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Abstract:  20 

Risk assessment provides information to support Decision Making (DM). Then, the confidence that can be put 21 

in its outcomes is fundamental, and this depends on the accuracy, representativeness and completeness of the models 22 

used in the risk assessment. A quantitative measure is needed to assess the credibility and trustworthiness of the 23 

outcomes obtained from such models, for DM purposes.  24 

The present paper proposes a four-levels, top-down, hierarchical tree to identify the main attributes and criteria 25 

that affect the level of trustworthiness of models used in risk assessment. The level of trustworthiness (level 1) is 26 

broken down into two attributes (Level 2), three sub-attributes and one “leaf” attribute (Level 3), and seven basic 27 

“leaf” sub-attributes (Level 4). On the basis of this hierarchical decomposition, a bottom up, quantitative approach is 28 

employed for the assessment of model trustworthiness, using tangible information and data available for the basic 29 

“leaf” sub-attributes (Level 4). Analytical Hierarchical Process (AHP) is adopted for evaluating and aggregating the 30 

sub-attributes, and Dempster-Shafer Theory (DST) is adopted to consider the uncertainty and the inconsistency in 31 

the experts’ judgments. 32 

The approach is applied to a case study concerning the modeling of the Residual Heat Removal (RHR) system 33 

of a nuclear power plant (NPP), to compute its failure probability. The relative trustworthiness of two mathematical 34 

models of different complexity is evaluated: a Fault Tree (FT) and a Multi-States Physics-based Model (MSPM). 35 

The trustworthiness of the MSPM model is found to outweigh that of the FT model, which can be explained by the 36 

fact that MSPM takes into account the components failure dependency relations and degradation effects. The 37 

feasibility and reasonableness of the approach are, thus, demonstrated, paving the way for its potential applicability 38 

to inform DM on safety-critical systems. 39 

Keywords:  40 
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Risk-Informed Decision Making (RIDM), Model Trustworthiness, Fault tree, Multi-States Physics-Based 1 

Model (MSPM), Analytical Hierarchical Process (AHP), Dempster-Shafer Theory (DST), Nuclear Power Plant 2 

(NPP). 3 

1. Introduction 4 

Risk assessments is based on complex models to represent functional life and physical behavior of (safety-5 

critical) systems and processes of interest and provide predictions of safety performance metrics (Aven and Zio, 6 

2013). These models are conceptual constructs (translated into mathematical forms), built on a set of assumptions 7 

(hypotheses) made on the basis of the available knowledge. 8 

In general terms, risk models describe the future consequences (usually seen in negative, undesirable terms with 9 

respect to the planned objectives) potentially arising from the operation of given systems and activities, and the 10 

associated uncertainty (INSAG, 2011). The quantitative outcomes are, then, compared with predefined safety criteria, 11 

for Risk-Informed Decision Making (RIDM) (Dezfuli et al., 2010); (NRC, 2010); (Eiser et al., 2012). 12 

In recent times, there has been a vivid discussion on the fundamental concept of risk and related foundational 13 

issues on its assessment: see, e.g., (Aven, 2013a), (Aven, 2016), (Cox and Lowrie, 2015). From a general perspective, 14 

it is understood that the outcomes of risk assessments are conditioned on the background knowledge and information 15 

available on the system and/or process under analysis (Bjerga, Aven and Zio, 2014), (Zeng et al., 2016), including 16 

assumptions and presuppositions, phenomenological understanding, historical system performance data used and 17 

expert judgment made (Flage and Aven, 2009), (Aven, 2013b), (Veland and Aven, 2015), (Berner and Flage, 2016), 18 

(Bani-Mustafa et al., 2018). Then, the risk indices may have a more or less solid foundation, depending on the validity 19 

of the hypotheses made, which in turn depends on the supporting knowledge: poor models, lack of data or simplistic 20 

assumptions are examples of potential sources of (model) uncertainty “hidden in the background knowledge” of a 21 

risk assessment (Berner and Flage, 2016). The modeling of a system or process needs to balance between two 22 

conflicting concerns: (i) accurate representation of the phenomena and mechanisms in the system or process and (ii) 23 

definition of the proper level of detail of the description of the phenomena and mechanisms, so as to allow the timely 24 

and efficient use of the model. Differences between the real world quantities and the model outputs inevitably arise 25 

from the conflict of these two concerns (Paté-Cornell, 1996); (Bjerga, Aven and Zio, 2014); (Danielsson et al., 2016). 26 

Since (i) the importance placed on modeling and simulation is increasingly high within safety-critical system 27 

engineering contexts and (ii) the fundamental value of a risk assessment lies in providing informative support to 28 

(high-consequence) decision making (DM) (Simola and Pulkkinen, 2004); (EPRI, 2012); (Eiser et al., 2012); 29 

(Zweibaum & Sursock, 2014), the confidence that can be put in the accuracy, representativeness and completeness 30 

of the models is fundamental. Also, a satisfactory level of assurance must be provided that the results obtained from 31 

such models are credible and trustworthy for the decision-making purposes for which they are employed. Moreover, 32 

in some contexts where the system of interest is subject to multiple hazards (e.g., a Nuclear Power Plant (NPP) 33 

exposed to flooding and earthquakes risks), a Multi-Hazards Risk Aggregation (MHRA) process is required to obtain 34 

a final risk metric that can inform decision making. However, risk estimates for different (risk) contributors are 35 

typically obtained using different models (i.e., in practice, different PRAs), each one having its own level of maturity 36 

and relying on its particular background knowledge. This inconsistency might be problematic, as MHRA is often 37 

carried out by a simple arithmetic summation of the risk estimates from different contributors, ignoring the possibly 38 
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different levels of knowledge, which the risk estimates are based on (EPRI, 2015). Another situation, where the use 1 

of risk models with different credibility might be problematic, is that of choosing between the implementation of two 2 

different sets of risk reduction measures. For example, in a pure RIDM, a decision maker would always choose the 3 

option leading to the lower level of risk; however, his/her decision could change if he/she considered the level of 4 

trustworthiness, which the corresponding risk estimates are based on. For all these reasons, the confidence, credibility 5 

and trustworthiness (resp., model uncertainty) that is associated with model predictions (and that reflects the amount 6 

and the strength of the knowledge available on the problem of interest), must be accurately and quantitatively assessed 7 

(Aven and Zio, 2013); (Bjerga, Aven and Zio, 2014); (Flage and Aven, 2015). 8 

Within this context, the objective of the present paper is to propose a decision-making approach based on a 9 

combination of hierarchical trees, the analytical hierarchal Process (AHP) (Saaty, 1980) and Dempster-Shafer Theory 10 

(DST) (Beynon, Curry and Morgan, 2000), (Beynon, Cosker and Marshall, 2001) to assess the relative 11 

trustworthiness of different models used in risk assessment. The main contribution of the work lies in the original 12 

structured integration of the techniques mentioned above in a systematic framework, to pragmatically and 13 

quantitatively address the problem of evaluating model trustworthiness, and accounting for the inevitable issue of 14 

uncertainty and inconsistency in the experts’ judgments. 15 

The proposed approach has been applied to assess the relative trustworthiness of two models (of different 16 

complexity and level of detail) used to estimate the failure probability of a Residual Heat Removal (RHR) System of 17 

a NPP: a classical Boolean logic-based Fault Tree (FT) and a Multi-State Physics-based Model (MSPM) (Unwin et 18 

al., 2011), (Lin et al., 2013), (Lin, Li and Zio, 2015), (Lin et al., 2016).  19 

A review of the approaches proposed in the literature to assess the trustworthiness and credibility of a model is 20 

presented in Section 2. In Section 3, a hierarchical tree-based decision making framework for assessing model 21 

trustworthiness is presented. In Section 4, the proposed framework is applied to a case study concerning the RHR 22 

system of a NPP. Finally, in Section 5, we discuss the results and provide some conclusions. 23 

2. Assessing the trustworthiness and credibility of risk assessment models: a critical review of literature 24 

In this section, we survey some approaches proposed in the open literature to assess the trustworthiness and 25 

credibility of mathematical models. 26 

Few methods have been proposed to assess the confidence (i.e., the credibility and trustworthiness) that is 27 

associated with engineering model predictions, and that reflects the amount and the strength of the knowledge 28 

available on a generic system, or process of interest. In the literature, the trustworthiness of a method or a process is 29 

often measured in terms of its maturity. The concept of a model maturity was first used to assess the maturity of a 30 

function of an information system (Oberkampf et al., 2007); (Paulk et al., 1993); (Zeng et al., 2016).  Later, a 31 

framework called Capability Maturity Model (CMM) has been developed to assess the maturity of a software 32 

development process, in the light of its quality, reliability and trustworthiness (Herbsleb et al., 1997). Recently, the 33 

CMM model has been extended and a Prediction Capability Maturity Model (PCMM) has been developed to evaluate 34 

and assess the maturity of modeling and simulation efforts (Oberkampf, Pilch and Trucano, 2007). Other examples 35 

of maturity assessment approaches have been developed in different domains, such as master data maturity 36 

assessment, enterprise risk management and hospital information system (Zeng et al., 2016). In (Di Maio et al., 2015) 37 

and (Zeng et al., 2016) a hierarchical framework based on the analytical hierarchical process (AHP) has been 38 
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developed to assess the maturity and prediction capability of a prognostic method for maintenance DM purposes. 1 

Finally, a framework for assessing the credibility of models and simulation (M&S) is proposed by (Nasa, 2013). In 2 

this framework, eight factors are used to assess M&S credibility and are categorized in three groups: (i) M&S 3 

development, including verification and validation; (ii) M&S operations, including input pedigree (a record of 4 

traceability from the input data source), results uncertainty and results robustness; (iii) supporting evidence, including 5 

the use history, M&S management and people qualifications. This framework seems plausible and covers important 6 

elements. However, three main issues should be considered. First, the approach is abstractly presented, leading to 7 

omit some important elements that fall under the main attributes of this framework. For example, while the model 8 

focuses on the “input pedigree” represented by the input data, it ignores a very important element, i.e., model 9 

assumptions, that can be also a part of M&S development. Second, while the authors claim that there is no need for 10 

weighting the different elements, as there is no numerical aggregation required, this would lead to a misconception, 11 

since the elements are not equally important in practice. 12 

In the more specific field of “strength of knowledge” assessment in risk assessment models, both qualitative and 13 

semi-quantitative approaches have been proposed. In (Flage and Aven, 2009), a “crude” qualitative, direct grading 14 

of the strength of knowledge that supports risk assessment based on (mathematical) models is introduced. The authors 15 

try to classify the strength of knowledge to {minor, moderate, significant}, with respect to four criteria including: (i) 16 

phenomenological understanding of the problem; (ii) availability of reliable data; (iii) reasonability of assumptions 17 

made; (iv) agreement (consensus) among experts (i.e., low value-ladenness) (Flage and Aven, 2009); (Berner and 18 

Flage, 2016); (Aven, 2013b); (Veland and Aven, 2015); (Bani-Mustafa et al., 2018).   19 

In (Aven, 2013b) a more detailed, semi-quantitative approach (namely the “assumption deviation risk”) has been 20 

introduced. This approach is based on the identification of all the main assumptions, on which the analysis is based. 21 

Then, the assumptions are converted into uncertainty factors and a rough evaluation of the deviation from the 22 

conditions defined by the assumptions is carried out. Finally, a score is assigned to each deviation that reflects the 23 

risk related to the deviation and its implications on the occurrence of given events and their consequences (Aven, 24 

2013b). The approach has been generalized and systematized by Berner and Flage (2016), where guidelines to 25 

characterize the uncertainties associated to assumptions and deviations are also provided. 26 

Also in (Bjerga, Aven and Zio, 2014) the effect and importance of “structural” assumptions, approximations 27 

and simplifications on risk assessment model outputs (Aven and Zio, 2013) is studied by means of different 28 

approaches, including subjective and imprecise probabilities and semi-quantitative scores (reflecting the degree of 29 

uncertainty associated to an assumption and the sensitivity of the model output to such assumption). The analysis 30 

serves as an input to the decision makers, to understand which assumptions are unacceptable and need “remodeling”. 31 

Finally, Lopez-Droguett and Mosleh discuss uncertainty in model predictions arising from model parameters 32 

and model structure. They argue that different evidence in evaluating model uncertainty can be considered, such as 33 

comparing the results of the model prediction to the actual measurements, qualitative or subjective evaluation of the 34 

model credibility and applicability (Droguett and Mosleh, 2008). In particular, for cases in which no model exists to 35 

address the particular problem of interest, and the analysis relies mainly on the subjective assumptions that the model 36 

is partially applicable to the problem, two main attributes define model uncertainty: model Credibility and model 37 

Applicability (Lopez Droguett & Mosleh, 2014). Model credibility refers to the quality of the model in estimating the 38 
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unknown in its intended domain of application, and is defined by a set of attributes related to the model-building 1 

process and utilization procedure (conceptualization and implementation, which are in turn broken down into other 2 

sub-attributes). On the other hand, model applicability represents the degree to which the model is suitable for the 3 

specific situation and problem (represented by the conceptualization and intended use function attributes) (Lopez 4 

Droguett & Mosleh, 2014). A synthetic review is presented in Table A.1 in Appendix A. 5 

As highlighted by the critical discussion above, different techniques can be found in the literature for assessing 6 

the strength of knowledge and the level of trustworthiness of risk models to inform DM. However, most of the 7 

aforementioned literature works treat the “factors” contributing to trustworthiness individually, without 8 

integrating them in a comprehensive framework for its assessment. In addition, the evaluation of the SoK and 9 

model trustworthiness is often carried out by directly scoring some “intangible” contributing factors (that cannot 10 

be easily translated into numbers). Finally, the evaluation is often carried out qualitatively or semi-quantitatively 11 

in the absence of rigorous evaluation protocols (scoring guidelines) to facilitate mapping of the verbal 12 

expressions into scores.  13 

 The present work tries to bridge these gaps by originally integrating concepts and attributes published in the 14 

open literature (see above) and available multi-attribute, multi-option MCDM techniques (e.g., decision trees and 15 

AHP) to produce a structured and systematic framework for the quantitative assessment of the trustworthiness 16 

of risk assessment models. The objective is twofold: (i) practically and quantitatively addressing the (relative) 17 

evaluation of model trustworthiness; (ii) treating the inevitable issue of uncertainty and inconsistency in the 18 

experts’ judgments inherent in this type of analysis. Compared to the existing methods, the contributions of this 19 

paper include (see Section 3): 20 

i. A conceptual hierarchical tree is developed to comprehensively represent the trustworthiness and 21 

to  identify the main “tangible” (i.e., easily quantifiable) attributes and criteria that affect the level 22 

of trustworthiness of risk models; 23 

ii. A top-down, bottom-up approach is developed for the practical evaluation of trustworthiness; 24 

iii. Detailed scoring guidelines are provided to evaluate model trustworthiness in practice (i.e., the 25 

Saaty’s linear scale and the balanced scale within the framework of the Analytical Hierarchical 26 

Process- AHP); 27 

iv. A systematic procedure (based on Dempster Shafer Theory-DST) is outlined to take in due account 28 

the uncertainty and inconsistency in the experts’ evaluations. 29 

Moreover, the work in this paper is an attempt to support RIDM by giving indices on the trustworthiness, 30 

which can be pivotal in MHRA problems or in choosing among different alternatives for risk reduction measures 31 

(see the examples in the introduction). 32 

3. Hierarchical tree-based decision-making approach for assessing the trustworthiness of risk 33 

assessment models 34 

In section 3.1 below, we present the four levels, top-down tree used to characterize the trustworthiness (of a risk 35 

assessment model) by decomposing it into sub-attributes (e.g., number of model’s assumptions, quantity of relevant 36 

data available, etc.) that can be quantified by the analysts; in Section 3.2, we describe a bottom-up procedure, based 37 
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on the analytical hierarchy process (AHP), to assess the model trustworthiness by evaluating and aggregating the 1 

sub-attributes (identified as “leaf” attributes). 2 

3.1. A hierarchical tree for model trustworthiness characterization: abstraction and decomposition  3 

Many factors (attributes) affect the trustworthiness and credibility of analyses and models (for risk assessment 4 

in particular), and several studies and literature reviews have been made in order to identify them. Some of these are 5 

summarized as follows:  (i) phenomenological understanding of the problem; (ii) availability of reliable data; (iii) 6 

reasonability of the assumptions; (iv) agreement among the experts; (v) level of detail in the description of the 7 

phenomena and processes of interest; (vi) accuracy and precision in the estimation of the values of the model 8 

parameters; (vii) level of conservatism; (viii) amount of uncertainty and others (see e.g., (Flage and Aven, 2009); 9 

(Berner and Flage, 2016); (Aven, 2013a); (Veland and Aven, 2015); (IAEA, 2006); (Bjerga, Aven and Zio, 2014); 10 

(Zeng et al., 2016); (Oberkampf, Pilch and Trucano, 2007); (EPRI, 2012); (EPRI, 2015); (Bani-Mustafa et al., 2018)). 11 

Some of these attributes (criteria), are not tangible and cannot be measured directly: as a consequence, other sub-12 

attributes must be identified, which can be measured and/or subjectively evaluated. To this aim, on the basis of the 13 

critical literature survey presented in Section 2, we propose a method for model trustworthiness characterization and 14 

decomposition, which is based on the hierarchy tree shown in Figure 1.  15 

 16 

As mentioned above, many factors can be found in the literature that characterize the level of trustworthiness. 17 

In this paper, the model trustworthiness T (Level 1), is characterized by two attributes (Level 2): (i) strength of 18 

knowledge (� � ��), which measures how solid the assumptions, data and information (which the model relies on) 19 

are (Flage and Aven, 2009); (ii) modeling fidelity (� � ��), which embodies the ability of the model in representing 20 

the reality and the degree of implementing correctly the model. These two attributes are, in turn, decomposed into 21 

sub-attributes (Level 3). In particular, for the strength of knowledge, among the four sub-elements proposed in (Flage 22 

and Aven, 2009), two were found to be most relevant to the context of interest: i.e., quality of data (�� � ���) and 23 

Figure 1 A hierarchical tree-based “decomposition” of the level of trustworthiness of a mathematical model 
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quality of assumptions (�	 � ���). The modeling fidelity (� � ��) is defined by level of details (� � ���) and 1 

number of approximations (	
 � ���). With respect to D = T11, it is argued that including more details about a 2 

problem is more representative and realistic, and hence more trustworthy. Also, note that the number of 3 

approximations (	
 � ���) is considered as a basic attribute, since it can be measured directly: thus, it is not further 4 

broken down into other sub-attributes.  The other three attributes of Level 3 are instead, broken down into more basic 5 

“leaf” attributes, as illustrated in Figure 1, that can be measured directly by “inspection” of the model whose 6 

trustworthiness need to be assessed. In particular, the level of detail (� � ���) is characterized in terms of the number 7 

of equations and correlations (� � ���� ), the number of model parameters (�
 � ���� ), and the number of 8 

dependency relations included (�� � ���). The overall quality of the assumptions (�	 � ���) is measured by the 9 

number of assumptions made (	� � ����) and by their impact (� � ����) (which can be assessed, e.g., by sensitivity 10 

analysis). Finally, the quality of the data (�� � ���) is described in terms of the amount of data available (	� �11 

����) and by the consistency of the data itself (� � ����). The definitions of the attributes are given in Table 1, for 12 

the sake of clarity 13 

 14 

Table 1 Definition of the attributes used to characterize the model trustworthiness 15 

Attributes Description 

Modeling fidelity � �
�� 

(Level S = 2) 

Measures how close the model is to reality, i.e., the adequacy of the representation of 

the phenomena and processes of interest: the higher the modeling fidelity, the higher 

the trustworthiness of the model. 

Strength of knowledge 

� � �� 

(Level S = 2) 

Represents the level of understanding of the phenomena and the solidity of the 

assumptions, data, and information, which the model relies on: the higher the strength 

of knowledge, the higher the trustworthiness of the model. 

Level of detail � � ��� 

(Level S = 3) 

Measures the level of sophistication of the analysis by quantifying to which level the 

“elements” and aspects of the phenomenon, process or system of interest are taken into 

account in the model: the higher the level of detail, the higher the trustworthiness of the 

model. 

Number of 

approximations 	
 �
��� 

(Level S = 3) 

Measures the number of approximations that the analyst introduces in order to facilitate 

the analysis: it affects the modeling fidelity. The lower the number of model 

approximations the higher the modeling fidelity. 

Quality of assumptions 

�	 � ��� 

(Level S = 3) 

 

In some studies, experts are obliged to formulate some assumptions, which might be 

due to the lack of data and information, to the complexity of the problem or lack of 

phenomenological understanding. The quality of those assumptions is an indication of 

the strength of knowledge: the higher the quality of the assumptions, the higher the 

trustworthiness of the model. 
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Quality of data  �� �
��� 

(Level S = 3) 

Represents the availability of sufficient, accurate and consistent background data with 

respect to the purposes of the analysis: the higher the quality of the data, the higher the 

trustworthiness of the model. 

Number of equations 

and correlations  � �
���� 

(Level S = 4) 

The number of equations and correlations used in modeling is an indication of the level 

of detail, hence of the modeling fidelity: the higher the number of equations and 

correlations, the higher the trustworthiness of the model. 

Number of model 

parameters  �
 � ���� 

(Level S = 4) 

The number of parameters introduced in the model is a measure of the level of detail 

(e.g., the number of components transition rates represents the level of discretization 

adopted to describe the failure process of a component or a system): the higher the 

number of model parameters, the higher the trustworthiness of the model. 

Number of dependency 

relations  �� � ��� 

(Level S = 4) 

The larger the number of dependency relations that are taken into account, the more 

detailed and trustworthy the model. 

Number of assumptions 

 	� � ���� 

(Level S = 4) 

 

The larger the number of simplifying assumptions, the lower the trustworthiness of the 

model. 

Impact of assumptions  

 � � ���� 

(Level S = 4) 

It quantifies how much assumptions can affect the model results (and it can be assessed 

by sensitivity analysis). The higher the impact of the assumptions, the lower the 

trustworthiness of the model. 

Consistency of data 

 � � ���� 

(Level S = 4) 

 

It is an indication of how suitable and representative the data are for a specific process 

or system. The consistency of data relies on the sources of the data. For example, if we 

are collecting data about the failure of a safety system’s pump from different power 

plants, we should first understand whether the power plants are of the same type, 

whether the plants work at the same power level and whether the pumps have the same 

work function and capacity. 

The consistency of the data used is an indication of the quality of data, hence of the 

strength of knowledge: the higher the consistency, the higher the strength of knowledge 

and the trustworthiness of the model. 

Amount of data  	� �
���� 

(Level S = 4) 

The higher the amount of data available, the stronger the knowledge. For example, the 

number of years of experience of a particular component in a plant can be sometimes 

considered an indication of the amount of data available. In any domain, a higher 

number of years’ experience means a higher number of scenarios covered and hence a 

larger amount of data. The higher the amount of data, the higher the trustworthiness of 

the model. 

 1 
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3.2. Analytical hierarchical process (AHP) for model trustworthiness quantification 1 

Given the hierarchical tree in Figure 1, the assessment of (relative) model trustworthiness is carried out within 2 

a multi-criteria decision analysis (MCDA) framework (Xu and Yang, 2001); (Triantaphyllou and Shu, 1998). In this 3 

setting, we suppose, in all generality, that a system, process or phenomenon of interest for a risk assessment can be 4 

represented by different mathematical models of possibly different complexity and level of detail, 5 

M1, M2, . . M�, . . , M�. The task (i.e., the MCDA problem at hand) is to rank these alternative models with respect to 6 

their trustworthiness, in relation to the particular risk assessment problem of interest to support MCDA. In the present 7 

paper, the Analytical Hierarchy Process (AHP) proposed by (Saaty and Vargas, 2012) is adopted to this aim. Other 8 

MCDA approaches could be obviously used, as well. For example, a dual index approach is proposed in (Salehpour-9 

Oskouei and Pourgol-Mohammad, 2018) based on Shannon entropy theory. 10 

In this approach, the top goal, i.e., the decision problem considered (in this case, the model trustworthiness), is 11 

placed at the first level of the hierarchy and, then, decomposed into several sub-attributes distributed over different 12 

levels according to their degree of tangibility (see the detailed description in the previous Section 3.1). Finally, the 13 

bottom level of the hierarchal tree-based AHP model contains the different alternatives (i.e., the models M1, M2, …, 14 

Mn) that need to be evaluated with respect to the top goal (Saaty, 2008). Through pairwise comparisons among the 15 

elements and the attributes of the same level S, the alternative solutions (i.e., the models), can be ranked with respect 16 

to the decision problem in the top level (i.e., the model trustworthiness) (Saaty, 2008), (Zio et al., 2003).The A HP 17 

model for model trustworthiness assessment is represented in Figure 2. The first step required to assess the model 18 

trustworthiness by AHP is the determination of inter-level priorities (weights) for each attribute, sub-attribute, basic 19 

“leaf” sub-attribute and alternative solution i.e., �(��), �(���), �(����), and �(� , ����), respectively. Notice that 20 

in practice, each weight represents the relative contribution of an attribute of a given level to the corresponding 21 

“parent” attribute of the upper level: for example, weight W!����" quantifies the contribution (i.e., the importance) 22 

of basic “leaf” sub-attribute ���� (Level 4) in the representation and definition of sub-attribute ��� (Level 3); instead, 23 

weight �(� , ����)  is the weight of the # − %ℎ  model with respect to the basic “leaf” sub-attribute ���� .The 24 

weights �(��), �!���" and �!����" are calculated using pairwise comparison matrices filled by experts. Typically, 25 

experts use a linear scale to evaluate the relative importance (i.e., the contribution) of each criterion (of a given level 26 

S) with respect to the other. For example, the linear scale suggested by Saaty (2008) defines nine levels of relative 27 

importance, ranging from “equally important attributes” (number “1”) to “one attribute extremely more important” 28 

than the other (number “9”). Further discussion is not reported here for brevity. See (Saaty, 2008) and (Zio, 1996) 29 
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for details on Saaty’s verbal expressions of importance and (Saaty, 2008), (Alexander, 2012), (Saaty and Vargas, 1 

2012) for details about AHP method and construction of pairwise matrices. 2 

 3 

For the tangible basic “leaf attributes” ����, a quantitative evaluation �'(,)*+, can be given by direct inspection 4 

and analysis of the models. Instead, if the basic leaf sub-attributes cannot be given a direct numerical evaluation (or 5 

if the analyst does not feel confident in carrying out this task), the scaling system explained above (i.e., scores from 6 

1 to 9) can be adopted to provide a (semi-quantitative) relative evaluation of the “leaf attributes” �'(,)*+, with respect 7 

to the risk models �  available (guidelines are provided in Appendix B of this paper for relatively evaluating the 8 

basic leaf sub-attributes). After obtaining the weight for each criterion with respect to the corresponding upper level 9 

criteria, their “global” weighting for with respect to the top goal T can also be obtained by multiplying its weight by 10 

the weights of its upper parent elements in each level. For example, the “global” weight �- ./0 (����) of basic “leaf” 11 

sub-attribute  ���� with respect to the “top” attribute (goal) T is given by  �(��1�)  ∙ �(���) ∙  �(��). For example, 12 

in the hierarchy tree of Figure 1, the “global weighting” of the consistency of data (denoted by ����) with respect to 13 

level of trustworthiness is obtained by multiplying its weight by the weight of quality of data (denoted by ���) and 14 

the weight of strength of knowledge (denoted by ��):  �(����) ∙ �(���) ∙ �(��) � �- ./0 (����). Finally, the 15 

(relative) trustworthiness  �(� ) of a model �  is evaluated using a weighted average of the corresponding leaf 16 

attributes �'(,)*+,:  17 

  �(� )  � ∑ ∑ ∑  �- ./0 !����" ∙ )4(,5*+,∑ )4(,5*+,6(78
95*+�:�

95*�:�95�:�   (1) 18 

Figure 2 Hierarchical tree-based AHP model for the assessment of the relative trustworthiness of risk assessment models 
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where �'(,)*+,  is the numerical value that the basic “leaf” sub-attribute �)*+,  takes with respect to model �  (for 1 

example, for attribute Q � ���� variable �'(,)888 equals the number of equations and correlations contained in � ); < 2 

is the number of models to be compared; <), <)*, and <)*� are defined above. 3 

Several considerations need to be made on the proposed approach. Clearly, there is no claim that the 4 

trustworthiness assessment method is comprehensive and complete. Attributes similar to those considered here have 5 

been already proposed and adopted in relevant works of literature: see, e.g., Flage & Aven (2009); Aven (2013b); 6 

Bani-Mustafa et al. (2018), where the strength of knowledge is assessed in terms of “phenomenological 7 

understanding”, availability of reliable data”, “agreement among peers” and “reasonability of assumptions”. In 8 

addition, the enumeration of some model leaf attributes (e.g., approximations, assumptions, formulas…) may seem 9 

an “artifact” of presentation or interpretation, in absence of a protocol rigorously constructed to this aim that could 10 

lead to lack of consistency and consensus in the experts’ judgments. On the other hand, the following aspects should 11 

be considered. First, such a type of approach has been already used for evaluating attributes in relevant models, e.g., 12 

evaluation of phenomenological understanding, availability of reliable data, reasonability of assumptions and 13 

agreement among peers, demonstrating the feasibility (Flage & Aven, 2009). Second, the issue of enumerating model 14 

assumptions and evaluating their quality have already been treated in several papers: see, e.g., (Aven, 2013b); (Boone 15 

et al., 2010); (Berner and Flage, 2016); (Khorsandi and Aven, 2017). Then, most important, notice that the “direct 16 

enumeration” is not the only way to provide numerical values T>?,@ABC for the basic “leaf” attributes T@ABCwith respect 17 

to model � . As mentioned above, if the analyst does not feel confident, e.g., in “counting” assumptions, formulas 18 

and correlations, he/she may resort to semi-quantitative scales (e.g., scores from 1 to 9), in order to provide a relative 19 

evaluation of a “leaf” attribute T@ABCwith respect to the different risk models � ’s available (see for example the 20 

enumerating protocols in Appendix B, based on technical reports and experts’ feedback). Finally, if the assessor does 21 

not feel comfortable with the assumption evaluation presented in the guidelines, she/he is free to use some other 22 

established methods, such as the NUSAP pedigree for assessing the quality of the assumptions (Van Der Sluijs et al., 23 

2005), (Boone et al., 2010), (Kloprogge, Van der Sluijs and Petersen, 2011) or the assumptions deviation risk (Aven, 24 

2013b); (Berner and Flage, 2016), (Khorsandi and Aven, 2017). 25 

3.3. Uncertainty in the calculation of the inter-level priority weights in AHP 26 

In this Section, some technical details related to the calculation of inter-level priority (weights) and the scoring 27 

of attributes in AHP are given. Most importantly, some issues associated to this assessment are addressed (i.e., the 28 

combination of the judgments from different experts and the enhancement of their consistency). 29 

3.3.1. General balanced scale for pairwise comparison in AHP   30 

As it has been illustrated above, in the AHP method experts typically use a “linear” scale from 1 to 9 to evaluate 31 

the strength (i.e., the contribution) of each criterion with respect to the other (see above). This scale is widely used in 32 

the literature and adopted by many scholars. However, this scale may not be suitable for assessing the level of 33 

trustworthiness, since it graduates linearly, which yields an uneven dispersion of weights. This, in turn, results in a 34 

misrepresentation of experts’ real judgments and, therefore, in inaccurate estimates (Salo and Hämäläinen, 1997). As 35 

a consequence, many other scales have been introduced in the literature, that are more suitable for treating this kind 36 

of problems. In general, the verbal graduation of the scales has not been a concern in the literature. Instead, mapping 37 

these verbal graduations into numbers is what concerns the scholars. Actually, the criteria for selecting a scale must 38 



12 

 

take into account the context of the problem (Salo and Hämäläinen, 1997). In this paper, the consistency of experts’ 1 

evaluations is not a problem, since the pairwise comparison matrices are constructed iteratively to enhance their 2 

consistencies. In addition, we choose a “balanced scale” due to its ability to overcome the problem of the uneven 3 

dispersion of the local priorities (weights), which could lead to inaccurate estimates (Salo and Hämäläinen, 1997). In 4 

particular, we adopt the generalized balanced scale to ensure the equal dispersion of priorities for a large number of 5 

criteria (Goepel, 2018). In this scale, the priority vectors are equally dispersed (far apart from each other) for all < 6 

(Goepel, 2018): 7 

 D � EF(9G�)H
9(9FI)  (2) 8 

where D is the priority, < is the number of criteria being compared, J is the number of judgments, J � 1,2, … .9. 9 

The scale � for these priorities is calculated as the following (Goepel, 2018): 10 

 � � EF(9G�)H
EF9GH  (3) 11 

By way of example, let us assume that the expert is constructing a matrix to compare three attributes (< � 3). 12 

Then, the scales corresponding to the Saaty’s verbal expressions (levels of importance) are calculated by Eq. (3) and 13 

found to be: 
��
�� , �

�N , �O
E , �P

I , �E
P , ��

Q , �
O , �O

R , �P
 . 14 

3.3.2. Quality and consistency of experts’ judgments in AHP 15 

Several factors affect the consistency and quality of experts’ judgments. Steenbergen et al., (2013) identify three 16 

main factors related to the inconsistency in experts’ judgments: (i) lack of prior knowledge on the problem; (ii) 17 

subjectivity of the judgments and delicacy of the subject; (iii) expert judgment not only on the criteria of their 18 

specialty, but also about all other criteria. They also suggest some recommendations to overcome the problem of 19 

inconsistency and uncertainties in the experts’ judgments through (i) improving the quality of the information 20 

provided to select the experts; (ii) adopting an experts’ judgments protocol to prioritize the criteria; (iii) improving 21 

the quality of information to experts, needed to prioritize criteria.  22 

In general, it is recommended to consider multiple experts’ opinions for assuring the quality, and overcoming 23 

inconsistency and uncertainty in the quantitative judgments in decision processes (Ferrell, 1985). The experts’ 24 

opinions are usually combined using behavioral or mathematical aggregations. In the behavioral aggregation, the 25 

experts share information, discuss and agree upon a value (Ferrell, 1985). In the mathematical aggregation, the 26 

opinions of the experts are combined mathematically using, for example, arithmetic and geometrical means. 27 

In AHP, in particular, the opinions of the experts are usually combined by weighted arithmetic or geometrical 28 

means. This, in turn, depends on the homogeneity of the experts’ group structure. For example, if the expert group 29 

structure is homogenous and they are willing to act as a single individual, the experts are asked to make the pairwise 30 

comparisons individually and the weighted geometric mean is, then, used ). On the other hand, if the experts’ structure 31 

is not homogeneous, or attending conflicting viewpoints and interests, then the resulting individual priorities are 32 

aggregated using arithmetic means (Ossadnik, Schinke and Kaspar, 2016). It should also be highlighted that the 33 

conflicting points of view in the experts’ judgments might be due to the low reliability of some experts. Therefore, 34 

the reliability of experts needs to also be considered. In this work, a mixture between behavioral (Ferrell, 1985), 35 

(Jenkinson, 2005) and mathematical (Seaver, 1976), (Ferrell, 1985), (Jenkinson, 2005) approaches is formulated, and 36 

Dempster-Shafer Theory-AHP (DST-AHP) is adopted to combine experts’ judgments and enhance their consistency.  37 
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3.3.3. Procedural steps for applying the developed framework 1 

In this step, the experts’ opinions are elicited and aggregated based on a mixture between behavioral (Ferrell, 2 

1985), (Jenkinson, 2005), and mathematical (Seaver, 1976), (Ferrell, 1985), (Jenkinson, 2005) approaches. It is 3 

endorsed to follow a procedural step for recruiting and preparing the assessors before starting the evaluation process 4 

(See for example, (Steenbergen et al., 2013), (Jenkinson, 2005)): 5 

1. The assessors are asked to individually construct the pairwise comparison matrices (knowledge matrices) 6 

for evaluating the relative importance of the criteria; 7 

2. For each tangible basic leaf sub-attributes ����, a quantitative evaluation �'(,)*+, is given by direct inspection 8 

and analysis of the alternatives (models). Instead, if it cannot be given a direct numerical evaluation (or if 9 

the expert does not feel confident in carrying out this task), the scaling system explained in Section 3.3.1 can 10 

be adopted to provide a (semi-quantitative) relative evaluation of the leaf attributes  ���� with respect to the 11 

risk models �  available, and based on the guidelines provided in Appendix B. 12 

3. The experts discuss among each other and explain why they choose each judgment for both the relative 13 

importance of the criteria and the scores of the tangible basic events in each model; 14 

4. The assessors are, then, asked to reconsider their judgment and change it if necessary; 15 

5. The consistency of each individual matrix is measured, and the matrix input is modified if necessary; 16 

6. The eigenvector problems are solved, and the weights are determined; 17 

7. The experts’ judgments are combined mathematically using Dempster-Shafer Theory-AHP (DST-AHP) as 18 

explained in detail below. 19 

I. Expert’s reliability discounting  20 

The first step for combining the weights using the DST method is the discounting one (Shafer, 1976), (Jiao 21 

et al., 2016), which allows overcoming the problem of conflicting opinions and considering the doubt regarding 22 

the reliability of the source of information (the expert, in this case). In this step, the reliability of the expert is 23 

considered using Shafar’s discounting technique (Shafer, 1976): 24 

 ST(	) � U(V) ∙ S(	)      ∀	 ⊆ Θ,  A ≠ Θ(1 − V) + (V) ∙ S(Θ),   A � Θ,  V ∈ [0,1] (4) 25 

where Θ represents the set of criteria to be compared, 	 is the proposition in the power set 2a and is called the focal 26 

element, S(	) is the basic belief assignment (BBA), ST(	) is the discounted belief assignment and finally, V is 27 

the source (i.e., expert) reliability factor. A value of V � 1 means that the source is fully reliable and V � 0 menas 28 

that the source is fully unreliable. Note that the discounting process leads to generating a new focal set that contains 29 

all the criteria. By introducing this focal set, we are actually accounting for ignorance and uncertainty in the source 30 

(judgment). 31 

II. Combination of experts’ judgments 32 

After discounting the BBAs (weights), Dempster’s rule of combination is used to combine the experts’ 33 

weightings of a given criterion (Shafer, 1976), (Jiao et al., 2016): 34 

 S�,�(�) � (S� ⊕ S�)(�) � c                           0                               � � d,�
�Ge ∙ ∑ S�(	) ∙ S�(f) g∩i:jkl � ≠ d,  (5) 35 
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where S�,�(�) is the new belief assignment resulting from the combination of the two BBAs (weights),  S�(	) and 1 

S�(f), calculated from the two pairwise comparison matrices of the two experts, K is a measure of the amount of 2 

conflict between the belief sets (for the same focal set) from the two matrices and is given by: 3 

� � ∑ S�(	) ∙ S�(f)g∩i:l  (6) 4 

III. Pignistic probability transformation  5 

Finally, the weights need to be transformed from the creedal to the pignistic level using the transferable 6 

belief model proposed by (Smets and Kennes, 1994): 7 

 D(J) � ∑ S(�) �}(~)|j| , ∀J ∈ �j⊆�,jkl   (7) 8 

where D(J) is the BBA of a single element (criterion) (can be used directly in Eq. (1)), 1j is the indicator function 9 

of �: 1� � 1, �� J ∈ � �<� 0 �%ℎ��D���, |�| is the norm of � (the number of elements in the focal set). The mass 10 

functions obtained from the pignistic probability transformation represent the relative “believed weights” of the 11 

criteria indicated in Eq. (1). As explained earlier, in our case the BBA of a single element represents the local weights 12 

in the AHP method i.e., �(��), �(���), �(����), which are, in turn, obtained based on the combination of experts’ 13 

judgments. Please refer to (Bani-Mustafa et al., 2020) for more details on applying DST-AHP. 14 

4. Case study 15 

In this section, the hierarchical tree-based framework proposed is applied to a case study concerning the 16 

modeling of the residual heat removal (RHR) system of a nuclear power plant (NPP). In section 4.1, the system is 17 

described; in section 4.2, the characteristics of the two models used to represent the system (i.e. the Fault Tree-FT 18 

and the Multi-States Physics-Based Model-MSPM) are presented in some detail; finally, in section 4.3, the proposed 19 

approach is applied to evaluate the trustworthiness of the two models. 20 

4.1. The system 21 

The Residual Heat Removal (RHR) system of a typical PWR reactor is taken as reference. The RHR is mainly 22 

used to remove the decay heat (residual power) from the reactor cooling system and fuel during and after the 23 

shutdown, as well as supplementing spent fuel pool cooling in the shutdown cooling mode for some types of reactors 24 

(NRC, 2010). The main components of the RHR system are: pumps, heat exchangers, diaphragms and valves. 25 

According to previous studies, it was found that 23% of RHR system failures are due to pumps failures, 58% are due 26 

to valves failures, whereas the rest of RHR system failures are due to other components’ failures (Coudray and Mattei, 27 

1984). 28 

4.2. Models considered 29 

Two models have been considered for evaluating the reliability (resp., the failure probability) of the RHR 30 

system: a Fault Tree (FT) model (Section 4.2.1) and a Multi-State Physics-based Model (MSPM) (Section 4.2.2). 31 

4.2.1.  Fault Tree (FT) Model 32 

The Andromeda software (Hibti et al., 2012) has been used for the analysis of the RHR’s components failure 33 

modes and criticalities (importance analysis). The analysis is based on a logical framework for understanding the 34 

different possible ways in which the components and the system can fail. The failure probabilities used in the FT 35 

analysis are based on field experience feedback. 36 

4.2.2.  Multi-State Physics-based Model (MSPM) 37 
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The Physics-based model (PBM) and multi-state model (MSM) paradigms are often used to describe the 1 

degradation processes of components and systems. Physics-based modeling aims to develop an integrated 2 

mechanistic description of the component/system life, consistent with the underlying degradation mechanisms (e.g. 3 

wear, stress corrosion, shocks, cracking, fatigue, etc.) by using physics knowledge and related mathematical 4 

equations. Multi-state modeling is built on material science knowledge, degradation and/or failure data from 5 

historical field records or degradation tests, to describe the degradation processes in a discrete way (Gorjian et al., 6 

2010), (Di Maio et al., 2015). However, the state transition rate estimates are also based on physical models rather 7 

than operational data (Unwin et al., 2011). In this light, a model that combines the PBM and MSM, namely the Multi-8 

State Physics-based Model (MSPM) (Unwin et al., 2011), has been proposed to describe comprehensively the process 9 

of transition and degradation (Di Maio et al., 2015). 10 

In particular, in the analysis of the present case study, the main critical components have been taken into account 11 

(i.e. pump, diaphragm, breaker, motor, contactor and valve). The MSM was used to model the pump, breaker, motor 12 

and contactor, while the PBM model was used to model the valve and diaphragm, taking into account the degradation 13 

dependency of the valve on the pump. Further technical details can be found in (Di Maio et al., 2015), (Lin et al., 14 

2015). 15 

The results of MSPM and FT (using Andromeda software) are given in Table 2. The analysis shows similar 16 

results in the first eight years and a difference appearing in the tenth year with a more rapid decline in the reliability 17 

values obtained by MSPM. This can be explained by MSPM’s ability to consider the time-dependent degradation 18 

process, whose effects emerge late in time.  19 

Table 2 Values of reliability 20 

Time (years) 0 1 2 3 4 5 6 7 8 9 10 

Reliability (FT) 1 0.779 0.607 0.473 0.369 0.288 0.224 0.175 0.143 0.107 0.083 

Reliability (MSPM) 1 0.775 0.603 0.469 0.366 0.285 0.222 0.173 0.135 0.105 0.060 

 21 

4.3. Evaluation of model trustworthiness 22 

The analysis is carried out through two main steps: the first is an “upward” evaluation of the weight of each 23 

element in the hierarchy tree with respect to the top goal of model trustworthiness; the second is a “downward” 24 

assessment of the model trustworthiness by means of a numerical evaluation of the basic “leaf” elements for both FT 25 

and MSPM models, as shown in Figure 2.  26 

With respect to the evaluation of the weights, experts were asked to fill the pairwise comparison matrices in 27 

order to evaluate the importance of each attribute (criteria). By way of example and only for illustration purposes, 28 

Eq. (8) shows a pairwise comparison matrix of the “leaf” sub-attributes Q � T���,  Mp � ���� and Dr � ��� of level 29 

� �  4. The attributes relative importances with respect to the parent attribute (level of details) are evaluated using 30 

the balanced scale. Note that three attributes are compared in this case. By Eq. (3), the scales corresponding to the 31 

nine qualitative levels of importance (Saaty’s verbal expressions) are found to be 
��
�� , �

�N , �O
E , �P

I , �E
P , ��

Q , �
O , �O

R , �P
 . 32 

 

T��� T��� T��T���T���T��
� 1 15/9 19/15 1 ���1 15/9 1 � (8) 33 
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By solving the eigenvector problem for this matrix, we obtain the flowing BBAs: S(T���) � 0.385, S(����) �1 

0.230 , S(���) � 0.385 . Note that the BBAs (weights) of the three attributes in the example sum to one: 2 

∑ �����:� � 1. 3 

I. Expert’s reliability discounting  4 

The next step is to discount the BBAs given by the experts. In this example, two experts are invited to assess 5 

the weights of the trustworthiness attributes. The reliability of the two experts is assumed to be V � 0.85 and V �6 

0.70. In the previous example presented in Eq. (8), the weights of the expert are discounted using Eq. (4). The results 7 

are reported in Table 3. 8 

Table 3 Discounted weights from two experts with two reliabilities 9 

Focal set SV(	) for Expert 1 (V � 0.85) SV(	) for Expert 2 (V � 0.70) 

{T���} 0.327 0.194 

{T112} 0.196 0.253 

{T113} 0.327 0.253 

{T111, T112, T113} 0.15 0.30 

Note that the expert can choose focal sets of single criterion, e.g., {T111} or distinct group of criteria, e.g.,  {T111, T112} if he/she thinks, to the best of his/her knowledge, that this focal set is comparable to the universal set 

that contains all the criteria. This allows accounting for the uncertainty in the judgment. 
 10 

II. Combining experts’ judgments 11 

In this step, the experts’ judgments presented in Table 3, are combined using Eq. (5). Table 4 shows how to 12 

combine the judgments of the two experts. 13 

Table 4 Dempster's rule of combination matrix 14 

                Expert 2 

Expert 1  

ST(����) ST(����) ST(���) ST(����, ����, ���) 

ST(����) ST(����)� d� d� ST(����)� 

ST(����) d ST(����)� dR ST(����)� 

ST(���) dO dQ ST(���)� ST(���)� 

ST(����, ����, ���) ST(����)� ST(����)� ST(���)� ST(����, ����, ���)� 

*Please note that the element ��  in the Table represents the multiplication of the elements 1� × �1 , e.g., ST(����) × ST(����) � ST(����)�; ST(����) × ST(����, ����, ���) � ST(����)� 

 15 

From Eq. (6), � � 0.399. 16 

From Eq. (5): 17 

S�,�(����) � 0,1911 − 0.399 � 0.318 18 

The same steps are repeated, and the combined weights for the other focal elements are found to be:  19 

S�,�(����) � 0.243, S�,�(���) � 0.364, S�,�(����, ����, ���) � 0.075 20 
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 1 

III. Pignistic probability transformation  2 

In this step, the weight on the pignistic level is found by Eq. (7): 3 

D�,�T (����) � S�,�T (����) + S�,�T (����, ����, ���)3 � 0.318 + 0.0753 � 0.343 4 

Similarly, D�,�T (����) � 0.268 and D�,�T (���) � 0.389. All results are reported in Table 5. Table 5 shows the 5 

weighting factors obtained: in particular, the weights of each attribute with respect to the corresponding “upper level” 6 

parent (i.e., �(��), �(���) �<� �(����)). 7 

Different methods for assessing the weights (relative importance) of each attribute are implemented and 8 

compared for illustration purposes. As illustrated in Sect. 4.3, the procedural steps of Sect. 3.3.4 have been 9 

implemented to obtain the “DST-AHP weights”, first using Saaty’s linear scale and, then, using the balanced scale. 10 

On the contrary, the “weighted averages” are obtained using the conventional AHP method without accounting for 11 

the uncertainty in the assessors’ judgment. Note that in this case study, we will only use the global weights (�- ./0 ) 12 

obtained by DST-AHP method for assessing the level of trustworthiness: the weights are shown just for comparison 13 

and illustration of the use of DST-AHP.  14 

As a way of example, let us take the modeling fidelity attribute (highlighted in grey). First, the modeling fidelity 15 

weight was evaluated to be 0.25 and 0.50 by expert 1 (E1) and expert 2 (E2), respectively, using Saaty’s scale. On 16 

the contrary, it was evaluated to be 0.40 and 0.50 using the balanced scale. Note that, in general, the difference 17 

between the two experts’ evaluations decreases for all attributes, using the general balanced scale. This can be 18 

explained by the equal dispersions of the weights achieved by the balanced scale, which represents better the real 19 

evaluation of the expert (more representative of his/her real judgment). On the other hand, the difference caused by 20 

using the DST combination, instead of the weighted average combination method, cannot be directly predicted. Take 21 

again the modeling fidelity weights obtained using Saaty’s scale as an example: the use of the DST method for 22 

combining the experts’ opinions resulted in a decrease of the weight (0.303) compared to the weight obtained by the 23 

weighted average (0.363). On the other hand, the weight of the level of details attribute increases using the DST 24 

method (0.807 compared to 0.750). This is, in fact, because the DST method redistributes the weights taking into 25 

account the uncertainty and (in)consistency present in the experts’ evaluations’. 26 

Table 5 Attributes weighting factors calculated using the AHP method/ Balanced Scale 27 

Attribute Saaty Scale (1-9) General Balanced Scale 

E1 E2 weighted 

average 

DST-

AHP 

E1 E2 weighted 

average 

DST-

AHP 

Modeling fidelity 0.250 0.500 0.363 0.303 0.400 0.500 0.445 0.421 

Strength of knowledge 0.750 0.500 0.637 0.697 0.600 0.500 0.555 0.579 

Level of details 0.750 0.750 0.750 0.807 0.600 0.600 0.600 0.634 
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Number of approximations 0.250 0.250 0.250 0.193 0.400 0.400 0.400 0.366 

Number of equations and 

correlations 

0.429 0.200 0.325 0.332 

0.385 0.278 0.336 0.343 

Number of model parameters 0.143 0.400 0.259 0.215 0.231 0.361 0.290 0.268 

Number of dependency 

relations 

0.429 0.400 0.416 0.453 

0.385 0.361 0.374 0.389 

Quality of assumptions 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Quality of data 0.500 0.500 0.500 0.500 0.500 0.500 0.500 0.500 

Impact of assumptions 0.833 0.750 0.796 0.855 0.700 0.600 0.655 0.708 

Number of assumptions 0.167 0.250 0.204 0.145 0.300 0.400 0.345 0.292 

Consistency of data  0.750 0.750 0.750 0.807 0.600 0.600 0.600 0.634 

Amount of data 0.250 0.250 0.250 0.193 0.400 0.400 0.400 0.366 

E1 reliability factor: 70%                 E2 reliability factor: 85% 
 1 

The second step consists of an “upward” calculation, for the evaluation of the basic “leaf” attributes for each 2 

model using Eq. (1). Based on the data, information and knowledge, available and used in the risk assessment 3 

analysis, four types of trustworthiness analysis have been implemented. First, two assessments have been performed 4 

through direct quantitative evaluation of the leaf attributes (the number of model parameters is counted for each 5 

model) and Saaty’s and balanced scales for evaluating the weights. The two scales have been used again to relatively 6 

assess the trustworthiness based on a semi-quantitative evaluation of the leaf attributes, which is carried out through 7 

comparing the two models to each other and, then, assigning a relative score for each leaf attribute. 8 

In order to do that, scaling guidelines have been defined based on several EDF’s technical reports (Burns, 1980) 9 

and the feedback of experts, and scores of 1-9 have been defined (see Appendices B-D for details) to evaluate the 10 

attributes.  11 

Given the relative scores selected and using Eq. (1), the trustworthiness evaluation has been performed for both 12 

models, as illustrated in Tables 6-7. In this step, the assessors are asked to give a score � for the “leaf” attributes only 13 

(as illustrated in Tables 6-7), directly or relatively, with the help of the predefined guidelines, using Saaty’s linear 14 

scale or the balanced scale. In fact, nine levels are defined in the guidelines. These levels can be mapped into scores 15 

of 1,2, … 9, using Saaty’s linear scale, or by Eq. (3) into scores of  �N
�N , ��

E , ��
I , �

P , �R
Q , �O

O , �Q
R , �P

 , �I
� , using the balanced 16 

scale (given that there are two models to be compared). The trustworthiness can, then, be simply calculated as the 17 

weighted average of the “leaf” attributes. Please note that the weighted score �� is calculated as �HG� � �- ./0 ∙  18 

On the basis of the “leaf” attributes, the level of trustworthiness T was, then, calculated by Eq. (1) and found to 19 

be 4.594 for FT (M1) and 5.110 for MSPM (M2), using Saaty’s Scale (normalized to 0.473 and 0.527 respectively 20 

as illustrated in Table 8). On the other hand, the use of the balanced scale results in a trustworthiness of 2.601 for M1 21 
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and 3.273 for M2 (normalized to 0.443 and 0.557 respectively, as illustrated in Table 8). In the same perspective, we 1 

have, again, applied the same method to evaluate the model's trustworthiness T using the direct quantification of the 2 

leaf attributes. The results are reported in Table 7. Note that since the evaluation of the leaf attributes is direct, the 3 

scores would be the same for the two scales. The difference in the weighted score comes only from the difference in 4 

the global weights for each scale. The results of the trustworthiness evaluation for the two models (FT and MSPM) 5 

are reported in Tables 6-7. Table 8 shows all the normalized results. 6 

Table 6 Trustworthiness analysis using relative evaluation 7 

 

Attribute 

�- ./0  Fault tree model (M1) MSPM model (M2) 

 

�� 

 

�i 

Saaty Balanced Saaty Balanced 

�� ��G� �i ��G� �� ��G� �i ��G� 

Trustworthiness - - - 4.594 - 2.601 - 5.110 - 3.273 

Modeling fidelity - - - - - - - - - - 

Strength of knowledge - - - - - - - - - - 

Level of detail - - - - - - - - - - 

Number of approximations 0.058 0.154 6 0.351 3 0.462 7 0.409 4.000 0.617 

Number of equations and 

correlations 0.081 0.091 3 0.244 1.5 0.137 8 0.650 5.667 0.518 

Number of model parameters 0.053 0.072 3 0.158 1.5 0.108 7 0.369 4.000 0.287 

Number of dependency 

relations 0.111 0.104 1 0.111 1 0.104 4 0.444 1.857 0.193 

Quality assumptions - - - - - - - - - - 

Quality of data - - - - - - - - - - 

Impact of assumptions 0.298 0.205 3 0.894 1.5 0.307 3.333 0.993 1.833 0.375 

Number of assumptions 0.050 0.085 5 0.252 2.333 0.197 6 0.303 3.000 0.254 

Consistency of data  0.281 0.183 8 2.250 5.667 1.039 5 1.406 2.333 0.428 

Amount of data 0.067 0.106 5 0.336 2.333 0.247 8 0.537 5.667 0.601 

��: global weight using Saaty’s scale 

�i: global weight using balanced scale 

�: score  

��: weighted score 

 8 
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Table 7 Trustworthiness analysis using direct evaluation 1 

 

Attribute 

�- ./0  Fault tree model (M1) MSPM model (M2) 

 

�� 

 

�i 

Saaty Balanced Saaty Balanced 

� �� � �� � �� � �� 

Trustworthiness 

- 

-  22.71

3 

 33.31

1 

- 41.60

4 

- 63.35

2 

Modeling fidelity - - - - - - - - - - 

Strength of knowledge - - - - - - - - - - 

Level of detail - - - - - - - - - - 

Number of approximations 0.058 0.154 7 0.409 7 1.080 7 0.409 7 1.080 

Number of equations and 

correlations 0.081 0.091 1 0.081 1 0.091 9 0.731 9 0.823 

Number of model parameters 0.053 0.072 8 0.422 8 0.574 18 0.949 18 1.291 

Number of dependency 

relations 0.111 0.104 0 0.000 0 0 1 0.111 1 0.104 

Quality assumptions - - - - - - - - - - 

Quality of data - - - - - - - - - - 

Impact of assumptions 0.298 0.205 3 0.894 3 0.614 3.33 0.992 3.33 0.682 

Number of assumptions 0.050 0.085 4 0.202 4 0.338 3 0.151 3 0.254 

Consistency of data  0.281 0.183 8 2.250 8 1.467 5 1.406 5 0.917 

Amount of data 

0.067 0.106 275 

18.45

6 275 

29.14

6 

549.1

5 

36.85

5 

549.1

5 58.20

2 

 2 

Table 8 Summary of the models trustworthiness values using relative scores and direct measures 3 

 Scale Fault Tree MSPM 

Normalized Trustworthiness (relative scores) Saaty Scale 0.473 0.527 

Balanced Scale 0.443 0.557 

Normalized Model Trustworthiness (direct measures) Saaty Scale 0.353 0.647 

Balanced Scale 0.345 0.655 

In Table 8, the results show that MSPM model is more trustworthy than the Fault tree model (using all types of 4 

scales and evaluation methods). However, this finding is more significant using the balanced scale and the direct 5 

scoring of the leaf attributes. This can be explained by the ability of the balanced scale of representing better the 6 

opinions of the assessors.  7 

In general, these results confirm the expectations, with the MSPM outweighing the fault tree. This can be 8 

explained by the fact that MSPM is based on well-established physical models that represent the time evolution of 9 
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the states of the components, taking into account their interactions with the environment and other components, which 1 

affect the process of degradation.  2 

5. Discussion and Conclusion 3 

In this work, we have developed a hierarchical tree-based decision-making framework to assess the relative 4 

trustworthiness of risk models. The contribution of this work lies mainly in originally integrating , in a systematic 5 

and practical framework, some existing techniques of literature for evaluating the level of trustworthiness of risk 6 

assessment models, and simultaneously treat the uncertainty and inconsistency of expert’s judgment inevitable in this 7 

kind of analysis. The approach is based on the identification of specific attributes that are believed to affect the 8 

trustworthiness of the model. This is obtained through a hierarchical tree-based “decomposition” of the model 9 

trustworthiness into sub-attributes. The DST-AHP method has been used to assess the weights of the attributes 10 

presented in the hierarchical tree. Then, a weighted aggregation of the attributes is performed to evaluate the model 11 

trustworthiness. The method has been applied to a case study involving the Residual Heat Removal (RHR) system 12 

of a Nuclear Power Plant (NPP). Two models of different complexity (i.e., FT and MSPM) have been considered to 13 

evaluate the system reliability and the trustworthiness of these models has been compared. 14 

FT trustworthiness has been found to score 4.594 out of 9, whereas MSPM has scored 5.110 out of 9 using 15 

Saaty’s scale, or respectively 2.911 and 3.273 using the balanced scale. These results mean that MSPM provides 16 

more trustworthy risk estimates than FT, which can be explained by the fact that it takes into account components 17 

failure dependency relations. Also, although the results of the reliability analysis using the two models are quite 18 

similar at the beginning, differences appear at long times. This can be explained by the MSPM’s ability to consider 19 

the degradation affecting the components whose effects emerge at long times, and it is considered another feature for 20 

which the MSPM model outweighs the FT in trustworthiness. 21 

Although the results confirm the expectation, this should, however, be taken with caution and no definitive 22 

conclusions should be drawn, since the analysis by the two models are neither based on the same data set, nor the 23 

same amount of resources. The case study is instead an attempt to show the applicability and feasibility of the 24 

developed methodological framework. 25 

Clearly, there is no claim that the trustworthiness assessment approach proposed is comprehensive and complete, 26 

as there exist other factors that affect the level of trustworthiness, which were not considered here. The method was, 27 

rather, a first attempt to systematically evaluate the models’ relative trustworthiness. Obviously, it impossible to 28 

remove completely subjectivity and expert judgment is still present, the method provided is an attempt to cast such 29 

expert judgment in a systematic and structured framework. Also, further studies should be performed to define the 30 

scaling guidelines for attributes evaluation and to study how to integrate the level of trustworthiness in RIDM. 31 
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Appendix A: Synthetic review of the methods in the literature 26 

Table A.1 Synthetic review of the methods in the literature 27 

Method Use and 

objective 

Characteristics and criteria  Methods 

Predictive 

Capability 

Maturity 

Model 

(Oberkampf, 

Pilch and 

Trucano, 

2007) 

Assesses the 

level of maturity 

of 

computational 

modeling and 

simulation 

methods. 

Semi-quantitative assessment of maturity with 

respect to six criteria:  

(i) representation and geometric fidelity; (ii) 

physics and material model fidelity; (iii) code 

verification; (iv) solution verification; (v) 

model validation; (vi) uncertainty 

quantification and sensitivity analysis. 

Experts’ knowledge. 

Prediction 

capability of a  

prognostic 

method 

(Di Maio et 

al., 2015), 

Assesses the  

prediction 

quality  of 

prognostic tools. 

An indicator of prognostic performance 

assessed qualitatively and quantitatively given: 

a. The RUL model predication quality, which is 

assessed “quantitatively” based on: (i) 

Timeliness weighted error bias; (ii) sample 

mean error; (iii) mean absolute percentage 

error; (iv) mean square error; (v) sample median 

Experts’ knowledge; 

weighted average of  

criteria within AHP. 
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(Zeng et al., 

2016) 

error; (vi) performance; (vii) weighted 

prediction spread; (viii) sample standard 

deviation; (ix) root mean square error; (x) 

prediction spread. 

b. The trustworthiness of method, which 

includes: (i) reliability; (ii) resources 

requirement; (iii) mathematical modeling 

adequacy; (iv) validity. 

Modeling and 

Simulation 

(M&S) 

credibility 

model 

(NASA, 2013) 

Assesses the 

credibility of 

M&S tools. 

Credibility assessed semi-quantitatively based 

on: (i) M&S development, including 

verification and validation; (ii) M&S 

operations, including input pedigree (a record 

of traceability from the input data source), 

results uncertainty and results robustness; (iii) 

supporting evidence, including the use history, 

M&S management and people qualifications. 

Scoring protocols and 

experts’ knowledge. 

Knowledge 

assessment 

(Flage and 

Aven, 2009) 

 

Expresses the 

knowledge on 

which risk 

assessment is 

based.  

SoK qualitatively assessed as minor, moderate 

or significant, based on: (i) phenomenological 

understanding of the problem; (ii) availability 

of reliable data; (iii) reasonability of 

assumptions made; (iv) agreement (consensus) 

among experts (i.e., low value-ladenness). 

Evaluation protocols and 

experts’ knowledge. 

Assumption 

deviation risk 

(Aven, 

2013b), 

(Berner and 

Flage, 2016) 

Assesses the 

possibility and 

criticality of risk 

deviations. 

Semi-quantitative rough evaluation of the 

uncertainty associated to an assumption and the 

sensitivity of the model output to such 

assumption. 

Experts’ knowledge and 

local, one-at-a-time 

sensitivity analysis.  

Evaluation of 

model 

uncertainty, 

credibility and 

applicability 

(Droguett and 

Mosleh, 2008 

and 2014) 

Assesses model 

uncertainty. 

Comparison of model predictions and real data, 

within a Bayesian framework. 

Bayesian methodology 

where information about 

models are available in the 

form of homogeneous and 

nonhomogeneous 

performance data (pairs of 

experimental observations 

and model predictions). 
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Appendix B: Method used to translate the hierarchical tree attributes into a semi-quantitative scale  2 

The following table presents the guidelines adopted in this paper to translate the attributes of the hierarchical 3 

tree into a semi-quantitative scale. Such guidelines are defined based on discussions and suggestions provided by 4 

EDF analysts, with relevant experience in the problem ad case study at hand. 5 

Table B.1 A semi-quantitative scale for the hierarchical tree attributes 6 

Parameter Translation  “real number → scale 1/9” 

Number of 

approximati

ons (	
 �
���) 

 

Low number of approximation and low believed effect of their aggregate on the outputs: 9 

Few approximations with low effect of their aggregate: 7 

Moderate number of approximations with acceptable effect of their effect on the outputs: 5 

High number of approximations with high effect of their aggregate on the outputs: 3 
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High number of approximations with sever effect of their aggregate on the outputs: 1 

The even number are left for the intermediate cases 

Number of 

equations 

and 

correlations 

(� � ����) 

1-2 equations : 1 

3 equations : 2 

4 equations or 1 (Boolean logic equation) : 3 

. 

. 

>9 equations : 9 

Number of 

state rates 

and model 

parameters 

(�
 �
����) 

0-2: 1 

3-5: 2 

. 

. 

>32: 9 

Number of 

dependency 

relations 

considered 

(�� � ���) 

0 dependency relations considered :  1 

1%-12.5% of the failures rates are considered dependent on the failure of other components:  2 

13.5%-25%:  3 

26%-37.5%:  4 

. 

. 

>88.5% All components failures are dependent on other components failures :  9  

Number of 

assumptions  

(	� � ����) 

Directly related to the actual number of assumptions used. 

Impact 

(Sensitivity 

analysis and 

indications) 

(� � ����) 

The impact is related to the assumptions. The difference between the values of failure rate with 

and without the assumption should be estimated. A score between 1-9 is given for each 

assumption, and the final score is then averaged over all assumptions. 

1. No repairs: assuming no component repairs, at time 500, we obtain a probability of failure 

which is 500 times higher as compared to the case when the repair is considered (Figs 9-12 

(Lin, 2016)) 

2. One directional dependency: assuming only one-direction dependency of the valve 

degradation from the degradation and vibration of the pump, decreases the valve reliability of 

about 3 times (Figs 9-21(Lin, 2016)) 

3. Human error: In case of human error (omission in closing the manual valve), we obtain a 

probability of failure of RHR which is 1.096 times higher. Nevertheless, the human error 

probability is very small. 
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4. No random shocks: assuming no random shocks results in a relative difference in the failure 

rate of the components. in particular, there is a reduction of (-2.99%-19823.08%) with 

respect to the case with the random shocks (Table II  (Lin, 2016)) 

Consistency 

of data (� �
����) 

The expert should give a score between 1-9 evaluating of the consistency of data, taking into 

account the source of data, its compatibility and relevance to the components that need to be 

analyzed. 

As in the case study the data is collected from the same type of reactors 900 Mwe, it is highly 

consistent: the consistency is given a score of 8. 

However, we cannot guarantee a perfect consistency, as the information about a specific 

component might be collected from other components that are similar but slightly different: e.g., 

the failure rate of RHR pumps is calculated taking into account failures of all pumps in the 

reactor. 

Amount of 

data  

(Number/a

mount of 

sources) 

(	� � ����) 

The following classification is adopted according to the suggestions of EDF experts: 

> 25 reactor years of experience :  1 

25-50:   2 

51-100:  3 

101-175:  4 

176-275:  5 

276-400:  6 

401-550:  7 

551-725:  8 

Over 725:  9 
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Appendix C: Trustworthiness attributes evaluation for Fault Tree (FT) M1  2 

Table C.1 Trustworthiness attributes evaluation for Fault Tree (FT) 3 

Parameter Direct 

score 

Relative 

score 

Note 

	
 � ��� 7 6 7 minimal cut sets 

� � ���� 1 3 1 equation (Boolean logic): failure probability based on “rare event” 

approximation 

�
 � ���� 8 3 8 failure rates for 8 basic events 

�� � ��� 0 1 No dependency relations considered 

	� � ���� 

 

4 5 No repairs 

No dependency relations between components and failure mechanisms 
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Human error 

No random shocks 

� � ���� 3  

 

3 

 

 

4 

4 

 

 

1 

 

Avg: 3 

Based on the sensitivity analysis performed by (Lin, 2016) and the analysis 

performed using Risk Spectrum Software by EDF 

1. No repairs: assuming no component repairs, at time 500, we obtain a 

probability of failure which is 500 times higher as compared to the case 

when the repair is considered (Figs 9-12  (Lin, 2016)) 

2. No directional relation considered 

3. Human error: In case of human error (omission in closing the manual 

valve) we obtain a probability of failure of RHR which is 1.096 times 

higher. Nevertheless, the human error probability is very small. 

4. No random shocks: assuming no random shocks results in a relative 

difference in the failure rate of the components. in particular, there is a 

reduction of (-2.99%-19823.08%) with respect to the case with the random 

shocks (Table II  (Lin, 2016)) 

� � ���� 8 8 The data are collected from application of SAFO (OMF-reliability-centered-

maintenance-feedback computer assisted collection on 7 CP1-CP2 sites and 

report on data. 

As this data is collected from the same type of reactors  900 MWe it is highly 

consistent.  

On the other hand, we cannot guarantee a “perfect” consistency, as the 

information about a specific component might be collected from other, 

similar but possibly different, components: e.g., the failure rate of RHR motor 

operated valves is calculated taking into account failures of all motor operated 

valves in the reactor. 

	� � ����  275 5 EDF internal reports on data collected between 1980 and 1992, or 275 years 

reactor for each component. 
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Appendix D: Trustworthiness attributes evaluation for Multi-State Physics-based Model (MSMP) M2 2 

 3 

Table D.1 Trustworthiness attributes evaluation for Multi-State Physics-based Model (MSMP) 4 

Parameter Direct 

score 

Relative 

score 

Note 

	
 � ��� 7 7 No relevant approximation 

� � ���� 9 8 4 multi-state models 
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3 physical equations for valve and diaphragm behavior 

2 threshold equations for �� and �� (denote respectively: the number of cycles 

of solicitation of the valve over time and the thickness loss of the pipe over time) 

�
 � ���� 18 7 -5 transitions rates in the multi-state model 

- 11 parameters for physical equations for the valve and diaphragm  

- 2 parameters for the modeling of number of cycles and thickness loss 

(18 parameters in total) 

�� � ��� 1 4 1 dependency relation considered between the valve and the pump 

	� � ���� 3 6 No repairs  

1 directional dependency: the dependency of the valve degradation on the pump 

degradation and vibration 

No random shocks 

� � ���� 3.3333  

3 

 

6 

 

 

 

1 

 

Avg: 

10/3 

Based on the sensitivity analysis performed by (Lin, 2016): 

1. No repairs: assuming no component repairs, at time 500, we obtain a 

probability of failure which is 500 times higher as compared to the case when 

the repair is considered (figs 9-12 (Lin, 2016)) 

2. One directional dependency: assuming only one direction dependency of the 

valve degradation on the degradation and vibration of the pump decreases the 

valve reliability of about 3 times (Figs 9-21 (Lin, 2016)) 

3. No random shocks: assuming no random shocks results in a relative difference 

in the failure rate of the components. in particular, there is a reduction of (-

2.99%-19823.08%) with respect to the case with the random shocks (Table II  

(Lin, 2016)) 

� � ���� 5 5 The data are collected from internal technical reports: 

-Pump 621.95 years reactor (PWR 900 MWe, PWR 1300 MWe, PWR N4) 

PWR 900: 2 

PWR 1300, N4: 2 

-Breaker 420 Years reactor (PWR1300 MWe, CPY) 

CPY: 18 

PWR 1300:19 

-Contactor 528.21 years reactor (1300 MWe, CPY, PWR N4) 

CPY: 26 

PWR 1300: 48 

PWR N4-1400: 29 

- Motor 626.42 years reactor (900 MWe, 1300 MWe, Palier PWR N4) 
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CPY: 43 

PWR 1300: 36 

PWR N4-1400: 34 

Even though the data collected in EDF internal reports comes from different 

sources with different types of reactors, it is still consistent as the different 

components are very similar. 

	� � ���� 549.15 8 -Pump : 621.95 years reactor 

-Breaker: 420 Years reactor   

-Contactor : 528.21 years reactor  

- Motor  : 626.42 years reactor  
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