
20 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Self-Test Libraries Analysis for Pipelined Processors Transition Fault Coverage Improvement / Cantoro, Riccardo;
Girard, Patrick; Masante, Riccardo; Sartoni, Sandro; Reorda, Matteo Sonza; Virazel, Arnaud. - (2021), pp. 1-4.
(Intervento presentato al convegno 2021 IEEE 27th International Symposium on On-Line Testing and Robust System
Design (IOLTS) nel 28-30 June 2021) [10.1109/IOLTS52814.2021.9486711].

Original

Self-Test Libraries Analysis for Pipelined Processors Transition Fault Coverage Improvement

Publisher:

Published
DOI:10.1109/IOLTS52814.2021.9486711

Terms of use:

Publisher copyright

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2915694 since: 2021-07-29T08:35:45Z

IEEE

Self-Test Libraries Analysis for Pipelined
Processors Transition Fault Coverage Improvement

Riccardo Cantoro∗, Patrick Girard†, Riccardo Masante,∗

Sandro Sartoni∗, Matteo Sonza Reorda∗, Arnaud Virazel†

∗Politecnico di Torino
†LIRMM

University of Montpellier / CNRS
Turin, Italy Montpellier, France

Abstract—Testing digital integrated circuits is generally done
using Design-for-Testability (DfT) solutions. Such solutions, how-
ever, introduce non-negligible area and timing overheads that
can be overcome by adopting functional solutions. In particular,
functional test of integrated circuits plays a key role when
guaranteeing the device’s safety is required during the operative
lifetime (in-field test), as required by standards like ISO26262.
This can be achieved via the execution of a Self-Test Library
(STL) by the device under test (DUT). Nevertheless, developing
such test programs requires a significant manual effort, and
can be non-trivial when dealing with complex modules. This
paper moves the first step in defining a generic and systematic
methodology to improve transition delay faults’ observability of
existing STLs. To do so, we analyze previously devised STLs
in order to highlight specific points within test programs to be
improved, leading to an increase in the final fault coverage.

Index Terms—software-based self-test, software test libraries,
on-line test, transition delay test, safety, functional test

I. INTRODUCTION

New advanced semiconductor technologies are increasingly
adopted in emerging applications. Such technologies, however,
are extremely complex and sophisticated, leading to more
frequent physical defects and a reduced operative lifetime.
Testing integrated circuits (ICs), hence, is of paramount im-
portance. Some of these defects are tested by targeting delay
faults, i.e., faults that affect the timing behavior of the device
under test (DUT), such as transition delay faults (TDFs) or
path delay faults (PDFs).

Testing integrated circuits is usually done through Design-
for-Testability (DfT) solutions, which require the addition
of hardware modules, such as Logic BIST or scan chains.
Although based on mature technology and supported by most
EDA tools, DfT imposes non-negligible timing and area over-
heads that could degrade performances. Moreover, functionally
untestable faults [1] (FUFs), i.e., faults whose effects are
never observed within functional scenarios, will possibly be
detected, lowering the yield. These issues can be overcome
by adopting functional testing. In the form of Software-
Based Self-Test (SBST), functional testing [2], [3] is based
on the execution of Self-Test Libraries (STLs) by the DUT.
This approach has been proved effective both when processor
cores [4]–[11] or peripherals [12]–[15] are tested, and several
companies provide STLs for their products [16]–[19]. SBST is

a common solution for in-field testing, i.e., when the device’s
reliability and safety has to be guaranteed throughout the
operative lifetime, and it is also cheap and flexible. Thanks
to this, SBST can be successfully used whenever compliance
to safety standards such as ISO26262 is required.

However, developing STLs from scratch is not a trivial
task and requires a non-negligible amount of manual effort,
more so when targeting complex devices: test programs must
be able to excite as many faults as possible and make their
effects observable at primary outputs (POs) by using instruc-
tions from the system’s instruction set, only [20]. Moreover,
understanding why certain faults are not detected is not always
easy. This paper moves the first step in defining a generic
and systematic flow capable of improving TDF coverage on
complex pipelined processor cores, starting with a set of test
programs devised for stuck-at faults (SAFs). We choose the
transition delay fault model over the path delay one because
TDFs are much better supported by both standards and EDA
tools. The main contributions of this work are the definition
of internal observation points, to better understand where the
effects of not detected faults propagated and stopped, and the
creation of a software simulation trace, to understand which
instruction blocks within the STL can excite and propagate
faults. This approach is validated on a RISC-V core, using
available commercial tools and a set of pre-existing STLs
targeting SAFs. The reported results show that it is possible
to identify several easy-to-perform changes in the STLs and
introduce an increase in the TDF Fault Coverage up to nearly
18%.

The article is organized as follows: in Section II a back-
ground on related works is outlined, while in Section III we
describe the proposed approach. In Section IV we present the
experimental results and, finally, in Section V we draw the
conclusions.

II. BACKGROUND

Test programs development for delay faults through an
SBST approach is a well-studied topic in academia [6],
[8], [10]. Regarding TDFs specifically, [12] describes STL
development strategies for peripherals embedded in System on
Chips, achieving significant fault coverage figures. Work [4]
describes a methodology to test delay faults on computational

blocks within superscalar processors, while [5] aims at testing
RISC-like CPUs by dividing them into modules under test
and devising test strategies for each of these modules. Finally,
[21] presents a reinforcement learning-based test program
generation technique for TDFs validated on a MIPS32 core.
Although effective, these works require the generation of test
programs starting from scratch. [21], moreover, requires the
usage of a reinforcement learning algorithm, which might not
be effective when tackling high-complexity cores.

Articles [22]–[24] focus on the improvement of available
programs to obtain high fault coverages. [22] describes how
to derive test patterns for online testing starting from programs
originally intended for verification purposes, significantly in-
creasing the final coverage of stuck-at faults on a RISCV
core. Works [23], [24] present a tool based on High-Level
Decision Diagrams for modeling microprocessors and faults,
used in conjunction with previously prepared code templates
to generate the final self-test program. These works show that
methodologies for improving test programs, although tailored
for SAFs, can be successfully devised. However, the manual
effort for developing test programs implementing the above
techniques can be relevant.

III. PROPOSED APPROACH

In this paper, we introduce a systematic methodology that,
given test programs already developed for SAFs, allows to pin-
point code regions within the STL to be modified to increase
transition delay fault coverage in complex pipelined processor
cores, as shown in Fig. 1. The reason for doing this is twofold:
not only methodologies for developing effective SAF-oriented
STLs are already available and capable of achieving high
fault coverages, but the stuck-at and transition delay fault
models also share some similarities in the way they are tested.
Detecting a slow-to-rise (STR) fault implies detecting the
relative stuck-at-0 fault, and similarly for slow-to-fall (STF)
and stuck-at-1 faults. In this work, we take SAF-oriented test
programs as our starting point: for this reason, SAF coverages
are used as a reference value for the TDF ones.

Fig. 1. Proposed test flow

A. Observability Study
This process aims to give some insights on undetected

faults, divided into not controlled (NC) and not observed (NO)

faults. Devising test strategies for such faults not only depends
on whether they were NC or NO but also, in the latter case,
where their effects propagated and stopped. For this reason,
we define two groups of internal observation points (IOPs),
namely User Accessible Registers (UARs), i.e., registers that
the user can directly access through available instructions,
and Hidden Registers (HRs), i.e., registers hidden within sub-
modules or glue logic that the user cannot directly access. For
example, general-purpose registers (GPRs) or control status
registers (CSRs) are UARs, while pipeline registers are HRs.
To easily identify which IOP a fault has reached during the
fault simulation, we also introduce user-defined status labels.
This information is then used in the subsequent two fault
simulations, targeting both stuck-at and transition delay faults.
While performing such simulations, the test flow records
additional data into a fault dictionary, including at what time
instant faults have been observed at POs (i.e., detected faults)
or at one of the aforementioned IOPs, together with good
and faulty machine values for comparison. Together with the
fault dictionary, the observability study allows to analyze and
correlate SAF and TDF coverages. We divide stuck-at and
transition delay faults into three categories: NC, NO, and DT
(detected), and we build a fault report table that can be divided
into three main sections as follows:

1) NC stuck-at faults: contains all stuck-at faults not con-
trolled by the test program. A not controlled SAF implies
the corresponding TDF is not controlled as well; hence,
in this section, we also include the subsequent NC TDFs.

2) NO stuck-at faults: encompasses all not-observed SAFs.
When a SAF is not observed, the relative TDF might
be either NO or NC. In the former case, we show all
NO TDFs dividing them into faults that reached UARs,
those that reached HRs, and those that didn’t reach any
sequential element (NS). In the latter case, we repeat the
same analysis on SAFs.

3) DT stuck-at faults: this section includes all detected
SAFs. TDFs related to detected SAFs might either be
NC, NO, or DT, so we report all three sub-categories,
repeating the IOPs analysis for NO TDFs.

B. Logic Simulation Trace

With the Logic Simulation Trace process, we map the
execution time to the instructions currently executed by the
processor core. To do so, a module to be attached to the RTL
description of the DUT is required. This module is activated
when the test program’s logic simulation is launched and
closely monitors internal signals like the clock, the program
counter (PC), and the instruction’s opcode coming from the
instruction RAM. During the simulation, the tracer stores the
monitored values at each clock cycle, also looking for both
source and destination registers values from the decode and
the execution stage. Combining data from the fault dictionary
and the execution trace, the proposed test flow allows to
easily identify what portion of the code must be improved
to cover NO faults, as shown in Fig. 2. Which and how many

instructions to use in general depends on the IOP reached by
the fault and is not the main focus of the current paper.

Fig. 2. STL improvement strategy

IV. EXPERIMENTAL RESULTS

A. Case study

The approach presented in this work has been validated
on PULPino [25], an open-source single-core SoC platform
based on a 32-bit RISC-V core developed by ETH Zurich and
Università di Bologna. This core has been synthesized using
the 45nm Silvaco Open Cell library [26], setting the clock
period to 40ns, resulting in a total amount of 46, 850 gates,
a total area (eq. gates) of 51, 001.65, and 159, 326 transition
delay faults. As for the test programs, we decided to start with
three STLs, developed following different implementation
strategies to test SAFs on the PULPino core, namely STL1,
STL2, and STL3. A summary of the execution time (expressed
in the total amount of clock cycles), memory size, and SAF
coverage is reported in Table I.

TABLE I
STLS GENERAL INFORMATION

Test
Program

#Clock
cycles

Memory
size [kB]

SAF
coverage %

STL1 17, 308 27.32 81.42
STL2 31, 158 27.86 81.86
STL3 80, 455 16.68 82.18

All fault simulations have been performed using Synopsys
Z01X, a commercial tool devised specifically for functional
safety, with the advantage of including user-defined status
labels, and having a quick fault simulation. Performing stuck-
at and transition delay fault simulations took, for each test
program, no longer than 18 hours on an Intel Xeon CPU E5-
2680 v3 server with a clock frequency up to 3.3GHz.

B. Fault simulation results

Since the simulation trace step is quite straightforward, we
focus on the data obtained by fault simulating the three STLs.
In Table II we report the fault report table introduced in
Section III-A for the whole processor core. For each column,
we show the total amount of faults belonging to each category

TABLE II
SAF AND TDF CLASSIFICATION FOR THE ADOPTED STLS

Fault Categories #Faults
STL1

#Faults
STL2

#Faults
STL3

SAF_NC 15, 260 15, 018 14, 572
TDF_NC 15, 260 15, 018 14, 572

SAF_NO 14, 346 13, 885 13, 826
TDF_NO 10, 992 10, 882 10, 801

TDF_UAR 545 587 410
TDF_HR 5, 061 3, 758 5, 043
TDF_NS 5, 386 6, 537 5, 348

TDF_NC 3, 354 3, 003 3, 025
SAF_UAR 615 307 338
SAF_HR 2, 399 2, 307 2, 349
SAF_NS 340 389 338

SAF_DT 129, 720 130, 423 130, 928
TDF_DT 98, 356 69, 875 99, 310
TDF_NO 8, 975 24, 088 8, 822

TDF_UAR 2, 598 6, 860 2, 484
TDF_HR 6, 376 17, 228 6, 338
TDF_NS 1 0 0

TDF_NC 22, 389 34, 640 22, 796

TOTAL 159, 326 159, 326 159, 326
SAF Coverage % 81.42 81.86 82.18
TDF Coverage % 61.73 44.19 62.54

and, in the final section, the total amount of faults together
with the stuck-at and transition delay fault coverages.

Let us focus on TDF_UAR faults from blocks 2 (SAF_NO)
and 3 (SAF_DT). These faults have reached some user-
accessible registers like the register file or control status
registers. Thus, detecting them is fairly easy once the right
register and time instant are identified, which can be easily
done through the logic simulation trace process. Detecting
faults from this category leads to an increase in TDF coverage
of 2 percentile units (p.u.) for STL1, 4.7 for STL2, and 1.8
for STL3. To these faults, we have to add the contribution
of TDF_HR faults, which need some more complex strategies
to let them reach a PO (or a UAR, after which a store is
sufficient). If we factor in their contribution, the TDF coverage
can be increased by 9.15 p.u. for STL1, 8.96 for STL2, and
17.85 for STL3. In addition to that, although this is not the
goal of this work, covering TDF_UAR and TDF_HR from the
second block allows covering the relative SAFs as well, since
a detected TDF implies the relative SAF detected as well.

V. CONCLUSIONS

In this work, we presented a generic and systematic flow
to help the test engineer easily identify regions in STLs to
be improved to increase TDF coverages on complex pipelined
processor cores. Although devising strategies to cover such
faults is not the goal of this paper, we show that, given the
right strategies, it is possible to enhance the TDF coverage
from 9 up to — if an STL is not optimized for TDF — 17.85
percentile units. Future works will focus on the aforemen-
tioned strategies to cover transition delay faults whose effects
stopped in hidden registers.

REFERENCES

[1] P. Bernardi et al., “On-line functionally untestable fault identification
in embedded processor cores,” in Design, Automation & Test in Europe
Conference Exhibition (DATE), 2013, pp. 1462–1467.

[2] M. Psarakis et al., “Systematic software-based self-test for pipelined
processors,” in ACM/IEEE Design Automation Conference (DAC), 2006,
pp. 393–398.

[3] ——, “Microprocessor Software-Based Self-Testing,” IEEE Design &
Test of Computers, vol. 27, no. 3, pp. 4–19, 2010.

[4] N. Hage et al., “On Testing of Superscalar Processors in Functional
Mode for Delay Faults,” in International Conference on VLSI Design
and International Conference on Embedded Systems (VLSID), 2017, pp.
397–402.

[5] A. S. Oyeniran et al., “Implementation-Independent Functional Test for
Transition Delay Faults in Microprocessors,” in Euromicro Conference
on Digital System Design (DSD), 2020, pp. 646–650.

[6] K. Christou et al., “A Novel SBST Generation Technique for Path-Delay
Faults in Microprocessors Exploiting Gate- and RT-Level Descriptions,”
in IEEE VLSI Test Symposium (VTS), April 2008, pp. 389–394.

[7] C. H. . Wen et al., “On a software-based self-test methodology and its
application,” in IEEE VLSI Test Symposium (VTS), 2005, pp. 107–113.

[8] V. Singh et al., “Instruction-Based Self-Testing of Delay Faults in
Pipelined Processors,” IEEE Transactions on Very Large Scale Integra-
tion (VLSI) Systems, vol. 14, no. 11, pp. 1203–1215, Nov 2006.

[9] P. Bernardi et al., “Development Flow for On-Line Core Self-Test
of Automotive Microcontrollers,” IEEE Transactions on Computers,
vol. 65, no. 3, pp. 744–754, 2016.

[10] Wei-Cheng Lai et al., “Test program synthesis for path delay faults
in microprocessor cores,” in IEEE International Test Conference (ITC),
2000, pp. 1080–1089.

[11] P. Bernardi et al., “A Deterministic Methodology for Identifying Func-
tionally Untestable Path-Delay Faults in Microprocessor Cores,” in
International Workshop on Microprocessor Test and Verification (MTV),
Dec 2008, pp. 103–108.

[12] M. Grosso et al., “Software-Based Self-Test for Transition Faults: a Case
Study,” in IFIP/IEEE International Conference on Very Large Scale
Integration (VLSI-SoC), 2019, pp. 76–81.

[13] R. Cantoro et al., “In-field functional test of can bus controllers,” in
IEEE VLSI Test Symposium (VTS), 2020, pp. 1–6.

[14] A. Apostolakis et al., “Test Program Generation for Communication
Peripherals in Processor-Based SoC Devices,” IEEE Design & Test of
Computers, vol. 26, no. 2, pp. 52–63, 2009.

[15] A. van de Goor et al., “Memory testing with a RISC microcontroller,”
in Design, Automation & Test in Europe Conference Exhibition (DATE),
2010, pp. 214–219.

[16] Hitex, “Microcontroller self-test libraries.” [Online]. Avail-
able: https://www.hitex.com/tools-components/software-components/
selftest-libraries-safety-libs/pro-sil-safetlib/

[17] ARM, “Enabling Our Partnership to Bring Safer Solutions to
the Market Faster.” [Online]. Available: https://developer.arm.com/
technologies/functional-safety

[18] Microchip Technology Inc., “16-bit CPU Self-Test Library
User’s Guide,” 2012. [Online]. Available: http://ww1.microchip.com/
downloads/en/DeviceDoc/52076a.pdf

[19] STMicroelectronics, “Guidelines for obtaining IEC 60335 Class B
certification for any STM32 application,” Mar 2016. [Online]. Available:
http://www.st.com/content/ccc/resource/technical/document/application\
_note/02/1a/91/78/e4/15/4d/35/CD00290100.pdf/files/CD00290100.pdf/
jcr:content/translations/en.CD00290100.pdf

[20] J. Perez Acle et al., “Observability Solutions for In-Field Functional
Test of Processor-Based Systems,” Microprocessors and Microsystems,
p. 392–403, 2016.

[21] C. Y. Chen et al., “Reinforcement-Learning-Based Test Program Gen-
eration for Software-Based Self-Test,” in IEEE Asian Test Symposium
(ATS), 2019, pp. 73–735.

[22] A. Ruospo et al., “On-line Testing for Autonomous Systems driven
by RISC-V Processor Design Verification,” in IEEE International Sym-
posium on Defect and Fault Tolerance in VLSI and Nanotechnology
Systems (DFT), 2019, pp. 1–6.

[23] A. Jasnetski et al., “On automatic software-based self-test program
generation based on high-level decision diagrams,” in IEEE Latin-
American Test Symposium (LATS), 2016, pp. 177–177.

[24] ——, “Automated software-based self-test generation for microproces-
sors,” in International Conference Mixed Design of Integrated Circuits
and Systems (MIXDES), 2017, pp. 453–458.

[25] ETH Zurich and Università di Bologna, “PULPino microcontroller
system.” [Online]. Available: https://github.com/pulp-platform/pulpino

[26] Silvaco, “Silvaco 45nm open cell library.” [Online]. Available: https:
//www.silvaco.com/products/nangate/FreePDK45_Open_Cell_Library/

