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Abstract—Graphics Processing Units (GPUs) are today
adopted in several domains for which reliability is fundamental,
such as self-driving cars and autonomous machines. Unfortu-
nately, on one side GPUs have been shown to have a high error
rate and, on the other side, the constraints imposed by real-time
safety-critical applications make traditional, costly, replication-
based hardening solutions inadequate.

This paper proposes an effective microarchitectural selective
hardening of GPU modules to mitigate those faults that affect
instructions correct execution. We first characterize, through
Register-Transfer Level (RTL) fault injections, the architectural
vulnerabilities of a GPU model (FlexGripPlus). We specifically
target transient faults in the functional units and pipeline
registers of a GPU core. Then, we apply selective hardening
by triplicating the locations in each module that we found to
be more critical. The results show that selective hardening using
Triple Modular Redundancy (TMR) can correct 85% to 99% of
faults in the pipeline registers and from 50% to 100% of faults
in the functional units. The proposed selective TMR strategy
reduces the hardware overhead by up to 65% when compared
with traditional TMR.

Index Terms—Graphics Processing Unit (GPU), Reliability,
Selective Hardening

I. INTRODUCTION

The computational power and flexibility of modern Graphics
Processing Units (GPUs) have boosted their adoption in High
Performance Computing (HPC) and in embedded applications,
especially when Artificial Intelligence (AI) algorithms based
on Deep and Convolutional Neural Networks (DNNs and
CNNs) are exploited. Some domains that benefit from GPUs
efficiency in executing AI algorithms, such as autonomous
systems for automotive, robotics, and space exploration, are
also characterized by strict requirements in terms of depend-
ability. The recent market shift, from consumer to safety-
critical applications, has gradually raised the interest, and
posed questions, about GPUs reliability.

GPU vendors have worked to improve their devices’ relia-
bility, for example by designing more robust memory cells [1]
or developing (software) hardening solutions targeting the
application domains where dependability is crucial [2], [3]. In
the meanwhile, the research community has been extensively
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studying GPU reliability through fault injection/simulation [4],
[5] or beam experiments [6], [7]. The effort towards improving
GPUs reliability also requires the availability of effective
methods to identify the most critical modules in the hard-
ware and to estimate the improved reliability or safety, as
described in universally adopted reliability standards, such as
ISO26262 [3].

Designing effective and efficient hardening solutions re-
quires to identify the main sources of failures in GPUs. Un-
fortunately, performing an extensive Register-Transfer Level
(RTL) fault injection on complex algorithms in a GPU is
unfeasible, as it would take too long (characterizing one GPU
module executing a simple 5 layers CNN takes more than 740
hours) [8]. Inspired by previous works [9], [10], we propose to
extend and adapt to GPUs the idea of characterizing the fault
effects analysing basic instructions in combination with some
specific complex codes. While this task has been performed for
conventional CPUs, it has never been investigated for GPUs.
Previous solutions do not scale to the higher complexity of the
hardware and the intrinsic extreme parallelism of the software
in GPUs.

In this work, we propose a fine-grain RTL fault injection
analysis on a set of micro-benchmarks that stimulate specific
GPU ISA instructions and on a set of applications. The RTL
analysis extracts useful information about the modules, and the
flip flops inside a module, that are more likely, once corrupted,
to affect the execution of the instruction or application. The use
of both micro-benchmarks and applications allows to identify
weaknesses of modules stimulated by specific instructions and
to highlight behaviours that are characteristic of the executed
code. Hence, we can more effectively identify those elements
which are worth being hardened.

We applied the proposed approach resorting to an RT-
level model (FlexGripPlus [11]) mimicking the behavior of
NVIDIA GPUs. We identified the modules that are more likely
to impact the execution and applied a selective hardening
strategy, based on the triplication of critical Flip Flops (FFs).
We choose triplication to provide correction rather than simple
detection. While triplication has a higher overhead, in fact,
in applications such as object detection the current GPU
technologies are barely compliant with real-time constraints
(40 frames per second). In the event of a fault, then, the system



does not have time to re-process the data before the next frame.
Our results show that with the proposed approach we can

correct from 85% to 99% of faults in the pipeline registers
and from 50% to 100% of faults in the execution units with an
overhead lower than traditional duplication (that only provides
detection).

The remainder of the paper is organized as follows. Section
II provides some background information and overviews the
related works about hardening mechanisms in parallel devices.
Section III describes the proposed approach to characterize
the modules and identify the target locations for the selective
hardening. Section IV reports the experimental results and
their analysis, and Section V draws conclusions and proposes
future works.

II. BACKGROUND AND RELATED WORK

Several techniques have been proposed to mitigate the
effects of transient faults in computing devices. The avail-
able solutions correspond to hardware, software, or hybrid
techniques. The hardware solutions are devoted mainly to
applications with heavy requirements in terms of functional
safety and reliability. In this scenario, the additional costs
are justified by the improved features and capabilities. The
most classical hardware strategies include Double and Triple
Modular Redundancy (DMR, TMR), and Error-Correcting
Codes (ECCs). Other alternatives are selective hardening
[12] and custom-optimized [13] techniques. For GPUs, the
adoption of these solutions requires a careful evaluation of
the introduced area and power consumption overhead. Their
higher complexity and the huge amount of computing units
they are based on make GPU hardening more challenging than
for CPUs. Some GPU mitigation solutions based on Built-
In Self-Repair (BISR), exploiting spare modules to replace
faulty units, have also been proposed [14]–[16]. Furthermore,
some authors proposed the reconfiguration of computational
modules [17], [18] and memories [19] in GPUs once a fault
is detected. Lately, GPU redundant mixed-precision hardware
has been exploited for low-cost error detection [20].

Software mitigation solutions can also be adopted in GPUs.
These solutions are based on code adaptations to mitigate ef-
fects using functional [21] and algorithmic [22], [23] methods.
Nevertheless, the performance degradation and memory over-
head can be relevant, compromising the real-time constraints
of some GPU applications. In [24], the authors introduced
a software-based redundant multithreading mechanism multi-
plying the threads to be executed. However, the performance
overhead depends on the workload and the method cannot
always be generalized.

This paper aims to identify the most critical elements in
some target GPU modules, thus allowing a fast yet effective
flow for applying selective hardening to mitigate faults in
the most common modules used for parallel execution and
operation management, including the functional units and the
pipeline registers. To quantitatively assess the effectiveness of
the proposed approach, we resorted to the FlexGripPlus RTL
model [11] of an NVIDIA GPU architecture.

Fig. 1. A general scheme of the proposed methodology to evaluate microarchi-
tectural reliability, perform the fault effect evaluation and select the modules
to be hardened in a GPU core.

III. PROPOSED METHODOLOGY

A. Overview

The proposed reliability evaluation and hardening approach
is divided in four steps: i) RTL fault injection, ii) Fault classi-
fication, iii) Feedback evaluation, and iv) Selective Hardening,
as depicted in Figure 1.

In the first step, a microarchitectural RTL fault injection
is performed on the FlexGripPlus GPU model. For this pur-
pose, we inject transient faults (i.e., single bit-flips) in the main
computing modules of the GPU core. We consider the Pipeline
Registers (PRs), the FP32 and INT functional units, the Special
Function Units (SFUs), and the SFU local controller.

In this step, we select a group of instructions from the
Instruction Set Architecture (ISA) of the GPU to build a set
of micro-benchmarks. In particular, we select the most com-
monly used assembly instructions and consider the functional
modules they use for their execution (details in Section III-B).
Moreover, we evaluate a set of applications (FFT, Edge, MxM,
nn, and VectorAdd-Vadd) as complementary information to
observe the fault distribution dependence on the software and
select the main candidates for selective hardening. Further
details on the applications we used can be found in [25].

In the second step, fault classification, we measure the
probability for each fault to reach visible states in the instruc-
tion outputs (i.e., to compute the Architectural Vulnerability
Factor, AVF [26]). Moreover, the classification determines the
type of impact on the instruction output values (single/multiple
threads corrupted, how much the corrupted deviates from the
expected results, etc.).

The feedback evaluation is intended to extract the most
critical and common errors observed. Then, these errors
are tracked-back to the original micro-structural source, so
locating the specific hardware component and location that
have caused the error. These locations are used as candidate
locations for hardening. Finally, in the selective hardening
step, the identified critical locations are hardened (triplicated)
according to module, type of resource in the GPU core, and
complexity.



The next sub-sections explain in more details the procedures
employed in the four steps of the proposed method, targeting
the FlexGripPlus model as a case study.

B. RTL Fault Injection

We use the RT-level GPU model (FlexGripPlus) [11] to per-
form the microarchitectural reliability evaluation through a set
of fault injection campaigns. FlexGripPlus is an open-source
VHDL-based GPU model, which implements the Nvidia G80
architecture [27], with structural details for the most represen-
tative modules, and compatible with the commercial CUDA
programming environment.

A custom RT-level fault injection framework [28] was de-
veloped, using one general controller to manage the ModelSim
environment hosting the model. This controller injects one
fault at a time (corresponding to a single transient) in the
targeted GPU module, according to a previously generated
fault list. For the proposed microarchitectural analysis, we
inject faults in the Pipeline Registers (PRs), the Integer cores
(INTs), the Single Precision Floating Point Units (FP32s),
the Special Function Units (SFUs) and the control logic (see
Figure 1). Table I describes the main features of the targeted
modules, including their size, and instructions used.

FlexGripPlus accepts as input one parallel program (kernel)
for the GPU model. For the purpose of this work, we de-
signed several programs (micro-benchmarks) to characterize
the effects of RTL faults in the targeted set of instructions.
The chosen instructions are:

• Floating point operations (FADD, FMUL, FFMA - Fused
MUL and ADD)

• Integer operations (IADD, IMUL, IMAD - MUL and
ADD)

• Trascendental functions (SIN, EXP)
• Load/Store (GLD, GST)
• Branch (BRA)
• Integer set predicate/register (ISET).

Although these assembly instructions represent only a small
part of all the ≈200 different opcodes in a typical ISA of
a GPU, they account for more than 70% of the instructions
that compose applications taken from universally adopted
benchmark suites for HPC and safety-critical applications
(e.g., Rodinia [29], NVIDIA SDK, CNNs [30], [31]).

The programs using arithmetic instructions (IADD,
IMAD, IMUL, FADD, FMAD, FMUL, FSIN and FEXP)
contain four consecutive operations. Each operation accepts
different parameters from memory, so executing the same in-
struction with different values. These programs are configured
using 64 parallel threads (2 warps) with each thread executing
the same instruction. It must be noted that the framework
injects only one fault in each target location of the GPU core
per micro-benchmark simulation. This parallel configuration
allows us to observe any possible fault effect corrupting several
threads as the effect of one single fault propagation and not by
multiple fault injections. Each program contains the 64 threads
executing the same instruction without interactions between
threads.

TABLE I
EVALUATED MODULES, SIZES AND INSTRUCTIONS USED PER MODULE

Module RTL Size
(Flip-Flops) Type Instructions

FP32 4,451 Execution/
Data FADD, FMUL, FFMA

INT 1,542 Execution/
Data IADD, IMUL, IMAD

SFU 3,133 Execution/
Data FSIN, FEXP

SFU
controller 288 Control FSIN, FEXP

PRs 3,007 Control/Data ALL

An ideal RT-level fault injection requires the evaluation of
each instruction working on the same or equivalent values used
during the operation of the device. Other approaches make
use of random patterns. However, both cases require extensive
simulation times, which is clearly unfeasible in most scenarios.
Thus, we limit the analysis to three input ranges (Small,
Medium, Large). We test the floating point and integer opcodes
with three different pre-defined input ranges that we identified
based on the results of extensive fault injection experiments:
Small (S, both inputs in the range 6.8x10−6 to 7.3x10−6),
Medium (M, in the range 1.8 to 59.4), and Large (L, in the
range 3.8x109 to 12.5x109). For the instructions using the SFU
(FSIN and FEXP), we selected three inputs according to their
operational constraints (in the range 0 to π/2), so avoiding any
internal range reduction procedures. To avoid the bias of our
results we perform a fault injection campaign on 4 different
randomly selected values for each input range.

We also consider memory movements (GLD and GST)
and control-flow instructions (BRA, ISET). The memory
movement micro-benchmarks perform one load operation fol-
lowed by a store operation. For the control-flow operation,
we allocate a limited number of setting instructions before a
branch operation. A fault is detected when a set register is
not correctly assigned or when the branch condition fails. We
anticipate that (not surprisingly) in most cases faults affecting
control-flow instructions severely affect the execution of the
GPU leading to a hang.

C. Fault classification

Once the fault is propagated to any of the available outputs
of the target module (instruction output register, memories, or
control signals), its effect is classified by comparing the output
values and signals with the golden ones obtained in a fault-
free simulation, as Silent Data Corruption (SDC, i.e., output
values mismatch), Detected Unrecoverable Errors (DUE, i.e.,
hang), or Masked (i.e., no effect).

The classification stage generates a report per fault cam-
paign, which includes the effect (SDC, DUE, Masked) of
each injected fault based on (1) the used instruction, (2) the
input value range (3) the target module (where the fault is
injected). We also classify the fault effect as individual (one
single thread affected) or multiple (more threads affected). The
general report allows to measure the AVF for each module and



instruction as the ratio between the number of observed errors
(SDCs/DUEs) and the total number of the injected faults.

D. Feedback Evaluation Analysis

We carefully track all faults propagated to any of the
available outputs of the GPU model and then we proceed to de-
termine the original location of the fault causing the observed
SDC or DUE. For this purpose, we combine the generated
reports and the output results of each micro-benchmark and
application. We classify and group the locations, causing the
fault propagation, and structures per module. These identified
sensitive locations per module (e.g., FFs) represent the main
candidates for the selective hardening.

E. Selective Hardening

The reports from the feedback evaluation are analyzed to
identify the affected locations. Then, a general report is built
containing all sensitive locations. Finally, the hardening target
locations are extracted from the general report.

According to the general report, we propose a selective
hardening strategy that triplicates only the most vulnerable
locations in the modules. It is worth noting that each module
is evaluated and the most suitable locations for hardening are
identified. Although selective hardening can be employed at
several levels of granularity, we work at the register level, so
if a flip-flop in a register (or sequential structure) is sensitive
to faults, the complete register is targeted for the hardening.
Finally, we evaluate and compare the hardware overhead costs
and the effect in terms of fault tolerance in the GPU modules
and the complete GPU core.

IV. EXPERIMENTAL RESULTS

In this Section, we detail the results of the RTL characteri-
zation of faults effect in the targeted GPU modules. The fault
injection campaigns were performed on a server of 12 Intel
Xeon CPUs running at 2.5 GHz and with 256 GB of RAM.

In the experiments, 4 GPU modules (PRs, FP32/INT func-
tional units, special functional units) are characterized using
the fault injection described in Section III-B. Each fault
injection campaign considers one micro-benchmark using one
of the 12 selected assembly instructions and, for each micro-
benchmark, we characterize four random values for each of
the three input ranges (S/M/L). For each of the 144 fault-
injection campaigns we inject 12,000 faults in 4 GPU modules
(FP32, INT, SFU, SFU controller, PRs). A similar procedure,
although using only the standard workload, is applied for the
fault injection campaigns in the five applications (FFT, Edge,
MxM, nn, and VectorAdd (Vadd)). Overall we present data
from more than 1.88x106 fault injections. This guarantees a
statistical margin error lower than 3%.

A. Fault injection and fault effect evaluation

Figure 2 depicts the AVF distributions for the Functional
Units (INT, FP32, and SFU) and the Pipeline Registers (PRs).
We have not evaluated data movement and control-flow in-
structions (GLD, GST, BRA, and ISET) when injecting faults
in the functional units, as these modules remain idle.

To have a fine grain evaluation, we divide the injection
locations in each module into two groups. We consider the
injections in flip flops close to the module’s input and output
registers (IO) as the first group of evaluation. The second
group is composed of the internal sites (IS). Similarly, for
the PRs, we divide faults injected in the data path (Data) and
control path (Control).

A general overview of the results shows that, for all custom
micro-benchmarks (IADD, IMUL, IMAD, FADD, FMUL, and
FMAD), faults in the functional units are more likely to pro-
duce SDCs than DUEs. On the contrary, for most applications
(FFT, Edge, nn, MxM, Vadd) injections are more likely to lead
to DUEs. This different trend can be explained considering
that, in the applications, INT and FP32 are also employed to
calculate memory addresses or indices. In contrast, there is
the minimal percentage of DUEs caused in the SFU module
(not visible in Figure 2), which is mainly generated by the
impact of faults on a local controller. Once a fault corrupts
the operation of the controller, it hangs the execution.

Analyzing the fault injection results we found that most
faults in the INT and FP32 affect only one of the instantiated
threads. On the contrary, evaluating nn, FSIN, and FEXP
benchmarks, we found that faults in the special function units
(SFUs) affect several threads. This behavior can be explained
considering that GPU cores use dedicated functional unit cores
(INT and FP32) to operate each related instruction (ADD,
MUL, and MAD). On the contrary, the GPU core only includes
a few (two) SFUs and is shared among the different threads.
Multiple SDCs are caused by faults in the control units of the
SFUs. The effect of a fault occurring when managing a thread
is propagated also to other threads.

Data in Figure 2 attests that the PRs are more likely to be
corrupted when executing control-flow (BRA, iSET) or data
movement (GLD, GST) operations. Applications that heavily
use these kind of operations (FFT, nn, MxM) are also the
ones with higher AVF for the PRs. Interestingly, all instruc-
tions (arithmetical, control-flow, and memory movement) use
uniformly about 47% of the registers in the PRs. The stress on
the PRs does not depend on the instruction, and cannot be the
cause for the particularly high AVF for control-flow and data
movement instructions. The higher AVF is then only related
to the type of instruction and the effect of the fault on the
computation.

Most SDCs and DUEs caused by faults in the PRs are origi-
nated by control path corruption (about an average of 97.6% of
the observed faults). Most of the observed DUEs are caused by
corruptions of pipeline control registers that, despite being few
(about 16%), are highly critical. Additionally, we found that
faults in these pipeline control registers can corrupt multiple
threads (up to 18 threads per warp). On the average, ≈5% of
SDCs caused by faults in the pipeline affect multiple threads.
While most PRs (≈84%) store operands for each parallel core
and might produce single thread corruptions, registers devoted
to control signals are critical as they manage the operation
of several threads and cause multiple threads corruptions.
Moreover, the evaluation of the memory movement and control



Fig. 2. AVF on the functional units (FP32, INT, SFU) and PRs for the different applications and micro-benchmarks.

flow micro-benchmarks (GLD, GST, BRA, ISET) reveals that
faults in the data-path of the PRs can also corrupt the control
flow.

As observed in Figure 2, each functional unit has an AVF
that depends on the executed instruction (or application). This
is because each assembly instruction, involving functional
procedures, uses a certain number of submodules in a given
structure (e.g., the IADD instruction uses a parallel adder
structure instead of a multiplier in the INT module). Several
submodules may then remain inactive during the execution of
a specific instruction and be activated for others.

Particularly interesting is the case of the INT module, that
has a SDCs AVF for the micro-benchmarks but a high DUEs
AVF for applications (>60% of the observed faults). This
should not surprise, as the applications mostly employ integer
instructions for control flow or parallelism management, such
as the assignation of thread pointers and memory addressing.
A (data) fault in these operations is likely to collapse the GPU
operation.

The functional units AVF for the floating point instructions
(FADD, FMUL, FMAD) is much smaller than for the integer
instructions (IADD, IMUL, IMAD). This is caused by the
higher complexity and area of the floating point units, that
are more than 3x larger than the integer units (see Table I). A
larger area increases the number of injection sites, thus reduc-
ing the probability to hit a critical resource for computation.
However, the distribution shows that the fault effect is mainly
dominated by SDCs in the internal modules of both functional
units. Similarly, the applications using INT and FP32 modules
(nn and MxM) present the same behavior.

B. Feedback evaluation

With the fault injection results, we trace back the locations,
in the GPU core, that produced the observed errors. This
allows us to identify the most critical structures for each
module.

In case of the PRs, we found that most critical locations
are part of the control-path registers (see Control (DUE) and
Control (SDC) in Figure 2), which are employed to store
and manage the active threads in a program. The affected
registers are devoted to store the predicates (predicate flags),
active threads (current mask), memory parameters (addresses

TABLE II
MODULES AND IDENTIFIED CRITICAL SUB-STRUCTURES

Module Size of the
module (FFs) Structure Size of the

structure (FFs)

PRs 3,007

Data path 1,536
Predicate Flags 256
current mask 192

Memory addresses 384
Address pointers 224

Other 167

INT core 595 Input/Output registers 131
Internal structures 395

FP32 core 4,451 Input/Output registers 0
Internal structures 2,598

SFU core 3,133 Input/Output registers 32
Internal structures 1,952

SFU controller 288 Internal structures 288

and pointers), among others. When corrupted, these locations
affect several threads.

The analysis of the execution units revealed that, unfortu-
nately, it is not possible to identify locations for the INT and
FP32 modules that are more critical than others. Thus, the
identification of sub-modules in these units is not as effective
as with the PRs. In the execution units there are a few locations
that cause the corruption of the output (such as the output
registers of the module). However, there are several internal
structures that once affected by faults propagate the fault
effect. Table II reports only the identified critical locations in
the modules and main candidates for the selective hardening.
Other locations in the GPU modules, even when corrupted,
do not affect computation, due to fault masking or missing
activation patterns, so these were discarded as potential re-
liability targets in the present work. It is worth noting that
deeper analyzes, using more kernels would be required to
guarantee the injection of most activation patterns, so allowing
the complete identification of insensitive sub-modules.

C. Selective hardening

We applied a conservative approach of selective hardening,
which consists in triplicating all flip-flops of a critical register
(or sub module) and including a majority voter downstream.
All the identified sub modules (see Table II) and their flip-
flops are the main targets for selective hardening. In detail,
complete sub modules (i.e., registers, counters, state machines,
etc) are protected even when only internal parts were classified
as sensitive to faults.



Fig. 3. Area overhead (left), percentage of protected FFs (center), and Fault Coverage (FC) (Right) of the selective hardening TMR and traditional TMR in
the evaluated modules. The Functional units are divided as IS/IO and the PRs are divided as control path/data path.

The hardware overhead cost (of selective hardening in the
modules and the full GPU) is determined by performing
hardware synthesis of the individual module and its hardened
version. Furthermore, we also synthesize the modules with a
full TMR for comparison purposes. The synthesis framework
employs the 15nm Open-Cell NAND-gate library [32].

Figure 3 shows the performance results of the selective
vs traditional hardening in the GPU. The Figure shows the
relative hardware overhead (Area) for the hardened modules.
Moreover, we also show the percentage of protected FFs in
both hardening approaches (the proposed hardening and the
full TMR) and the Fault Coverage (FC). It is worth noting that
all other GPU modules are considered unprotected modules in
the estimation of the cost and benefit of the strategies.

If we consider the full GPU, triplicating all the critical
modules would increase the area of 125% (memories and
other modules are not hardened), while our selective hardening
would increase the area of just 52%. Moreover, the selective
hardened version covers up to 42.2% of FFs in the GPU core.

In general, the selectively hardened modules have a hard-
ware overhead cost in the range of 60% to 100% which is
almost 50% less of the overhead imposed by a traditional
TMR. More in detail, the selective hardened versions of FP32
and SFU modules increase the area of about 66% and require
to harden just between the 60% and 85% of the available
flip-flops on each module, respectively. On the other hand,
according to the performed analyzes, the selective hardening
of the INT unit requires an increment of 100% in area.
Interestingly, the SFU controller requires a complete hardening
with maximum overhead in area (about 115%). The small size
of the module and the high fault sensitivity of this module
justify this choice. The hardware cost in the PRs follows a
trend similar to the INT module (near 100% overhead). A large
part of the hardware cost is devoted to harden the control-path.

The Fault Coverage results, see FC in Figure 3 (on the
right), give an indication of the benefits of the selective hard-
ening. The reported FC is the average coverage obtained with
the applications and micro-benchmarks. The error bars (black-
dotted) indicate the variation of FC among the applications and

micro-benchmarks. The results are divided in sub modules for
the evaluated functional units (IO/IS) and the PRs (control
path/data path).

From results, the FC in the PRs increases when selectively
protecting the control path (about 85% to 99%), see Fig-
ure 3(Right). In contrast, a low percentage (<15%) is observed
when protecting the data path, only. In the execution units, the
IS of each module plays an important role in the application
of the selective hardening. According to results from Figure 3,
the selective hardening of the internal structures can increase
the reliability of an application in a range from 50% to 100%.
In contrast, the protection of the input and output registers (IO)
has a limited benefit: FC between 0%, 13%, and 60% in the
FP32, SFU and INT modules, respectively. As observed for
the full GPU, the hardening of IS and control in the modules
contribute to the FC in about 38%. Finally, combining the
previous results, a selectively hardened version of the GPU
can reduce of up to 45% the number of faults of the entire
design with less than 55% of area overhead.

V. CONCLUSIONS

In this work, we proposed a method to evaluate the re-
liability of several modules in a GPU with the purpose
of performing selective hardening. The evaluation is based
on the development of a custom set of micro-benchmarks
and some applications. Then, we applied and evaluated the
impact of a selective hardening strategy to mitigate the fault
effects. The results show that the proposed selective hardening
techniques are particularly effective when selecting specific
sub-structures, such as the control-path registers in the pipeline
registers (85% to 99%). Results also showed that the proposed
hardening solution reduces by up to 65% and 55% the hard-
ware overhead in the individual modules and the entire GPU
core, respectively, with respect to a complete triple modular
redundancy strategy.

In the future, we plan to explore other hardening mecha-
nisms and evaluate other modules in the GPUs, including the
schedulers and controllers.
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