI , j

t

fuel , j f ,inj L EOI , j
t

Q ( t ) m t H dt t t= ≤∫ 

 

( )
EOI , j

SOI , j

t

fuel , j f ,inj L EOI , j
t

Q ( t ) m t H dt t t= >∫ 

 

n

ch ch, j
j 1

Q Q
=

= ∑  

where j indicates the generic injection pulse, HL indicates the lower heating 
value of the fuel, K and τ are the combustion rate coefficient and ignition 

delay coefficient of the Qch model; pil: pilot pulses, aft: after pulses 

 

Qnet 
model 

f ,inj L ht ,glob
net ,ht ch

f ,inj L

m H Q
Q Q

m H

−
≅  

net net ,ht f ,evapQ Q Q≅ −  

where Qf,evap and Qht,glob indicate the fuel evaporation heat from SOI to SOC 
(J) and the heat exchanged between the charge and the walls over the 

combustion cycle (J), and  is the total injected fuel mass per cyc/cyl 

 

It should be noted that the chemical energy release model reported in 
Table 5 has been extended, with respect to previous versions, by 
adding the contributions of the after pulses. 

Table 5. Main equations of the in-cylinder pressure model. 

Pressure 
model 

Starting condition (pIVC): IVC IMF IMFp p p∆= +  

Compression phase (IVC to SOC): npV const=  

Combustion phase (SOC to EOC=480°): 

( )
i 1

i i 1 i 1 i 1
net

i
i i 1 i

p 1Q V V p V
2 1p

V V V
2 1

γ

γ

−
− − −

−

∆ − − +
−=

− +
−

 

Expansion phase (EOC to EVO): n'pV const=   

where pIMF indicates the intake manifold pressure, pIVC the in-
cylinder pressure at IVC, and n and n’ the compression and expansion 

polytropic exponents. 

 Estimation 
of IMEP 
and 
BMEP 

360

0
g

0

pdV
IMEP

V
=

∫  

n gIMEP IMEP PMEP= −  

nBMEP IMEP FMEP= −  

 

The pressure discretization scheme shown in Table 5  was proposed 
in [8]. In that study, it was shown that such a scheme allows the loss 
in accuracy to be reduced to a great extent when the computational 
step is increased from 0.1 to 1 deg.  

The isentropic coefficient γ=cp/cv was set constant and equal to 1.37.  

Model calibration 

The model calibration phase is performed in two steps: 

• Step 1: this is constituted by the identification of the optimal 
values for the model tuning coefficients highlighted in Table 4  
and Table 5, for each available experimental test. Basically, it is 
a test-by-test calibration of the parameters.  
The calibration parameters of  the Qch model are tuned as 
follows. First, the start of combustion (SOC) is identified for 
each pulse, by analyzing the experimental heat release trace 
(which is derived from the measured in-cylinder pressure). This 
allows the ignition delay parameters (τ) to be derived, as the 
difference between the SOI and SOC angles of each pulse. 
Subsequently, the K parameters are identified, in order to 
achieve the best possible matching between the predicted and 
experimental Qch profiles, using a least square fitting algorithm. 
The experimental values of the Qf,evap and Qht,glob parameters of 
the Qnet model are then derived, for each calibration point, on the 
basis of the pressure-derived net energy release. The 
experimental values of the ∆pIMF, n and n’ parameters of the 
pressure model are derived, for each calibration point, on the 
basis of the analysis of the measured in-cylinder pressure trace. 
Finally,  the experimental values of PMEP are obtained from the 
analysis of the pressure curve during the gas exchange process, 
while FMEP is obtained as the difference between the pressure-
derived IMEPn and the measured BMEP. 

• Step 2: this consists in the identification of physically consistent 
correlations for each model parameter, as a function of 
significant engine variables, using the optimal values identified, 
test by test, in step 1. The input variables are selected by making 
a trade-off between prediction accuracy (which takes benefit of 
a large number of input variables) and model robustness (which 
suffers from the adoption of a large number of variables). 
 

f ,injm
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Several modifications were made, in comparison with the baseline 
procedure developed in previous studies, in order to improve the 
calibration of the model when multi-after injections are used: 

• The calibration phase of the ‘K’ coefficients of the Qch model 
was assessed by considering the combustion of each injection 
pulse separately. This means that, in order to calibrate, for 
example, the ‘K’ coefficient of the ‘after 2’ pulse (i.e., Kaft,2), the 
part of heat release used for least square minimization is that 
included between the SOC of the ‘after 2’ pulse and the SOC of 
the ‘after 3’ pulse. This is illustrated in Fig. 3. The main reason 
for the small discrepancy between the predicted and 
experimental trends of Qch in correspondence to the combustion 
of the last after pulse, in Fig. 3, could be due to uncertainties in 
the injection quantities that are used in the model, which were 
derived from the ECU setpoints. 
 

 

Figure 3. The heat release intervals considered for the calibration of each K 
parameter of the Qch model. SOIe: electric SOI; SOIh: hydraulic SOI. 

• The Qch model calibration was performed through an automatic 
tool in order to save time. In particular,  the tool first calculates 
the value of the start of combustion of each pulse by analyzing 
the peaks of the experimental heat release rate (using the 
“findpeak” function of matlab), and evaluates the ignition delay 
values (τ) for each injection pulse, as the difference between the 
start of combustion and the hydraulic start of injection. Once the 
τ values are known, the tool applies the heat release model 
equations and tunes the K values of each injection pulse by 
means of least square minimization, in order to have the best 
matching with the experimental heat release trace. As previously 
stated, the K value of each pulse is calibrated independently, on 
the relevant heat release interval between its SOC and the SOC 
of the following pulse. However, the tool may fail to correctly 
identify the correct calibration parameters for some operating 
conditions. The main reasons for this are a possible erroneous 
SOC identification of the different pulses, and discrepancies 
between the actual injected fuel quantity and the desired setpoint 
one, which is derived from the injector maps and  used in the 
model. These discrepancies can lead to a poor matching between 
the predicted and experimental heat release curves, and therefore 
to the identification of erroneous values of the K parameters 
(especially for the main pulse). Therefore, these points should be 
excluded when the correlations for the K and τ parameters are 
built in calibration step 2. The  point exclusion criteria are 
reported in Table 6. 

Table 6. Criteria for point exclusion during the Qch model calibration phase 

Type of 
parameter 

Criteria that have to be satisfied for acceptance of the 
calibration point in the dataset used for the building 
of the correlations 

Kmain Injection strategy w/o multiafter, τmain <15 deg 

τmain Injection strategy w/o multiafter 
Kaft,1,2 0<Kaft,1,2<0.2deg-1&0<τaft,1,2<15deg 

Kaft,3,4 0<Kaft,3,4<0.2deg-1&0<τaft,3,4<25deg 

τaft,1,2 τaft,1,2<15deg 

τaft,3,4 τaft,3,4<25deg 

 
• Finally, it was verified that when multi-after injection strategies 

are adopted, a significant error occurs, especially at lower loads, 
if a single correlation is identified for the heat transfer when the 
whole test dataset  is considered (with and w/o multi-after). 
However, an improvement , which involves splitting the heat 
transfer calibration dataset into four parts (high load without 
multi-after strategy, low load without multi-after strategy, high 
load with multi-after strategy, low load with multi-after 
strategy), and then identifying  four separate exponential 
formulas, was made. 

The identified correlations of the Qch and Qnet model calibration 
parameters are reported hereafter: 

,
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where  ρSOI, ρSOC in equations (1-18) indicate the in-chamber 
densities evaluated at the start of injection and combustion, 
respectively, and are expressed in kg/m3. The injection pressure pf is 
expressed in bar, the engine speed N in rpm, the total injected fuel 
quantity qf  (used as a load parameter) in mm3/cyc/cyl and the intake 
oxygen concentration O2 in %. TIMF and pIMF indicate the intake 
manifold temperature and pressure, respectively. 

It should be noted that the units of the K and τ parameters are 
expressed as a function of the crank angle. This is because the heat 
release model equations reported in Table 5  are implemented over a 
crank angle domain. 

The following correlations, which are functions of the intake 
manifold thermodynamic conditions and of the engine load and 
speed, were identified for the pressure model parameters: 

0.0203 0.0126 0.0061.34 IMF fn T N q−=           (19) 

0.564 0.0004 0.005' 0.050 IMF fn T N q− −= ⋅           (20) 

[ ] 0.980 0.167
IMF I

0 0
MF

.0 5
fp 0.bar N q035 p∆ −=       (21) 

The following correlation was identified to evaluate the PMEP of the 
engine considered in this study: 

0.939 0.387 0.910 0.331[ ] 0.0054 0.077EMF IMFPMEP bar p N p N= −⋅ ⋅           (22) 

The Chen-Flynn approach [35] was adopted to estimate FMEP, and 
the following correlation was identified for the engine considered in 
this study: 

2[ ] 0.040 1.883 6.24 8 0. 24 05 0FMEP bar E N N PE FP− ⋅ +− ⋅ ⋅= + +   23) 

where the engine speed is expressed in rpm and PFP is expressed in 
bars. The squared correlation coefficient R2 between the predicted 
and experimental values of FMEP is of the order of 0.74. 

NNRT models 

The neural network-based real-time (NNRT) developed in this study 
models are constituted by feed-forward, single hidden layer ANNs, 
which have been trained using data simulated by the physical mean-
value combustion model, according to a meta-modeling approach. 

Feed-forward ANNs were chosen, since it was verified that they are 
sufficiently accurate for the required application, and moreover 
because they are typically adopted in the literature for similar 
applications [10]. Concerning the choice of the feed-forward NNs, 
we made a sensitivity analysis also concerning the number of inner 
layers and the number of neurons, and we verified that a network 
with single inner layer allows to reproduce very well the physical 
model behaviour, therefore it was not necessary to adopt a larger 
number of inner layers or a more complex neural network structure. 

As previously stated, two different versions of the NNRT model were 
realized, i.e., the F2T and T2F models. The T2F version can 
potentially be used as a BMEP controller, since it provides the fuel 
quantity of the main pulse (or the total fuel quantity) that has to be 
injected into the combustion chamber in order to achieve a desired 
BMEP (or torque) target, which is provided as input. 

The NNRT model training data were derived by resorting to a local 
DoE approach (see [10]),  applying a latin hypercube technique 
around each point of each available engine map (i.e., for several 
combustion modes). The following quantities were varied around 
their nominal values: injection pressure (pf), intake O2 concentration 
(O2), intake and exhaust manifold pressure (pIMF, pEMF), intake 
manifold temperature (TIMF), dwell-angle (DA) and injected fuel 
quantity of 4 after pulses and 2 pilot pulses, and start of main 
injection (SOImain). The same variables were used as inputs for the 
NNRT models (except for the dwell-angle of the injection pulses, 
which was replaced by the start of injection), as shown in Fig.4, 
together with the qmain parameter (for the F2T NNRT model) and the 
BMEP target (for the T2F NNRT model). 
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Figure 4. Schemes of the F2T and T2F NNRT models. 

It should be noted that the T2F model can provideeither the main 
injection quantity (qmain) or the total injected quantity (qf) as output, 
depending on the specific requests of the ECU in which it is 
integrated. 

The variation range of each parameter of the DoE is reported in Table 
7. 

Table 7. Variation range of each parameter of the DoE 

Parameter Variation range Absolute (A) or relative (R) 

pf ±20% R 

O2 ±2% A 
pIMF, pEMF ±20% R 
TIMF ±20° A 

DAaft,j, DApil,j ±60% R 

SOImain ±5 CA deg A 

qaft,j, qpil,j ±30% R 

 

Two separate datasets were generated for the training of the NNRT 
models. In the first one,100 points were generated for each local DoE 
in all the combustion modes and 400 points were generated in the 
second one. The overall size of the two datasets is of the order of 
50000 (50k) and 200000 (200k) points, respectively. 

The same datasets were used for the training of the F2T and T2F 
models. 

Calibration procedure 

The calibration procedure was carried out in Matlab R2016b, by 
conducting a sensitivity analysis, in which the number of inner layers 
(1, 2), the number of neurons of each inner layer (1, 2, 4, …, 20) and 
the calibration datasets (50k, 200k points) were varied, as shown in 
Table 8. This training schedule led to the evaluation of 40 different 
types of NN structures. The neural network training was performed 
using the standard Levemberg-Marquardt method and selecting 50% 
of the data for calibration, 25% for validation and 25% for testing. 

Table 8. Cases investigated for the training of the T2F and F2T NNRT 
models. 

 Training dataset size: 
50k points 

Training dataset size: 
200k points 

1 hidden layer 
Number of neurons of 
each hidden layer: 1, 2, 

4, 6, …, 20 

Number of neurons 
of each hidden layer: 

1, 2, 4, 6, …, 20 

2 hidden layers 
Number of neurons of 
each hidden layer: 1, 2, 

4, 6, …, 20 

Number of neurons 
of each hidden layer: 

1, 2, 4, 6, …, 20 

 

The number of neurons was not increased beyond 20, because it was 
noted that, in general, the predictive performance and the robustness 
of the trained neural network tended to reduce when  a too large 
number of neurons was used for constant calibration datasets. The 
number of hidden layers was not increased beyond 2, because it was 
noted that the neural network featuring two hidden layers showed a 
more irregular behavior than that featuring a single hidden layer (i.e., 
low errors for several points, and extremely high errors for a few 
points), without any advantage in terms of predictive capability. In 
fact, the neural network featuring a single inner layer already 
provided very similar results to those of the physical model. 
Moreover, an increase in the virtual calibration dataset would be 
required if the number of hidden layers were increased, and this 
would consequently increase the training time without introducing 
any benefits to  the network performance. 

Since it was noted that the performance of the network, for a given 
structure, in terms of number of layers and neurons, changed 
significantly as the initial conditions for training were changed, 15 
training attempts were made for each investigated structure by 
randomly changing the initial conditions, and the attempt which led 
to the best predictive performance was then taken. 

The predictive capability of each neural network structure was 
evaluated after the training phase by applying each network to the 
experimental dataset (not used for training), and to the overall virtual 
dataset used in the training procedure (including calibration, 
validation and testing points). The corresponding root mean square 
errors (indicated as RMSEval and RMSEtr, respectively) were then 
estimated by comparing the predicted and experimental values of 
BMEP values (for the F2T NNRT model) and qf (for the T2F NNRT 
model). It should be noted that RMSEval is the real indicator of the 
predictive capability of the neural network, while the RMSEtr 
parameter only measures the capability of the network to fit the 
dataset used for training. 

The s best neural network structure was chosen by making a trade-off 
between the accuracy and the neuron number. Fig. 5a shows  the 
accuracy of the F2T NNRT model with 1 hidden layer calibrated 

 qmain
 pf
 pIMF , pEMF
 TIMF, O2
 SOIaft,j, SOIpil,j
 qaft,j, qpil,j
 SOImain

F2T  NNRT model
Input Output

 BMEP

… …
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Input Output

 qmain

… …

(a)

(b)

 BMEP target
 pf
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using the 200k dataset, as an example, in terms of RMSEval and 
RMSEtr as a function of the neuron number. 

 

Figure 5. (a): RMSEval and RMSEtr values as functions of the number of 
neurons of the hidden layer, for the F2T NNRT model with 1 hidden layer, 
calibrated over the 200k dataset. (b): RMSEval and RMSEtr values for the 15 
different training attempts of the network featuring 18 neurons, varying the 

initial conditions. 

It can be seen that, in general, the RMSEtr always tends to decrease 
when the neuron number increases, while RMSEval tends to stabilize 
or even increase when the number of neurons of the hidden layer 
increases, and this behavior is likely to indicate overfitting. Finally,  
18 neurons were selected as the best trade-off between predictive 
accuracy and neuron number. Fig. 5b shows how RMSEval and 
RMSEtr changed for 15 different training attempts, when varying the 
initial conditions. The 7th attempt was selected as it leads to the 
minimum RMSEvalvalue. 

The optimal neural network structure was  also selected by evaluating 
the robustness of the network. This was done by checking that the 
network did not feature any highly oscillating errors, in terms of 
BMEP or fuel estimation, such as particularly low errors in several 
points and very large errors in a few points, since such behaviour is 
undesirable for  real time control applications. It was verified that this 
behaviour is more likely to occur when adopting two hidden layers. 

The optimal structures selected for the T2F and F2T NNRT models 
are reported in Table 9. 

Table 9. Optimal structures selected for the T2F and F2T NNRT models, 
along with the RMSEval values of BMEP (F2T model) and qf (T2F model). 

 Training dataset 
size:  

Number of 
hidden layers 

Number of 
neurons of 
the hidden 

layer 

RMSEval 

F2T NNRT 
model 200k points 1 18 0.35 bar 

T2F NNRT 
model 200k points 1 12 1.17 

mm3/cyc/cyl 

 

Although the RMSE for the validation phase is basically constant for 
a neuron number higher than 8, we finally decided to choose the net 
with 18 neurons since the RMSE for the training phase is lower.  

Finally, it was also interesting to verify the computational time that 
was required for the generation of the DoE and for the training of the 
neural networks, as a function of the neuron number, the number of 
hidden layers and the number of calibration points. Basically, the 
mean-value physical model requires an average computational time 
of about 9 minutes for the generation of the 50k virtual dataset, and 
of 33 minutes for the generation of the 200k dataset, when it is run, in 
Matlab R2016b, on a 3.4 GHz PC equipped with 32 GB of RAM. 

The results related to the computational time required for training are 
shown, in Fig. 6, for the different investigated F2T NNRT models 
(similar results were verified for the T2F NNRT model). The figure 
reports the computational time (h) that is required for the training of 
the F2T NNRT model, as a function of the total number of neurons of 
the hidden layers, for different training datasets (50k, 200k, indicated 
with ‘S50’ and ‘S200’, respectively) and different numbers of hidden 
layers (1, 2, indicated with ‘L1’ and ‘L2’, respectively). 

 
Figure 6. Computational time (h) required for the training of the F2T NNRT 
model, as a function of the total number of neurons of the hidden layers, for 
different training datasets (50k, 200k, indicated with ‘S50’ and ‘S200’, 
respectively) and the different numbers of hidden layers (1, 2, indicated with 
‘L1’ and ‘L2’, respectively). 

It can be seen, in Fig.6, that the computational time is closely related 
to the total number of neurons of the hidden layers, regardless of the 
number of hidden layers of the neural network. 
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The selected neural network for the F2T NNRT model (L1 S200, 
with 18 neurons in the hidden layer) requires a training time of the 
order of 3h. 

Results and discussion 

The main results that are reported in this section can be summarized 
as follows. First, the capability of the mean-value physical 
combustion model to estimate the heat release, heat release rate and 
in-cylinder pressure, when adopting complex injection strategies, is 
discussed for two selected engine conditions.  

A comparison of the performance of the mean-value physical 
combustion model and of the F2T NNRT model, in terms of  BMEP 
estimation under steady-state and transient operation, is then 
reported. 

The performance of the T2F NNRT model  is then discussed under 
steady-state and transient operation. 

Finally, a comparison between the computational time required for 
the physical model and that required by the LNN model is reported. 

It should be noted that, when the models are applied under steady-
state operation conditions, all the inputs, except for the intake 
pressure and temperature, were taken from bench measurements (i.e., 
exhaust pressure, intake O2 concentration, injected fuel quantity…). 
Instead some inputs were not available from the test bench for the 
transient validation, i.e., injected fuel quantity and exhaust manifold 
pressure. These quantities were obtained from ECU maps or models. 

Mean-value physical combustion model: estimation of 
the heat release, heat release rate and in-cylinder 
pressure  

The capability of the mean-value physical combustion model to 
estimate the heat release, the net heat release rate and the in-cylinder 
pressure, when complex injection patterns featuring multi-after 
injections are adopted, has been evaluated. It should be noted that the 
model was applied to all the available 959 steady-state tests (see the 
next sections). However, for the sake of brevity, only two engine 
points of the full-factorial sweep tests have here been selected, one to 
be representative of a low-load engine condition 
(N=1250rpmxBMEP=3.4bar), and the other one of a medium-high 
load condition (N=2000rpmxBMEP=11.6bar). The selected engine 
points feature 3 and 4 after pulses, respectively. The results are 
shown in Fig. 7 (low load point) and Fig. 8 (medium-high load 
point). A comparison of the predicted (red) and experimental (blue) 
trends of the cumulative chemical heat release (a), of the net heat 
release rate (b) and of the in-cylinder pressure (c) are shown in each 
figure. For confidentiality reasons, the chemical energy release and 
net heat release rate curves were normalized with respect to a fixed 
value, and only relative variations are shown for the pressure and 
crank angle values. Moreover, the SOIe, SOIh and SOC values are 
also indicated in the heat release and net heat release rate charts with 
circle, cross and star symbols, respectively. The injection rate profiles 
are also plotted.  

Figure 7. Comparison of the predicted (red) and experimental (blue) trends of 
Qch (a), net heat release rate (b) and in-cylinder pressure (c) for a low load 
point of the full-factorial sweep tests related to the multi-after parameters.  
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Figure 8. Comparison of the predicted (red) and experimental (blue) trends of 
Qch (a), net heat release rate (b) and in-cylinder pressure (c) for a medium-
high load point of the full-factorial sweep tests related to the multi-after 
parameters.  

 

It can be seen that the mean-value physical model is able to 
reproduce the complex trends of the chemical heat release, heat 
release rate and in-cylinder pressure for the considered examples 
when complex injection strategies are adopted. The main reason for 
the small discrepancies between the predicted and experimental 
trends of NHRR in Figs. 7-8 could be due to uncertainties in the 
injection quantities that are used in the model, as well as to a non-
optimal estimation of the ‘K’ parameters of the heat release model, 
which are derived from the correlations (1-7). However, these local 
errors in heat release prediction do not affect significantly the 
accuracy in torque prediction, as will be shown in the next sections. 

Comparison of the performance of the physical and 
F2T NNRT models 

The physical and F2T NNRT models have been applied to the steady 
state test dataset. Figure 9 reports the predicted vs. experimental 
values of BMEP, obtained using the two models. The different types 
of tests are highlighted in the charts with different colors (‘w/o’ or 
‘w’ denote the conditions without or with the multi-after strategy, 
‘Map’ denotes the engine map tests, ‘FF’ denotes the full-factorial 
sweep tests of the multi-after injection parameters, ‘Neg’ the low and 
negative torque tests, and ‘Map Cold’ represents the engine map tests 
with multi-after in cold conditions). The prediction accuracy of each 
model was quantified by means of the  RMSE. Moreover, an error 
boundary, which corresponds to 0.39 bar when the BMEP values are 
lower than 3.93 bar, and to 10% when the BMEP values are higher or 
equal to 3.93 bar was defined, and the percentage of points for which 
the absolute error is lower than the defined boundary (indicated with 
P) was estimated.. A comparison of the RMSE and P values of the 
physical and the F2T NNRT models is reported in Fig. 9 for the 
different test types. 
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Figure 9. Predicted vs. experimental BMEP values for the steady-state test 
dataset, considering the mean-value physical combustion model (a) and the 
F2T NNRT model (b). 

 
Figure 10. Comparison of the RMSE and P values of the physical and the F2T 
NNRT models, with reference to BMEP estimation, for the different steady-
state tests. 

It can be seen, from Figures 9-10, that the F2T NNRT model features 
a similar accuracy to that of the mean-value physical model (the 
overall RMSE is of the order of 0.35 bar). Moreover, the results 

reported in Figure 10 indicate that the accuracy of the models does 
not deteriorate significantly when multi-after injection strategies are 
adopted (e.g., the RMSE is of the order of 0.27-0.28 bar for the 
engine map tests w/o multi-after pulses, and of the order of 0.32-0.35 
bar for the engine map tests with multi-after pulses). The error also 
remains low for the low and negative torque tests (RMSE 0 0.48-0.50 
bar) and for engine map tests under cold conditions with multi-after 
strategies (RMSE = 0.42-0.46 bar). The results obtained under cold 
engine conditions indicate that engine brake torque is not affected to 
any great extent when  the coolant temperature is higher than 40°C. 
In general, it can also be seen that around 90% of the points are 
within the error boundary for the first three test categories, while the 
percentage is minimum for the low/negative torque tests. However, 
the torque prediction for these test cases is affected by a high relative 
error, since the absolute values of BMEP are very low. 

The performance of the two models was also investigated under 
transient operation conditions. Figure 11 shows the comparison 
between the values of RMSE and P, concerning the BMEP 
estimation, for the mean-value physical combustion model and F2T 
NNRT model, for the different considered tests. 

 
Figure 11. Comparison of the RMSE and P values of the physical and the F2T 
NNRT models, with reference to BMEP estimation, over the different 
transient tests. 

It can be seen  that, in general, although the accuracy of the 
estimation of BMEP may change significantly, depending on the 
specific test, it is not deteriorated by the adoption of combustion 
modes featuring multi-after injection strategies. Moreover, it should 
be noted that, in general, the error is higher than that of the steady-
state tests. This error may also be due to  reasons other than the 
model accuracy. For example, it may be affected by temporal shift 
errors between some input quantities of the model and the measured 
BMEP trace. It was in fact verified that short temporal shifts may 

Time-to-boost ramp with multi-after (warm)Time-to-boost ramp w/o multi-after (warm)

Accelerator ramp with multi-after (warm)Accelerator ramp w/o multi-after (warm)

Accelerator ramp with multi-after (cold)Accelerator ramp w/o multi-after (cold)
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lead to a large increase in the RMSE values. In addition, inaccurate 
estimations of intake O2 and exhaust manifold pressure may also 
contribute to these increases. Finally, it should be noted that  the fuel 
mass provided to the models as input was taken from the injector 
maps of the ECU for the transient tests, since the measurement of the 
bench flow meter was affected by  excessive noise under transient 
operation conditions. This may have led to an increase in the RMSE 
error, as will be shown in the next paragraphs. 

Two of the previous transient tests are shown in Figures 12-13 as 
examples. The figures report a comparison of the predicted (blue line: 
mean-value physical model, dashed black line: F2T NNRT model) 
and experimental (red line) trends of BMEP over two transient tests 
featuring combustion modes without (a) and with (b) multi-after 
injection strategies. Only relative variations of BMEP are shown in 
the charts, for confidentiality reasons. Figure 12 refers to a time-to-
boost ramp at N=1500 rpm, while Fig. 13 refers to an accelerator 
pedal position ramp at N=3500 rpm. These two transient tests were 
selected in order to show why the percentage of points within the 
error boundary may be low for some cases (i.e., accelerator pedal 
position ramp without a multi-after strategy). The upper and lower 
boundaries of BMEP, which were defined in order to estimate the ‘P’ 
parameter in Fig. 11, are also reported in the figures with dashed red 
lines. 

 

Figure 12. Experimental and predicted trends of BMEP over the time-to-boost 
ramp at N=1500 rpm for test cases featuring combustion modes without (a) 
and with (b) multi-after injection strategies 
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Figure 13. Experimental and predicted trends of BMEP over an accelerator 
pedal position ramp at N=3500 rpm for test cases featuring combustion modes 
without (a) and with (b) multi-after injection strategies.  

The figures show that the results of the F2T NNRT model are in line 
with those of the physical model also in transient operation 
conditions. It can be seen, in Fig. 13a, that, although the percentage 
of points within the error boundary is 32.1%, the predicted BMEP 
values are in line with the upper boundary. Moreover, the BMEP 
error may not only be due to the accuracy of the model, but also to 
the fact that the setpoint fuel quantity derived from the ECU maps 
(which is provided to the models as input) may be different from the 
real injected quantity. Figures 13a and 13b in fact show a comparison 
between the fuel quantity measured from the fuel meter (black line in 
the small box) and the ECU fuel setpoint (red line in the small box).  
It can be seen that the ECU setpoint quantity is higher than the real 
injected quantity for the test without a multi-after strategy, and lower 
for the test with a multi-after strategy. The BMEP error is in line with 
the fuel error in both cases. It was not possible to use the fuel 
quantity from the test bench fuel meter as input for the model over 
the transients, due to high oscillations and to a slow dynamic 
response. 

It is also interesting to note, in Fig. 13b, that a slightly increasing 
trend in the real injection quantity occurs, even though the fuel 
quantity setpoint of the ECU is constant. This may be related to 
dynamic effects, such as pressure waves in the injection pipes or 
thermal effects on the injectors, which may lead to different injected 
quantities, even for constant injection pressure and energizing time 
values. Finally, Fig. 14 shows a zoomed view of the rising and 
descending edges of the transient tests shown in Figs. 12-13. With 
reference to the accelerator pedal position ramp test, the central ramp 
was considered. 

 

Figure 14. Zoomed view of the rising and descending edges of the transient 
tests shown in Figs. 12-13. 

Performance of the T2F NNRT model 

The performance of the T2F NNRT model is discussed in this 
section.  

Figure 15 reports the predicted vs. experimental values of the total 
injected quantity qf. The fuel quantity values were normalized for 
confidentiality reasons. The different types of tests are highlighted in 
the charts with different colors. The prediction accuracy of each 
model is quantified by the squared correlation coefficient (R2) and by 
the RMSE. Moreover, a fuel error boundary, which was derived from 
the BMEP error boundary, was defined considering an average value 
of the engine thermal efficiency, and the percentage of the points for 
which the absolute error is lower than the defined boundary 
(indicated with P) was estimated. The results are indicated in Figure 
16. 
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Figure 15. T2F NNRT model: predicted vs. experimental values of qf for the 
steady-state test dataset. 

 

 
Figure 16. RMSE and P values of the T2F NNRT model, with reference to qf 
estimation, for the different steady-state tests. 

It can be seen, from Fig. 15, that the overall RMSE value is of the 
order of 1.2 mm3. Moreover, the results reported in Fig. 16 indicate 
that the T2F NNRT model works correctly for all of the different 
types of tests.  

Finally, the performance of the T2F NNRT model was also 
investigated under transient operation conditions. Figure 17 shows  
the RMSE and P values, concerning the qf estimation from the T2F 
NNRT model for the different considered tests.  

 

 
Figure 17. RMSE and P values of the T2F NNRT model, with reference to qf 
estimation, over the different transient tests. 

 

Figures 18-19 report a comparison of the predicted (blue line: T2F 
NNRT model) and experimental (red line: fuel from ECU, black line: 
fuel from test bench fuel meter) trends of qf for the same transient 
tests considered for the F2T model. Moreover, the fuel quantity 
values in these figures were also normalized for confidentiality 
reasons. Figure 18 refers to the time-to-boost ramp at N=1500 rpm, 
while Fig. 19 refers to the accelerator pedal position ramp at N=3500 
rpm. The upper and lower boundaries of qf, which were defined in 
order to estimate the ‘P’ parameter in Fig. 17, are also reported in the 
figures with dashed red lines. 
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Figure 18. Experimental and predicted trends of qf over the time-to-boost 
ramp at N=1500 rpm for test cases featuring combustion modes without (a) 
and with (b) multi-after injection strategies 

 

Figure 19. Experimental and predicted trends of qf over an accelerator pedal 
position ramp at N=3500 rpm for test cases featuring combustion modes 
without (a) and with (b) multi-after injection strategies. 

In general, the results of the T2F NNRT model are accurate for all the 
considered tests. It can also be seen that the fuel quantity provided by 
the T2F NNRT model is more in line with the fuel quantity estimated 
by the test bench fuel meter (black lines) than with the ECU fuel 
setpoint (red lines) over the steady-state intervals. This is a positive 
result, since the fuel derived from the test bench fuel meter is more 
accurate, at least under steady-state operation conditions. However, it 
can be seen in the figures that  it is affected by high oscillations 
during the load ramps, due to a slow dynamic response. 

It is also interesting to note, in Fig. 18b, that fuel oscillations (from 
both the ECU and NNRT model) occur during the down ramp, while 
the BMEP trend does not show these oscillations (see Fig. 12b). It 
was verified that these oscillations were mainly due to a change in 
injection strategy during this interval (i.e., number of after 
injections): in order to guarantee the same BMEP, it is in fact 
necessary to modify the total injection quantity, so as to compensate 
for the variations in the engine thermal efficiency, which occur when 
the injection strategy is changed. It should be highlighted that the 
ECU performs the fuel quantity correction by means of its internal 
torque-to-fuel maps (red lines), and the NNRT model (blue line) is 
able to reproduce this behaviour in a fully predictive way. This is a 
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confirmation of the capability of the NNRT model to adjust the fuel 
quantity in order to compensate for the variations of the engine 
efficiency, related to the variation of the injection strategy, in a 
similar way to that of the standard ECU software. 

Finally, Fig. 20 plots a zoomed view of the transient tests reported in 
Figs. 18-19. 

 

Figure 20. Zoomed view of the rising and descending edges of the transient 
tests shown in Figs. 18-19. 

Computational time 

The physical and NNRT models have already been compared in [10], 
in terms of computational time. It was shown in that study that the 
NNRT model is more computationally efficient than the physical 
model, as the required computational time is less than 10% of that of 
the physical model. Moreover, the number of neurons does not affect 
the computational time required by the NNRT model. 

The T2F NNRT model, which can be potentially be used as a BMEP 
controller, does not require any iteration (as instead would be 
required for the inversion of the physical model), as the model is 
trained directly using the BMEP target as input, and the total injected 
quantity qf is provided directly as a model output.  

Future work 

The T2F NNRT model developed in this study showed a good 
potential for identifying the optimal injected fuel quantity for a given 
BMEP target, regardless of the injection strategy which is adopted 
(i.e., with and without multi after pulses). However, an additional 
research activity is still needed, in order to implement the model on a 
rapid prototyping approach and test its functionalities on the real 
engine, by-passing the standard ECU functions. In this way it will be 
possible to verify and fix potential issues that could arise when the 
torque controller is implemented on the real engine.  

Summary/Conclusions 

A computationally fast model-based approach for the real-time 
control of BMEP (Brake Mean Effective Pressure) has been 
developed and assessed for a Euro 6 1.6L GM diesel engine. The 
controller provides the fuel quantity necessary to achieve a desired 

BMEP target. The engine features complex injection patterns, 
including pilot, main and multi-after.  

The approach is based on the use of feed-forward ANNs (artificial 
neural networks), which have been trained using by means of virtual 
tests simulated by a previously developed low-throughput mean-
value physical combustion model. The model has been referred to as 
“NNRT” (Neural Network-based Real-Time) and has the aim of 
replicating the outcomes of the physical combustion model, but with 
a much shorter computational time in view of its implementation on 
the engine control unit. In this study, the physical combustion model 
has been assessed for complex injection patterns, including not only 
pilot and main shots, but also multi-after pulses. It was found that it is 
capable of accurately simulating the complex patterns of heat release, 
heat release rate and in-cylinder pressure which occur when multi-
after injection strategies are adopted. Two different versions of the 
NNRT model were realized, i.e., fuel-to-torque (F2T) and torque-to-
fuel (T2F) models. The T2F version can be potentially used as a 
BMEP controller, since it provides the fuel quantity that has to be 
injected into the combustion chamber in order to achieve a desired  
BMEP (or torque) target, which is provided as input. The 
computational time required for the training of the NNRT models is 
of the order of 3h. 

The F2T NNRT model and the physical combustion model were first 
applied under steady-state and transient operation conditions, and it 
was found that they provide similar performances. The average 
RMSE (Root Mean Square Error) for the estimation of BMEP is of 
the order of 0.35 bar, under steady-state operation conditions. The 
accuracy of the estimation of BMEP is variable under transient 
operating conditions, according to the specific test. However, the 
accuracy does not deteriorate when  combustion modes featuring 
multi-after injection strategies are adopted. Moreover, it should be 
noted that the error may also be due to reasons other than the 
accuracy of the model, such as temporal shift errors in the model 
input quantities and/or deviations between the fuel quantity setpoint 
of the engine control unit, which is given to the models as input, and 
the real injected fuel quantity. 

The T2F NNRT model has then been assessed for the same tests. It 
was found that the average RMSE value for the estimation of the fuel 
quantity is of the order of 1.2 mm3 under steady-state operation 
conditions. Moreover,  the fuel quantities provided by the T2F NNRT 
model for the transient tests are in line with the measured ones, and 
the RMSE values range from 1 to 5 mm3/cyc. 

References 

1. Xue, X., Rutledge, J., “Potentials of Electrical Assist and 
Variable Geometry Turbocharging System for Heavy-Duty 
Diesel Engine Downsizing,” SAE Technical Paper 2017-01-
1035, 2017, doi:10.4271/2017-01-1035. 

2. Di Iorio, S., Beatrice, C., Guido, C., Napolitano, P. et al. , 
“Impact of Biodiesel on Particle Emissions and DPF 
Regeneration Management in a Euro5 Automotive Diesel 
Engine,” SAE Technical Paper 2012-01-0839, 2012, 
doi:10.4271/2012-01-0839. 

3. D'Ambrosio, S., Gaia, F., Iemmolo, D., Mancarella, A. et al., 
“Performance and Emission Comparison between a 
Conventional Euro VI Diesel Engine and an Optimized PCCI 
Version and Effect of EGR Cooler Fouling on PCCI 
Combustion,” SAE Technical Paper 2018-01-0221, 2018, 
doi:10.4271/2018-01-0221. 

4. D'Ambrosio, S., Ferrari, A., Mancarella, A., Mittica, A., 
“Effects of Rate-Shaped and Multiple Injection Strategies on 
Pollutant Emissions, Combustion Noise and Fuel Consumption 

Time-to-boost ramp at 1500 rpm Accelerator pedal position 
ramp at 3500 rpm

with multi-after strategy

without multi-after strategy without multi-
after strategy

with multi-
after strategy

Time (s)

q f

 

 

Fuel ECU

B d i

  

 

 

 

 

Boundaries

  

 

 

 

 

NNRT T2F model

Fuel meter



Page 17 of 19 

in a Low Compression Ratio Diesel Engine,” International 
Journal of Automotive Technology 21(2020):197-214, 
doi:10.1007/s12239-020-0020-0. 

5. D'Ambrosio, S., Ferrari, A., Mancarella, A., Mancò, S. et al., 
“Comparison of the emissions, noise, and fuel consumption 
comparison of direct and indirect piezoelectric and solenoid 
injectors in a low-compression-ratio diesel engine,” Energies 12, 
no, 21(2019):4023,  doi:10.3390/en12214023. 

6. Ferrari, A., Mittica, A., Novara, C., Vento, O., et al.,  “Further 
assessment of the injected mass closed-loop control strategy in 
the design of innovative fuel injection systems,” AIP Conference 
Proceedings Vol. 2191, 17 December 2019, Article number 
020070, doi:10.1063/1.5138803. 

7. Finesso, R., Marello, O., Misul, D., Spessa, E., et al., 
“Development and Assessment of Pressure-Based and Model-
Based Techniques for the MFB50 Control of a Euro VI 3.0L 
Diesel Engine,” SAE Int. J. Engines  10, no. 4 (2017):1538-
1555, doi:10.4271/2017-01-0794. 

8. Finesso, R., Hardy, G., Marello, O., Spessa, E., et al., “Model-
Based Control of BMEP and NOx Emissions in a Euro VI 3.0L 
Diesel Engine,” SAE Int. J. Engines 10, no. 5(2017):2288-2304, 
doi:10.4271/2017-24-0057. 

9. Finesso, R., Marello, O., Spessa, E., “Development of a 
pressure-based technique to control IMEP and MFB50 in a 3.0L 
diesel engine,” Energy Procedia 148 (2018):424-430, doi: 
10.1016/j.egypro.2018.08.105. 

10. Finesso, R., Spessa, E., Yang, Y., Conte, G., et al., “Neural-
Network Based Approach for Real-Time Control of BMEP and 
MFB50 in a Euro 6 Diesel Engine,” SAE Technical Paper 2017-
24-0068, 2017, doi:10.4271/2017-24-0068. 

11. Finesso, R., Hardy, G., Mancarella, A, Marello, O., et al.,  
“Real-Time Simulation of Torque and Nitrogen Oxide 
Emissions in an 11.0 L Heavy-Duty Diesel Engine for Model-
Based Combustion Control,” Energies 12(2019):460,  
doi:10.3390/en12030460. 

12. Cococcetta, F., Finesso, R., Hardy, G., Marello, O., et al., 
“Implementation and Assessment of a Model-Based Controller 
of Torque and Nitrogen Oxide Emissions in an 11 L Heavy-
Duty Diesel Engine,” Energies 12(2019):4704, doi: 
10.3390/en12244704. 

13. Hu, S., d’Ambrosio, S., Finesso, R., Manelli, A., et al., 
“Comparison of Physics-Based, Semi-Empirical and Neural 
Network-Based Models for Model-Based Combustion Control 
in a 3.0 L Diesel Engine,” Energies 12(2019):3423, doi: 
10.3390/en12183423. 

14. Finesso R, Misul D, Spessa E, Venditti M., “Optimal Design of 
Power-Split HEVs Based on Total Cost of Ownership and CO2 
Emission Minimization,” Energies 11(2018):1705, doi: 
10.3390/en11071705. 

15. Finesso, R., Spessa, E., Venditti, M., “Layout design and 
energetic analysis of a complex diesel parallel hybrid electric 
vehicle,” Applied Energy 134(2014):573-588, 
doi:10.1016/j.apenergy.2014.08.007. 

16. Finesso, R., Spessa, E., Venditti, M., “Cost-optimized design of 
a dual-mode diesel parallel hybrid electric vehicle for several 
driving missions and market scenarios,” Applied Energy 
177(2016):366-383,  doi:10.1016/j.apenergy.2016.05.080. 

17. Bosch Press, “Breakthrough: new Bosch diesel technology 
provides solution to NOx problem,” Bosch, accessed October 
2020, https://www.bosch-
presse.de/pressportal/de/en/breakthrough-new-bosch-diesel-
technology-provides-solution-to-nox-problem-155524.html 
. 

18. Rakopoulos, C., Giakoumis, E., “Review of Thermodynamic 
Diesel Engine Simulations under Transient Operating 
Conditions”, SAE Technical Paper 2006-01-0884, 2006, 
doi:10.4271/2006-01-0884. 

19. Finesso, R., Spessa, E., Yang, Y., “Development and Validation 
of a Real-Time Model for the Simulation of the Heat Release 
Rate, In-Cylinder Pressure and Pollutant Emissions in Diesel 
Engines,” SAE Int. J. Engines 9(2016):322-341,  
doi:10.4271/2015-01-9044. 

20. Catania, A.E., Finesso, R., Spessa, E., “Predictive zero-
dimensional combustion model for DI diesel engine feed-
forward control,” Energy Conversion and Management 52, 
no.10(2011): 3159–3175,  doi:10.1016/j.enconman.2011.05.003. 

21. Asprion, J., Chinellato, O., Guzzella, L., “A fast and accurate 
physics-based model for the NOx emissions of Diesel engines," 
Appl. Energy 103(2013):221-233,  
doi:10.1016/j.apenergy.2012.09.038. 

22. Asprion, J., Chinellato, O., Guzzella, L., “Optimisation-oriented 
modelling of the NOx emissions of a Diesel engine,"Energ. 
Convers. Manage 75(2013):61-73,  
doi:10.1016/j.enconman.2013.05.039. 

23. Andersson, M., Johansson, B., Hultqvist, A., and Noehre, C., “A 
Predictive Real Time NOx Model for Conventional and Partially 
Premixed Diesel Combustion,” SAE Technical Paper 2006-01-
3329, 2006, doi: 10.4271/2006-01-3329. 

24. Najafi, B., Faizollahzadeh Ardabili, S., Mosavi, A., 
Shamshirband, S., et al., “An Intelligent Artificial Neural 
Network-Response Surface Methodology Method for Accessing 
the Optimum Biodiesel and Diesel Fuel Blending Conditions in 
a Diesel Engine from the Viewpoint of Exergy and Energy 
Analysis,” Energies 11(2018):860,  doi:10.3390/en11040860. 

25. Brusca, S., Lanzafame, R., and Messina, M., “A Combustion 
Model for ICE by Means of Neural Network,” SAE Technical 
Paper 2005-01-2110, 2005, doi: 10.4271/2005-01-2110. 

26. Bennett, C.,  Dunne, J.F., Trimby, S., Richardson, D., “Engine 
cylinder pressure reconstruction using crank kinematics and 
recurrently-trained neural networks,” Mechanical systems and 
signal processing 85(2016):126-145,  
doi:10.1016/j.ymssp.2016.07.015. 

27. Li, H., Butts, K., Zaseck, K., Liao-McPherson, D., et al., 
“Emissions Modeling of a Light-Duty Diesel Engine for Model-
Based Control Design Using Multi-Layer Perceptron Neural 
Networks,” SAE Technical Paper 2017-01-0601, 2017, 
doi:10.4271/2017-01-0601. 

28. Johri, R., Salvi, A. and Filipi, Z., “Real-time Transient Soot and 
NOx Virtual Sensors for Diesel Engine Using Neuro-Fuzzy 
Model Tree and Orthogonal Least Squares,” Journal of 
Engineering for Gas Turbines and Power 134(2012):092806, 
doi:10.1115/1.4006942. 

29. Abdullah, U., “A parametric study for specific fuel consumption 
of an intercooled diesel engine using a neural network”, Fuel 
93(2012):189-199,  doi: 10.1016/j.fuel.2011.11.004. 

30.  Janakiraman,V.M.,   Nguyen, X., Assanis, D., “Nonlinear 
identification of a gasoline HCCI engine using neural networks 
coupled with principal component analysis,” Applied soft 
computing 13, no.5(2013):2375-2389,  doi: 
10.1016/j.asoc.2013.01.006. 

31. Cay, Y., “Prediction of a gasoline engine performance with 
artificial neural network”, Fuel 111(2016):324-331, doi: 
10.1016/j.fuel.2012.12.040. 

32. Çay, Y., Korkmaz, I.,  Çiçek, A.,  Kara, F., “Prediction of engine 
performance and exhaust emissions for gasoline and methanol 
using artificial neural network”, Energy 50(2013):177-186,  doi: 
10.1016/j.energy.2012.10.052. 

33. Çay, Y., Çiçek, A.,  Kara, F.,  Sağiroğlu, S.,“Prediction of 
engine performance for an alternative fuel using artificial neural 
network”, Applied thermal engineering 37(2012):217-225,  doi: 
10.1016/j.applthermaleng.2011.11.019. 

34. Brahma, I., He, Y., and Rutland, C., "Improvement of Neural 
Network Accuracy for Engine Simulations," SAE Technical 
Paper 2003-01-3227, 2003, doi:10.4271/2003-01-3227. 

https://www.bosch-presse.de/pressportal/de/en/breakthrough-new-bosch-diesel-technology-provides-solution-to-nox-problem-155524.html
https://www.bosch-presse.de/pressportal/de/en/breakthrough-new-bosch-diesel-technology-provides-solution-to-nox-problem-155524.html
https://www.bosch-presse.de/pressportal/de/en/breakthrough-new-bosch-diesel-technology-provides-solution-to-nox-problem-155524.html


Page 18 of 19 

35. Chen, S. and Flynn, P., "Development of a Single Cylinder 
Compression Ignition Research Engine," SAE Technical Paper 
650733, 1965, doi:10.4271/650733. 

 

Definitions/Abbreviations 

ANN Artificial neural network 

BMEP Brake Mean Effective 
Pressure 

CA crank angle 

CFD Computer Fluid-Dynamics 

cp specific heat at constant 
pressure 

cv specific heat at constant 
volume 

CNG Compressed Natural Gas 

DA Dwell-angle 

DoE Design of experiment 

DT Dwell-time 

ECU Engine Control Unit 

EGR Exhaust Gas Recirculation 

EOI end of injection 

EVO Exhaust Valve Opening 

F2T Fuel-to-Torque 

FMEP Friction Mean Effective 
Pressure 

GM General Motors 

GM-GPS General Motors – Global 
Propulsion Systems 

HL lower heating value of the 
fuel 

HCCI Homogeneous Charge 
Compression Ignition 

IMEP Indicated Mean Effective 
Pressure 

IVC Intake Valve Closing 

K combustion rate coefficient  

m mass 

 fuel injection rate  

N rotational speed of the 
engine 

n compression phase 
polytropic coefficient 

n’ expansion phase polytropic 
coefficient 

NN Neural network 

NNRT Neural-network-based real-
time model 

O2 intake charge oxygen 
concentration 

p pressure 

pEMF exhaust manifold pressure 

pf injection pressure 

pIMF intake manifold pressure 

PCCI Premixed Charge 
Compresison Ignition 

PFP Peak firing pressure 

pil pilot injection 

q injected fuel volume quantity 

Qch chemical heat release 

Qf,evap energy associated with fuel 
evaporation 

Qfuel chemical energy associated 
with the injected fuel 

Qht,glob global heat transfer between 
the charge and the walls 

Qnet net heat release 

qaft injected fuel volume quantity 
of the after injection 

qf total injected fuel volume 
quantity 

qmain injected fuel volume quantity 
of the pilot injection 

f ,injm
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qpil injected fuel volume quantity 
of the pilot injection 

R2 squared correlation 
coefficient 

RDE Real Driving Emission 

RMSE root mean square error 

SOC start of combustion 

SOI electric start of Injection 

SVM Support vector machine 

t time 

T temperature 

T2F Torque-to-Fuel 

TIMF intake manifold temperature 

V volume 

V2X vehicle-to-everything 
technology 

VGT Variable Geometry 
Turbocharger 

Greek symbols 

γ = cp/cv specific heat ratio 

ρ density 

ρSOI in-chamber ambient density 
evaluated at the SOI instant 

ρSOC in-chamber ambient density 
evaluated at the SOC instant 

τaft ignition delay of the after 
pulse 

τmain ignition delay of the main 
pulse 

τpil ignition delay of the pilot 
pulse 

 

 


