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ABSTRACT: An empirical classification model based on the Majority Rule Sorting (MR-

Sort) method has been previously proposed by the authors to evaluate the vulnerability of

safety-critical systems (in particular, nuclear power plants) with respect to malevolent inten-

tional acts. In this paper, the model serves as the basis for an analysis aimed at determining a set

of protective actions to be taken (e.g., increasing the number of monitoring devices, reducing

the number of accesses to the safety-critical system, etc) in order to effectively reduce the level

of vulnerability of the safety-critical systems under consideration.

In particular, the problem is here tackled within an optimization framework: the set of pro-

tective actions to implement is chosen as the one minimizing the overall level of vulnerability

of a group of safety-critical systems. In this context, three different optimization approaches

have been explored: (i) one single classification model is built to evaluate and minimize system

vulnerability; (ii) an ensemble of compatible classification models, generated by the bootstrap

method, is employed to perform a ”robust” optimization, taking as reference the ”worst-case”

scenario over the group of models; (iii) finally, a distribution of classification models, still ob-

tained by bootstrap, is considered to address vulnerability reduction in a ”probabilistic” fashion

(i.e., by minimizing the ”expected” vulnerability of a fleet of systems). The results are pre-

sented and compared with reference to a fictitious example considering nuclear power plants as

the safety-critical systems of interest.

200 CHARACTER SUMMARY: A method is proposed that identifies optimal strategies to

reduce the vulnerability of safety-critical systems to malevolent intentional acts. An application

to nuclear plants shows good results.

KEYWORDS: Risk management, safety-critical system, malevolent intentional attacks, inverse



classification problem, optimization-based approach

1 INTRODUCTION

The vulnerability of safety-critical systems, like nuclear power plants, is of great concern, given

the multiple and diverse hazards that they are exposed to (e.g., intentional, random, natural etc.)

(Kroger& Zio, 2011) and the potential large-scale consequences. This justifies the increased

attention for analyses aimed at (i) the systematic identification of the sources of system vul-

nerability, (ii) the qualitative and quantitative assessment of system vulnerability (Aven, 2003;

Aven, 2010) and (iii) the definition of effective actions of vulnerability reduction.

The issues at stake involve uncertainty given the long time frame, capital intensive investment

and large number of stakeholders with different views and preferences, and call for suitable

decision analysis (DA) methods (Leroy, Mousseau, & Pirlot 2011) and particularly multiple

criteria decision-making (MCDM) (Doumpos & Zopounidis, 2002; Belton & Stewart, 2002).

A number of examples of applications of MCDA approaches to the assessment/ ranking/ pri-

oritization of the vulnerability of safety-critical systems exist. Apostolakis and Lemon (2005)

and Patterson and Apostolakis (2007) focus on the identification of critical locations in infras-

tructures.The vulnerabilities and their ranking according to potential impacts are obtained by

Multi-Attribute Utility Theory (MAUT) (Morgan, Florig, DeKay, & Fischbeck, 2000). Koonce,

Apostolakis, and Cook (2008) have proposed a methodology for ranking components of a bulk

power system with respect to its risk significance to the involved stakeholders. Johansson and

Hassel (2010) have proposed a framework for considering structural and functional properties

of interdependent systems and developed a predictive model in a vulnerability analysis context.

Piwowar, Chatelet, and Laclemence (2009) have proposed a systemic analysis which accounts

for malevolence, i.e., the willingness to cause damage. Cailloux and Mousseau (2011) have



proposed a framework to evaluate and compare the threats and vulnerabilities associated with

territorial zones according to multiple criteria (industrial activity, population, etc.) by using

an adapted ELECTRE method (Corrente, Doumpos, Greco, Słowinski, & Zopounidis, 2017).

In (Teng, Thekdi, & Lambert, 2012 and 2013), systemic approaches are proposed to identify

and evaluate priorities in the business process of risk and safety organizations and to assess

the performance of risk, safety, vulnerability and security programs. In particular, with respect

to the context of interest to the present paper, the authors answer the following questions: (i)

how multiple risk assessment, management and communication procedures, missions or actions

should be administered, coordinated and possibly optimized; and (ii) what should be the basis

for resource allocation to these activities. Based on the proposed approach, the relative prior-

ities among policy initiatives and actions are quantified, in order to preserve and sustain the

compliance of risk, safety and security programs with organizational and administrative guide-

lines. In (Thorisson et al., 2017), risk is addressed in terms of sensitivities of a multicriteria

portfolio optimization, identifying which scenarios are most and least disruptive to multicriteria

optimization. In particular, the approach is used to identify those “stressors” (e.g., natural dis-

asters, mismanaged funds, lack of agency cooperation) that most influence a prioritization of

initiatives in the electrical power sector in Afghanistan.

In a previous work (Wang, Mousseau, & Zio, 2013), the authors have proposed an empiri-

cal classification framework to tackle issues (i) and (ii) above, considering the analysis of the

vulnerability of nuclear power plants to malevolent intentional acts. Specifically, we have de-

veloped a classification model based on the Majority Rule Sorting (MR-Sort) method (Leroy et

al., 2011) to assign an alternative (i.e., a nuclear power plant) to a given (vulnerability) class (or

category). The MR-Sort classification model contains a group of (adjustable) parameters that

are calibrated by means of a set of empirical classification examples (also called training set),
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i.e., a set of alternatives with pre-assigned vulnerability classes (Leroy et al., 2011; Wang et

al., 2013). The performance of the classification-based vulnerability analysis model in terms of

accuracy and confidence in the assignments has been thoroughly and systematically assessed in

(Wang, Mousseau, Pedroni, & Zio, 2014).

In this paper, we are still concerned with intentional hazards (i.e., those related to malevolent

acts) and address issue (iii) above, i.e., the definition of the actions to undertake for reducing

the level of system vulnerability. In particular, the empirical classification model developed in

(Wang et al., 2013) is tailored to address the corresponding inverse (classification) problem

(Aggarwal, Chen, & Han, 2010; Aggarwal, Chen, & Han, 2006; Li, Zhou, & Zhang, 2012;

Mousseau & Slowinski, 1998; Mousseau, Ozpeynirci, & Ozpeynirci, 2018; Pendharkar, 2002;

Ahuja & Orlin, 2001 and 2002; Heuberger, 2004; Mannino & Koushik, 2000; Lin, Kuo, Hsieh,

& Wang, 2009), i.e., the problem of determining a set of protective actions (Larsson, 1992;

Doumpos & Zopounidis, 2002), which can effectively reduce the vulnerability class of (a group

of) safety-critical systems (Aven & Flage, 2009), taking into account a specified set of con-

straints (e.g., budget limits) (Aggarwal et al., 2010).

The present analysis can be considered part of an encompassing business process of safety man-

agement (see, e.g., (Teng et al., 2012 and 2013; Thekdi & Lambert, 2014)), where we seek for

the best compromise among risks, costs and benefits in allocating investments in safety-critical

systems in the presence of uncertainties (Lambert & Farrington, 2007). Mathematically speak-

ing, the aim is to identify how to modify some features of the input patterns to the classification

model (i.e., the attributes of the safety-critical system under analysis) such that the resulting

class is changed as desired (i.e., the vulnerability category is reduced to a desired level).

In previous research by the authors, novel sensitivity indicators (Hofmann et al., 2013) have

been introduced for quantifying the variation in the vulnerability class of a safety-critical sys-
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tem resulting from the application of a given set of protective actions (NWRA, 2002). One

single combination of actions is obtained that if applied to each of the alternatives in the group

of systems, it allows reducing the overall vulnerability of the group (Wang, Mousseau, Pedroni,

& Zio, 2016). However, in practice, under given constraints (e.g., a limited budget), it is more

reasonable to find one set of protective actions for each of the considered alternatives, such that

the overall vulnerability level of the group of safety-critical systems under consideration is min-

imized. To this aim, an optimization-based framework is here undertaken. In this context, three

different optimization approaches have been sought: (i) one single classification model is built to

evaluate and minimize system vulnerability, (ii) an ensemble of compatible classification mod-

els, generated by the bootstrap method, is employed to perform a ”robust” optimization, taking

as reference the ”worst-case” scenario over the group of models; (iii) finally, a distribution of

classification models, still obtained by bootstrap, is considered for the vulnerability reduction

task, by minimizing the ”expected” vulnerability of the fleet of plants. All three optimization

problems are numerically solved by CPLEX.

In the framework of interest to the present work, it is known that existing risk assessment

methodologies may fail to account for unknown and emergent risks that are typical of large-

scale infrastructure investment allocation problems. On the other hand, in modern portfolio the-

ory, it is well known that a diversified portfolio can be very effective to reduce non-systematic

risks. The approach of diversification is equally important in choosing robust portfolios of in-

frastructure projects that may be subject to emergent and unknown risks (Joshi & Lambert,

2011; Thorisson, Lambert, Cardenas, & Linkov, 2017). The proposed methodology is expected

to contribute also in this direction of optimal classification of options/investments and combi-

nations of the same.

In summary, the main methodological and applicative contributions of the present paper are the
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following:

• the empirical classification model used to assess safety-critical system vulnerability to

intentional hazards has been entirely developed by the authors;

• the bootstrap-based robust and probabilistic optimization frameworks here undertaken to

address the inverse classification problem have been originally proposed by the authors;

• to the best of the authors’ knowledge, it is the first time that an inverse classification

problem is formulated and considered for the optimization of the choice of protective

actions to reduce the vulnerability of a group of safety-critical systems (e.g., Nuclear

Power Plants), taking into account the uncertainty associated to the classification models.

The remainder of the paper is structured as follows. Section 2 recalls the classification model

for the assessment of vulnerability to intentional hazards. With reference to that, Section 3 intro-

duces the problem of inverse classification for choosing protective actions and the optimization

decision-making approach. In Section 4, case studies are proposed to show the applications of

the method. Finally, Section 5 gives the discussion and analysis of the results. The conclusions

of this research is drawn in Section 6.

2 CLASSIFICATION MODEL FOR THE ASSESSMENT OF VULNERABILITY TO

INTENTIONAL HAZARDS

We limit the vulnerability analysis of a safety-critical system to the evaluation of the suscepti-

bility to intentional hazards. For this, we adopt the three-layers hierarchical model developed

in (Wang et al., 2013) (Figure 1). The susceptibility to intentional hazards (layer 1 in Figure

1) is characterized in terms of attractiveness and accessibility (layer 2 in Figure 1). These at-
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tributes are hierarchically broken down into factors which influence them, including resilience

interpreted as pre-attack protection (which influences on accessibility) and post-attack recovery

(which influences on attractiveness). The disaggregation is made in n criteria (layer 3 in Figure

1) described by the n-tuple MCrit = {MCrit1,MCrit2, ...,MCriti, ...,MCritn} with n = 6

in this case: physical characteristics (MCrit1), social criticality (MCrit2), possibility of cas-

cading failures (MCrit3), recovery means (MCrit4), human preparedness (MCrit5) and level

of protection (MCrit6). These six criteria are further decomposed into a layer of m = 16 inde-

pendent basic subcriteria {critj, j = 1,2, ...,m = 16}(layer 4 in Figure 1), for which data and

information are collected in terms of quantitative values or linguistic terms depending on the

nature of the subcriterion. The descriptive terms and/ or values of the fourth layer subcriteria

are, then, scaled to numerical categories. Finally, to get the value of the six third-layer criteria

MCrit = {MCrit1,MCrit2, ...,MCriti, ...,MCritn}, n = 6, (i) we assign weights to each

subcriterion to indicate their importance (e.g., experts assess the contribution of each subcrite-

rion to the corresponding third-layer criterion) and (ii) considering the independence between

the subcriteria, we apply a simple weighted sum to the categorical values of the constituent sub-

criteria {critj = j = 1,2, ...,m = 16}. These m = 16 criteria {critj = j = 1,2, ...,m = 16} are

evaluated to assess the vulnerability of a given safety-critical system of interest (e.g., a nuclear

power plant – NPP).

Notice that (weighted) hierarchical-tree based structures have been previously used to address

the complexity of safety-critical systems: see, e.g., (Courtois, 1985; Haimes, 2012; Larsson,

1992; Lind, 2011a; Lind, 2011b; Ruan, 2000; Zio, 2007). The criteria of the layers are defined

and assigned preference directions for treatment in the decision-making process. The preference

direction of a criterion indicates towards which state it is desirable to lead it to reduce suscep-

tibility, i.e., it is assigned from the point of view of the defender of an attack who is concerned
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Figure 1: Hierarchical model for susceptibility to intentional hazards

with protecting the system. For the purpose of the present analysis,M = 4 levels (or categories)

of system vulnerability {Ah : h = 1,2,3,4} are considered: A1 = satisfactory, A2 = acceptable,

A3 = problematic, A4 = serious. Then, the assessment of vulnerability corresponds to a classi-

fication problem: given the definition of the characteristics of a critical system in terms of the

sixteen criteria above, assign the vulnerability category (or class) to which the system belongs.

The quantitative model introduced for representing the susceptibility to intentional hazards em-

ploys categorized, discretized vulnerability levels: in this sense, the approach may be considered

similar to the one underlying the use of risk matrices. However, in our case, the susceptibility

to intentional hazards is computed by a simple weighted (linear additive) sum of the six main

criteria (with categorized values), enabling effective risk management by mapping ordered cate-

gorical ratings of severity into recommended risk management decisions or priorities, as optimal

resource allocation may depend crucially on other quantitative information (as reflected in the
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following sections, e.g., in terms of costs of different protective actions).

Categorizing the subcriteria may, in certain cases, require subjective judgements. However,

since most subcriteria are easily quantified (e.g., the number of workers), the potential for in-

consistencies in judgements can be eliminated by consensual agreement among the decision

makers. For future work, the criteria may be represented also in other forms, e.g., a continuous

scale of measurement, to eliminate the problem completely.

The classification model, indicated as M(·|(ω, b)), is based on the Majority Rule Sorting (MR-

Sort) method (Leroy et al., 2011; Roy, 1991; Mousseau & Slowinski, 1998). It is a simplified

version of ELECTRE Tri (Corrente et al., 2017), an outranking sorting procedure in which the

assignment of an alternative to a given category is determined using a complex concordance

non-discordance rule (Roy 1991; Mousseau & Slowinski, 1998). We assume that the alterna-

tives to be classified (in this paper, a safety-critical system or infrastructure of interest, e.g.,

a nuclear power plant) can be described by an n-tuple of elements x = {x1, x2, ..., xi, ..., xn},

which represent the evaluation of the alternatives with respect to a set of n criteria (by way of

example, in the present paper the criteria used to evaluate the vulnerability of a safety critical

system may include its physical characteristics, social criticality, level of protection and so on,

as presented above) (Almeida-Dias, Figueira, & Roy, 2012; Corrente et al., 2017). We denote

the set of criteria by N = {1,2, ..., i, ..., n} and assume that the values xi of criterion i range in

the set Xi (for example, in the present paper all the criteria range in [0, 1]) (Rocco & Zio, 2005)

. The MR-Sort procedure allows assigning any alternative x = {x1, x2, ..., xi, ..., xn} ∈ X =

X1×X2× ...×Xi× ...×Xn to a particular pre-defined category (in this paper, a class of vul-

nerability), in a given ordered set of categories, {Ah : h= 1,2, ..., k}; as mentioned above, k = 4

categories are considered in this work: A1 = satisfactory, A2 = acceptable, A3 = problematic,

A4 = serious. To this aim, the model is further specialised in the following way:
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• We assume thatXi is a subset of R for all i∈N and the sub-intervals (X1
i ,X

2
i , ...,X

h
i , ...,X

k
i )

ofXi are compatible with the order on the real axis, i.e., for all x1i ∈X1
i , x

2
i ∈X2

i , ..., x
h
i ∈

Xh
i , ..., x

k
i ∈Xk

i , we have x1i > x2i > ... > xhi > ... > xki . We assume furthermore that each

interval xhi , h = 2,3, ..., k has a smallest element bhi , which implies that xh−1i ≥ bhi > xhi .

The vector bh = {bh1 , bh2 , ..., bhi , ..., bhn} (containing the lower bounds of the intervals Xh
i of

criteria i = 1,2, ..., n in correspondence of category h) represents the lower limit profile

of category Ah.

• There is a weight ωi associated with each criterion i = 1,2, ..., n, quantifying the relative

importance of criterion i in the vulnerability assessment process; notice that the weights

are normalised such that
∑n

i=1ωi = 1.

In this framework, a given alternative x = {x1, x2, ..., xi, ..., xn} is assigned to category

Ah, h = 1,2, ..., k, iff

∑
i∈N:xi≥bhi

ωi ≥ λ and
∑

i∈N:xi≥bh+1
i

ωi < λ, (1)

where λ is a threshold (0≤ λ≤ 1) chosen by the analyst. Rule (1) is interpreted as follows.

An alternative x belongs to category Ah if: 1) its evaluations in correspondence of the n

criteria (i.e., the values {x1, x2, ..., xi, ..., xn}) are at least as good as bhi ( lower limit of

category Ah with respect to criterion i), i = 1,2, ..., n, on a subset of criteria that has

sufficient importance (in other words, on a subset of criteria that has a weight larger than

or equal to the threshold λ chosen by the analyst); and at the same time (2) the weight of

the subset of criteria on which the evaluations {x1, x2, ..., xi, ..., xn} are at least as good as

bh+1
i (lower limit of the successive categoryAh+1 with respect to criterion i), i= 1,2, ..., n,

is not sufficient to justify the assignment of x to the successive category Ah+1.

Notice that alternative x is assigned to the best category A1 if
∑

i∈N:xi≥b1i
ωi ≥ λ and it is
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assigned to the worst category Ak if
∑

i∈N:xi≥b−k−1 ωi < λ. Finally, it is straightforward

to notice that the parameters of such a model are the k · n lower limit profiles (n limits

for each of the k categories), the n weights of the criteria ω1, ω2, ..., ωi, ..., ωn, and the

threshold λ, for a total of n(k+1)+1 parameters.

These parameters are calibrated through a disaggregation process by means of a set of empir-

ical classification examples (the training set DTR = {(xp,Γtp), p = 1,2, ...,N}, i.e., a set of N

alternatives xp = {xp1, x
p
2, ..., x

p
i , ..., x

p
n}, p= 1,2, ...,N together with the corresponding real pre-

assigned categories (i.e., vulnerability classes) Γtp (the superscript t indicates that Γtp represents

the true, a priori-known vulnerability class of alternative xp). The number of categories are de-

fined by the experts by assigning a meaning to each of them as “satisfactory”, “acceptable”,

“problematic” and “serious”. The definition fixes a part of the structure of the classification

model and of the inverse-classification model as well. The operational meaning of the cate-

gories may be problem-specific and in practical cases, it may be specified by the experts only

after the model is obtained based on the training set.

Further details about the generation of classification models are not reported here for brevity:

the interested reader is referred to (Wang, Mousseau, Pedroni, & Zio, 2014).

3 INVERSE CLASSIFICATION PROBLEM FOR PROTECTIVE ACTIONS

IDENTIFICATION: AN OPTIMIZATION-BASED DECISION MAKING APPROACH

Classification has been widely studied in the literature because of its applicability to a wide

variety of problems (Duda, Hart, & Stork, 2001; James, 1985; Alsabti, Rank,& Singh, 1998;

Breiman, Friedman,& Stone, 1984; Bodley & Utgoff, 1995; Breslow, 1997; Friedman, 1977;

Gehrke, Ganti, Ramakrishnan, & Loh, 1999; Quinlan, 1993; Zopounidis & Doumpos, 2002).
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The multicriteria inverse classification problem (Aggarwal et al., 2010; Aggarwal et al., 2006;

Li et al., 2012) stands on the idea that changes in the independent variables of a system solution

are searched so that it can be classified into a more desirable class with respect to the given

system criteria (Pendharkar, 2002; Mannino & Koushik, 2000; Mousseau et al., 2018; Lin et

al., 2009). Specifically, in this work we aim to identify a set of protective actions to reduce the

vulnerability of a (group of) safety-critical system(s) under budget limitations.

In such inverse classification problem, we arrived to determine the action-oriented feature vari-

ables for an incompletely specified test data set characterising the system vulnerability. The aim

is to find possibly different choices of actions so that the feature variables are modified in such

a way so as that the test data set belongs to a desired class.

If there is no limitation on the choices of the actions (e.g., number of actions that can be ap-

plied), the problem can be formulated as that for the case of the training data set, as both the

feature and class variables are completely defined in it. On the other hand, for the case of the

test data set, the class variables are completely defined but the feature variables are not. Thus,

each test data example has a desired class label associated with it. The aim of the inverse classi-

fication problem is to choose the test feature variables such that the corresponding classification

accuracy with respect to the desired test classes is maximized.

If there are action-related constraints (e.g., number of actions that can be applied at the same

time, budget limitation on expenditures for actions etc.) then, the problem should be modified.

Under the given constraints concerning the choice of the actions, the aim of the inverse classi-

fication problem is to choose the ”optimal” set of actions that can modify the feature variables

such that the corresponding class variables are brought as close as possible to the ”desired”

class label.

The problem is ”inverse” because the usual mapping is from a case to its unknown category

14



whereas here it is the opposite. Specifically, in the classification problem with missing data,

one tries to determine the unknown class based on incompletely defined features; on the other

hand, in the inverse classification problem, one tries to determine the action-oriented miss-

ing variables that achieve a desired class. The inverse classification problem offers the proper

framework for a number of action-driven applications in which the features to define certain

actions which drive the decision making towards a desired end-result (Aggarwal et al., 2010).

As defined by Belton and Stewart (2002), the problem can be treated also as a ”Portfolio Deci-

sion Analysis (PDA)” for making multiple informed selections from a discrete set of alternatives

through mathematical modeling that accounts for relevant constraints, preferences, and uncer-

tainties (Salo, Keisler, & Morton, 2011; Salo & Hamalainen, 1997; Salo & Hamalainen, 2010).

It can also be tackled as a multi-objective combinatorial optimization problem, with discreted

decision variables and objective functions and constraints that can take any form (Ahuja & Or-

lin, 2001 and 2002; Heuberger, 2004; Coello Coello, Dhaenens & Jourdan, 2010; Bornstein,

Maculan, Pascoal, & Pinto, 2012).

To illustrate the methodology, we consider a set of N alternatives (xp, p ∈ {1,2, ...,N}) char-

acterized by m = 16 basic features (critj, j ∈ {1,2, ...,m}), whose data and information are

collected in terms of quantitative values or linguistic terms, depending on the nature of the sub-

criterion, as mentioned in the previous section. Each vector xp represents one safety-critical

system (in our case, a Nuclear Power Plant - NPP). On the basis of these m = 16 features,

the NPPs are assigned to M = 4 pre-defined categories ({Ah : h = 1,2,3,4}), where A1 rep-

resents the best situation, i.e., lowest vulnerability, as presented in the previous section. Let

act = {act1, act2, ..., actF} denote the available set of actions, each of which can influence on

one or more basic subcriteria critj, j ∈ {1,2, ...,m} (Figure 2).

The solid lines (resp. dotted lines) of one action towards the related subcriteria indicate that
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if such action is applied, the subcriteria limited to it will be improved (resp. worsened). For

example, if action ”Reduce number of workers” is applied, the ”Number of workers” and the

”Number of production units” will be reduced and we need less resources for ”Training” and

”Safety management”. On one hand this action is ”positive” for the Nuclear Power Plant; on

the other hand, due to the reduction of workers, we can only work on a smaller ”Number of in-

stalled backup components”, and the ”Duration of repair and recovery actions” will take more

time. The ”preference” directions of all subcriteria and the detailed illustration of all actions are

detailed in previous works by the authors (Wang et al., 2013 and 2016).

The influences upon the 16 subcriteria (before the categorisation and weighted integration to

obtain the corresponding main criteria) are of different intensity as measured by a set of coef-

ficients coeffkj, k ∈ {1,2, ..., F}, j ∈ {1,2, ...,m}. In other words, if we analyze the influential

relation of the actions on all the subcriteria considered, then coeffkj represents the correspond-

ing consequence of action k on attribute j: the higher the absolute value of coeffkj , the stronger

the effect of action k on attribute j. Notice that a positive (resp. negative) coefficient coeffkj

means that action k has an ameliorative (resp. deteriorative) effect on attribute j, whereas if

coeffkj is equal to zero, then criterion j is not influenced by action k. The determination of such

coefficients is a crucial step, since they measure the effectiveness of actions on all subcriteria.

Significant efforts have been made to assign numerical values to the impacts of actions, in order

to represent the problem as realistically as possible. However, in a non-fictitious situation the

task is expected to be complex, in particular for linguistically defined subcriteria. Actually, the

relations between the actions and the criteria taking into account the dependencies of different

attributes and systems are always difficult to identify: in such cases, resorting to the judgment

of real experts and possibly to real historical data is mandatory (Ayyub, 2001). In addition, the

inevitable uncertainty associated to these coefficients should be possibly propagated through
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Figure 2: Schema of direct actions for basic criteria

the classification model for a more robust vulnerability assessment and a more reliable (in-

verse) identification of optimal actions. The implementation of one or more actions modifies

the attribute values critj, j ∈ {1,2, ...,m} and as a result, the vulnerability of the system (i.e.,

the assignment by the classification model) may change. In this paper, we assume that the total

effect of the available set of actions act = {act1, act2, ..., actF} on criterion j is obtained by a

linear superposition of the effects of each action actk:

crit′j = critj +
F∑
k=1

coeffkj ∗ actk, k ∈ {1,2, ..., F}, j ∈ {1,2, ...,m}. (2)

where crit′j is the value of attribute j after the identified set of available actions has been im-

plemented. The influences of actions are defined in a realistic way, so that after the application

of the different combinations of actions upon one NPP, the values of its criteria should still be

within a realistic range. In addition, we assume a linear superposition of the effects for the ac-

tions. In order to keep the ‘after-action’ characteristics of one alternative within realistic ranges,

the rules of categorisation of the criteria in Layer 3 are properly defined: e.g., if the ”number of

workers” exceeds a given value, it is always ”re-scaled” to the worse categorical value. In more

detail, this limitation of the after-action characteristics is done within the optimization process,

17



i.e., by the use of constraints limiting crit′j . Actually, in the opposite case, the optimization

would be misguided to select actions improving some characteristics beyond reasonable levels,

thus wasting budget, which could not be used in reality.

Also, let Cost(xp, act′), act′ ⊆ act denote the cost of the combination of actions act′ applied to

xp. If cpk(p ∈ {1,2, ...,N}, k ∈ {1,2, ..., F}) is the cost of action k on xp, then:

Cost(xp, act
′) =

∑
k

auxpk ∗ c
p
k, k ∈ {1,2, ..., F}. (3)

where auxpk is an auxiliary binary variable that equals 1, if action k is applied to plant xp, and

equals 0, otherwise.

The inverse classification problem can, then, be formulated as follows: given a limited budget

Bg for the entire group of NPPs considered, identify, for each NPP, a specifically designed

combination of actions that provide the maximal possible reduction in its vulnerability level

Aλ
′
p ,A

λ′
p ∈ {1,2,3,4}, p ∈ {1,2, ...,N} (as presented in the previous Section, the smaller the

category value, the less vulnerable the NPP). The combinations of actions for different NPPs

may be obviously different. Under certain circumstances, based on the original performance

of a given NPP and the performance of the others, one NPP may not need any ameliorative

action. In particular, we have chosen the strategy to reduce, under budget constraint, the global

vulnerability of a group of alternatives in giving priority to the NPPs that are originally assigned

to the worst category; in other words, we try to maximize a properly weighted sum of the

ameliorations in the vulnerability categories undergone by all the NPPs.

This can be mathematically represented by a weighted-sum objective function:

Ix = ρ3 ∗Q43 + ρ2 ∗Q32 + ρ1 ∗Q21 (4)

where Qn(n−1)(n ∈ Z) represents the overall number of NPPs among the N available ones

{x|xp, p ∈ {1,2, ..., N}} that are ameliorated from category An to category An−1 by a given
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combination of actions: for example, Q43 is the number of plants changing from A4 to A3,

whereas Q32 is the number of plants changing from A3 to A2. The constants {ρi|i ∈ {1,2,3}}

represent weights that we assign to the number of ameliorated NPPs Qn(n−1)(n ∈ Z). There is

an operational meaning for the weights. By the choice of the weights, the attitude and strategy of

amelioration of the Decision Makers under given constraints can be highlighted. For example, a

high value of weight ρ shows a priority of the corresponding “objective” Q: if, for example, ρ3

is far larger than ρ1, then, the Decision Makers would like to concentrate preferably on the NPPs

that are in danger (i.e., those with higher vulnerability); if all the ρi are instead the same, then

the Decision Makers are only interested in the overall number of NPPs that are ameliorated. In

this paper, we have set:

ρ3 = 100, ρ2 = 50, ρ1 = 25. (5)

The idea is to pay more attention to the amelioration of the NPPs that are originally assigned

to the worse categories, because more critical with respect to being susceptible to attacks.

In order to implement it into the algorithm, the set of ρ should be well determined. In the

present paper, this has been done by a ”reasoned” trial-and-error procedure. The chosen set

ρ3 = 100, ρ2 = 50, ρ1 = 25 has been found to meet the following requirements: (1) the corre-

sponding objective function is effective in driving the search giving priority to the amelioration

of the worst NPPs; (2) the computational time required to solve the corresponding optimisation

problem is acceptable (e.g., of the order of few tens of minutes). In this case, by maximizing

the objective function Ix, high importance is given to the amelioration of the worst (i.e., most

vulnerable) NPPs.

Notice that in the presented model, an additive aggregation of objectives has been applied (see

equations (2) and (4)). Based on the developed hierarchical model (see Figure 2), such additive

aggregation is easy for the Decision Makers to understand and use. It has the useful interpre-
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tation of the relative compositive factors (e.g., the actions, the number of ameliorated NPPs of

corresponding category) as partial values (of the performance of the main criteria and the overall

vulnerability level) under the simple interpretation of the weights as conversion factors. The par-

tial values in the additive model are converted by the scaling factors (weights) to commensurate

values, which are the summed. Proper interpretations and careful handling of the categorization

and normalization used in the model are essential elements to be incorporated properly into the

questioning procedures of the Decision Makers, for understanding and informed use (Choo &

Wedley, 2008).

In this context, three different optimization approaches have been undertaken: (i) one single

classification model is built to evaluate and minimize system vulnerability, (ii) an ensemble of

compatible classification models, generated by the bootstrap method, is employed to perform

a ”robust” optimization, by considering the ”worst-case” scenario; (iii) finally, a distribution of

classification models, still obtained by bootstrap, is considered to address vulnerability reduc-

tion in a ”probabilistic” fashion.

Notice that given the linearity of equations (2)-(4) and and the discrete classification and selec-

tion of actions, the problem is a mixed-integer linear program.

3.1 Simple Optimization

As presented in Section 2, and in more details in (Wang, Mousseau, Pedroni, & Zio 2014), we

can construct a classification model as M∗(·|ω∗, b∗)(with ω∗ the weights and b∗ the lower pro-

files) compatible with all the pre-assigned alternatives in the training set DTR through a disag-

gregation process. We name this model the “optimum” classification model. The optimization-

based inverse classification process aims at finding an optimal set of actions for each of the
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Figure 3: Representation of Simple Optimization

NPPs for which the objective function Ix is maximized: this will improve the performance of

the group of NPPs, while giving priority to the worst ones. In more detail, the problem can be

formulated as follows:

Find act′p = arg Max{act′p,p=1,2,...,N}(I
x(act′p,M

∗)), (6)

s.t.
∑
p

Cost(xp, act
′
p) ≤ Bg, (7)

{x|xp, p ∈ {1,2, ...,N}} (8)

Under the constraint of budget limitation, we find the combination of protective actions that

maximize the value of the objective function Ix, presented above.

3.2 Robust Optimization

The optimization approach introduced above provides a choice of protective actions for the

NPPs using (only) the “optimum” classification model M∗(·|ω∗, b∗). However, for the training

set of pre-assigned alternatives there are a number of compatible classification models. To ac-

count for this model uncertainty, we aim at finding the combination of protective actions (for

each of the NPPs) that can ameliorate the NPPs to a satisfactorily low level of vulnerability,

considering all compatible classification models. In other words, the combination of actions

that we obtain should be “robust” to the (model) uncertainty arising from the fact that the em-

pirical classification model is trained with a finite set of data and, thus, multiple models are
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Figure 4: Representation of Robust Optimization

compatible.

To this aim, the bootstrap method (Efron & Thibshirani, 1993) is applied to create an ensemble

of classification models constructed on different data sets bootstrapped from the original one

(Zio. 2006). The basic idea is to generate different training datasets by random sampling with

replacement from the original one (Efron & Thibshirani, 1993): such different training sets are

used to build different individual classification models of the ensemble. In this way, the individ-

ual classifiers of the ensemble possibly perform well in different regions of the training space.

In more detail, the main steps of the bootstrap algorithm are as follows (Figure 4):

a. Generate a bootstrap data set DTR,q = {(xp,Γtp) : p = 1,2, ...,N}, by performing random

sampling with replacement from the original data set DTR = {(xp,Γtp) : p = 1,2, ..., N}

of N input/output patterns. The data set DTR,q is thus constituted by the same number N

of input/output patterns drawn among those in DTR, although due to the sampling with

replacement some of the patterns in DTR will appear more than once in DTR,q, whereas
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some others will not appear at all.

b. Build a classification model {Mq(·|ωq, bq) : q = 1,2, ...,B}, on the basis of the bootstrap

data set DTR,q = {(xp,Γtp) : p = 1,2, ...,N}.

Given the bootstrapped ensemble, the mathematical formulation of the robust optimization is as

follows:

Find act′p = arg Max{act′p,p=1,2,...,N} Minq(I
x(act′p,Mq)), (9)

s.t.
∑
p

Cost(xp, act
′
p) ≤ Bg, (10)

{x|xp, p ∈ {1,2, ...,N}}, (11)

{M |Mq ∈M,q ∈ {1,2, ...,B}}. (12)

A large number B(= 100) of compatible classification models {M |Mq ∈M,q ∈ {1,2, ...,B}}

are typically generated by bootstrap. Correspondingly, the minimum valueMinM(Ix(act′p,Mq))

of objective function Ix(act′p,Mq) over the B compatible models in correspondence of each set

of actions can be gathered. In particular, a distribution of vulnerability classes can be obtained

for each NPP. Then, based on the distribution and applying the majority-voting rule, we assign

each NPP to its most likely after-action category. Then, the optimization solver aims at finding

the optimal combination of actions that robustly and conservatively maximize the worst value

of the objective function Ix(act′p,Mq).

In more detail, the robust optimization algorithm proceeds as follows:

1. The solver proposes a set of actions for each xp; each bootstrapped classification model

Mq(·|ωq, bq) is used to provide an after-action vulnerability class Γqp, q = 1,2, ...,B to each

alternative of interest, i.e., Γqp = Mq(xp|ωq, bq);

23



2. On the basis of the results obtained at step 1 above, a value for function Ix(act′p,Mq) is

computed for each compatible model Mq(·|ωq, bq), q = 1,2, ...,B, to obtain an ensemble

of values Ix(act′p,Mq);

3. The minimum (i.e., worst) value among Ix(act′p,Mq), q = 1,2, ...,B, is taken as the ob-

jective function to maximize; in other words, we aim at identifying the set of actions able

to improve the “worst-case scenario” over the possible compatible models;

4. We repeat the steps above for different combinations of actions act′p, p = 1,2, ...,N in

order to find out the combination of actions for each of the considered NPPs that can

ameliorate the worst case situation as much as possible.

3.3 Probabilistic Optimization

The main steps (Figure. 5) are the same as those of the Robust Optimization presented in Figure

4, but the objective function is changed. Instead of improving the worst case over all the models,

we choose to improve the expected value of the probablity distribution of the function Ix. Thus,

in this case, we “ignore” some of the “extreme” classification models generated by bootstrap.

The mathematical formulation of the problem is as follows:

Find act′p = arg Max{act′p,p=1,2,...,N}
1

B

B∑
q=1

(Ix(act′p,Mq)), (13)

s.t.
∑
p

Cost(xp, act
′
p) ≤ Bg, (14)

{x|xp, p ∈ {1,2, ...,N}}, (15)

{M |Mq ∈M,q ∈ {1,2, ...,B}}. (16)
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Figure 5: Representation of Probabilistic Optimization

4 APPLICATION

The methods presented in Section 3 are applied on a case study concerning the vulnerabil-

ity analysis of NPPs (Mousseau & Slowinski, 1998). We identify n = 6 main criteria i =

1,2, ..., n = 6 by means of the hierarchical approach presented in (Leroy et al., 2011) (see Sec-

tion 2):MCrit1 = physical characteristics,MCrit2 = social criticality,MCrit3 = possibility of

cascading failures, MCrit4 = recovery means, MCrit5 = human preparedness and MCrit6 =

level of protection. Then, these 6 criteria are decomposed into m = 16 basic criteria {critj, j =

1,2, ...,m = 16} (see Table 1). Finally, k = 4 vulnerability categories Ah, h = 1,2,3,4 are de-

fined as: A1 = satisfactory, A2 = acceptable, A3 = problematic and A4 = serious (Section 2).

The training set DTR is constituted by a group of N = 18 NPPs with corresponding a priori-

known categories Γtp (all the considered NPPs are pre-assigned to A2,A3 or A4, since the

alternatives originally assigned to best category A1 are not taken into account), i.e., DTR =

{(xp,Γtp) : p = 1,2, ...,N = 18} . On one hand, the alternatives in the training set are “de-
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Table 1: Basic Criteria

signed” in a way to be realistic; on the other hand, some criteria of some alternatives are defined

to represent extreme situations (e.g., a very large number of workers, taken from existing real

NPPs). The training set of plants with the corresponding values of the basic criteria is summa-

rized in Table 2. Taking as reference the 16 basic criteria, 13 actions “directly” impacting on

them are defined (Table 3): for example, for the criterion Number of workers, the direct action

is Reduce number of workers. On the other hand, there are certain basic criteria that cannot

have a corresponding action: for example, for criterion connection distance; it is not possible to

physically reduce the distance between sites. Additionally, in our case study, the actions have 3

different influence/impact levels; for example, with reference to action Reduce number of work-

ers, the 3 levels imply a reduction of the number of workers of the chosen site by 1) 20%, 2)

25% or 3) 30%. This adds degrees of freedom to the choice of actions. Considering the costs

associated to the actions, for the sake of simplicity, we define the cost to be ”1” for level 1, ”2”

for level 2 and ”3” for level 3, in relative units, for all actions and NPPs. In what follows, the

three optimization-based approaches of Section 3 are applied to obtain the “best” combination
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Table 2: Training set with N = 18 assigned alternatives

Table 3: Available protective actions
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of protective actions for each of the NPPs.

4.1 Simple Optimization

Two tests are first carried out considering an unlimited or limited budget. The example with

unlimited budget aims at showing an ideal case of the inverse classification problem that would

lead, in principle, to the best after-action condition. It can be seen that, based on the original

dataset of pre-assigned alternatives, there are certain NPPs (i.e., x1, x2 and x15) that can never

be ameliorated to the best category A1 (Table 4). The identification of the best (i.e., lowest)

vulnerability category that one NPP can be assigned to without budget restrictions represents an

important base information that provides the decision makers with a global view of the problem

goals.

The optimization performed with budget constraints aims at solving the realistic problem of

finding out the combination of protective actions for each NPP, that ameliorate the group of

NPPs with priority to the most vulnerable ones, managing the “residual” resource to improve

the others. With an unlimited budget, most of the NPPs are ameliorated to a lower level of vul-

nerability. Actually, x1, x2 and x15 do not change class because of their particular characteristics

(e.g., the physical distance between the site and the nearby cities is closer with respect to that

of the other plants, and such characteristics cannot be modified by any action). The minimum

cost necessary to improve each NPP to the best possible category is Bgmin
= 78. It can be seen

that, as expected, the largest amount of resources is allocated to the amelioration of plants in

class 4 (i.e., x7, x8, x9 and x13). In addition, the amelioration of such plants typically requires

the combination of a significant number of different actions (often more than three) with a high

influence/impact level (i.e., 2 and 3). In this respect, it is also interesting to note that the actions

that are more frequently selected to improve the worst NPPs are those implying quite a radical
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Table 4: After-action assignments of the considered NPPs without budget constraint. White cases in the third

column indicate unchanged assignment.
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Table 5: After-action assignments of the considered NPPs with budget constraint Bgmin = 40 (simple optimiza-

tion). White cases in the third column indicate unchanged assignment.

variation in the physical system configuration and/or in the operation and maintenance proce-

dures: Action 2 (“Decrease nominal power production”), 3 (“Cut down number of production

units”), 4 (“Decrease percentage contribution to the welfare”) and 8 (“Reduce the duration of

repair and recovery actions”). This represents an encouraging and positive statement with re-

spect to the “realism” of the model of Section 3 and to the effectiveness of the optimization

framework proposed.

Fixing a limited budget to Bgmin
= 40, the optimization of the actions leads to the ameliorations

reported in Table 5. Obviously, x1, x2 and x15 still do not change class as in the case with un-

limited budget. Moreover, since the budget is lower than that necessary to ameliorate all NPPs

to their best category (Bgmin
= 78), there are other NPPs (x5, x10 and x17) whose vulnerability

category is not changed. On the contrary, all NPPs originally assigned to the “worst” category

A4 improve after action(s); then, the rest of the budget is distributed to ameliorate the other
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NPPs as much as possible. For example, x8 and x12 are improved by one category, whereas

they can be improved by two categories in the case of unlimited budget (Table 4). In relation to

the selected actions, similar considerations can be done with respect to the results obtained in

Table 4. As before, the largest amount of resources is allocated to the amelioration of plants in

class 4 by means of Actions 2, 3, 4 and 8. Also, it can be seen that Action 1 “Reduce the number

of workers” (typically, at level 1) and Action 13 “Strengthen surveillance” (typically, at level 1)

frequently intervene in the effective amelioration of NPPs from Categories 2-3 to the best one,

i.e., Category 1.

In the next two subsections, we present the results of the other two optimizations approaches

considering only the realistic case of limited budget.

4.2 Robust Optimization

The results in the case of limited budget, Bg = 40, are shown in Table 6 and compared to the

original categories (obtained by majority-voting over the B compatible bootstrapped classifi-

cation models). There are only 4 NPPs that are ameliorated: x13 is ameliorated from A4 to

A3; x2, x3 and x18 are ameliorated from A3 to A2. There are changes in the bootstrapped dis-

tributions of the categories of the other NPPs, but not consistent enough to change their final

assignments by majority-voting. In comparison with the results obtained in the previous subsec-

tion, there are less NPPs that are ameliorated. This is reasonable for a ”robust” solution, since

”extreme” (worst-case) compatible classification models affect the optimization. The resource

allocation may seem weird: actually, the algorithm tries to associate actions also to plants that

eventually do not improve their category (see x4, x5 and x6 among the others): as a result, only

a relatively small amount of the entire budget is fruitfully employed to ameliorate the situation

(16 over Bg = 40). As said above, this is because the actions are actually used to modify the
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Table 6: After-action assignments of the considered NPPs with budget constraint (robust optimization). White

cases in the third column indicate unchanged assignment. MV = majority-voting
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bootstrapped distributions of the categories of the NPPs (in the attempt to reduce the worst-case

assignments), but such changes are not consistent enough to modify their final assignment by

majority voting (MV). For example, taking as reference plant x5, the initial situation in terms

of assignments provided by the distribution of B = 100 bootstrapped models is the following:

Category 1 = 0; Category 2 = 13; Category 3 = 87 and Category 4 = 0. According to MV, this

results in final assignment to Category 3. After the robust optimization procedure, the situation

of x5 is the following: Category 1 = 0; Category 2 = 36; Category 3 = 64 and Category 4 = 0,

still leading to a final MV assignment to Category 3.

Finally, as before Actions 2, 3, 4 and 8 are the most effective in reducing the vulnerability, in

particular of the worst plants (i.e., those initially belonging to Category 4); Actions 1 and 13 are

also shown to have a relevant, selective role in improving the condition of NPPs in Categories

2-3.

4.3 Probabilistic Optimization

The probabilistic case is a variation of the Robust Case of Section 4.2. Instead of maximizing

MinM(Ix(act′p,Mq))(i.e., the worst after-action objective function value), we choose to maxi-

mize the expected value of the bootstrapped probability distribution of the weighted objective

function Ix(act′p,Mq).

The results are shown in Table 7, in comparison with the original majority-voting category of

each NPP. There are 8 NPPs that are ameliorated: x8, x13, x15 and x17 are changed from cate-

gory A4 to A3; x2, x3 and x12 are changed from A3 to A2. In comparison with the results of

Section 4.1, there are less NPPs that are ameliorated; in addition, not all the NPPs that were

originally assigned to the worst category (A4) are improved. On the other hand, with respect to
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Table 7: After-action assignments of the considered NPPs with budget constraint (probabilistic optimization).

White cases in the third column indicate unchanged assignment. MV = majority-voting
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the results of the robust optimization (which also considers an ensemble of different compatible

models), the group of NPPs is globally improved. The results of the probabilistic case are more

satisfactory since most of the NPPs that were assigned to the worst category (A4) are improved;

then, the rest of the resources is used to ameliorate those plants that were assigned to the second

worst category (A3). The results of the resource and action allocation show a more rational use

of the budget with respect to the robust case: actually, very few actions are associated to NPPs

that do not eventually improve their category. Instead, the largest part of the budget (31 out of

Bg = 40) is fruitfully employed to ameliorate the overall (“mean”) situation. For the sake of

clarity and for illustration purposes, let us consider again the case of plant x5. In the robust op-

timization, Action 13 (level 1) is allocated, still without any improvement in the plant category

according to majority voting (see above). After the application of the probabilistic optimization

framework, instead, the situation of x5 is the following: Category 1 = 21; Category 2 = 45;

Category 3 = 34 and Category 4 = 0, leading to a final MV assignment to Category 2.

5 DISCUSSION AND ANALYSIS OF THE RESULTS

Based on the representation of the intentional hazards and ameliorative actions (Section 2 and

3), and considering a limited budget as constraint, we have managed to find one set of protective

actions for each of the alternatives considered through an optimization-based framework, such

that the overall vulnerability level of the group of safety-critical systems (in our case, the Nu-

clear Power Plants - NPPs) under consideration is minimized. The group of combinations of

actions for different alternatives is obtained through three different methods: ”Simple Optimiza-

tion” with one single (optimal) classification model; “Robust Optimization” with an ensemble

of classification models constructed on different data sets, bootstrapped from the original one;

”Probabilistic Optimization” still based on an ensemble of models, but aiming at minimizing
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the ”expected” vulnerability of a group of plants. These three optimizations considered provide

conceptually and practically different solutions to the choice of protective actions for the NPPs.

The simple optimization provides a quite specific and limited indication of the amelioration

capability of a set of actions with reference to a single classification model with given char-

acteristics. In this case, the classification model is fixed (generated through a disaggregation

process based on the number of real-world classification examples available): the number n of

main criteria, the number m of basic criteria and the number M of categories (given by the

analysts according to the characteristics of the systems at hand). On this basis, the space of all

possible combinations of actions for each of the NPPs of the group (and consequently the space

of all possible objective functions with the structure mentioned above, i.e., n criteria andM cat-

egories) are exhaustively explored by the optimization solver. The weighted objective function

defined fulfills the original purpose of ameliorating the NPPs group overall performance, giving

preference to those NPPs that were originally assigned to the worst categories.

The robust optimization is inevitably more conservative, given the uncertainty in the compat-

ible models. By the bootstrap method applied on the training set available, an ensemble of B

compatible models is built. By so doing, we explore the space of all the classification models

compatible with that particular training set. In this view, the bootstrap serves the purpose of

accounting for the uncertainty related to using a specific and finite (training) data set for build-

ing a classification model of given structure (i.e., with given numbers n and M of criteria and

categories, respectively). In addition, the objective function Ix for the optimization represents

the “worst-case scenario” over all models and this injects additional conservatism in the choice

of the protective actions for the NPPs.

The probabilistic optimization approach applied to the same set of B compatible models aims

at the objective of maximizing the expected value of the weighted function Ix. The overall im-
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provement of the NPPs turns out to be satisfying. Comparisons and thorough discussions are

presented in the following subsections.

5.1 Comparison of the assignments of the NPPs after protective actions

Three different perspectives of optimization have been carried out under a limited budget (Bg =

40), where the simple case considers one “optimum” classification model, whereas the ro-

bust and probabilistic cases consider B(= 100) compatible models obtained by the bootstrap

method. For fair comparison of the after-action assignments, an adaptation of the results of the

simple case is needed.

The set of protective actions generated in the simple case is now applied to the group of alterna-

tives for all B compatible models of the robust and probabilistic cases. Then, the assignments

are obtained by the majority-voting rule. This shows the effect that a set of action “optimisti-

cally” obtained by resorting to one single “optimum” model has on the NPPs, when applied to

an ensemble of compatible models in light of the uncertainties. The results are listed in Table

8. First, we compare the data of the first and second columns. In the first column, there are the

original assignments for all the NPPs, evaluated by the single “optimum” classification model;

in the second column, there are the assignments for the same group of NPPs obtained by ma-

jority voting based on the B(= 100) models. It can be seen that there are some differences of

assignments for some NPPs (x2, x5, x15, x17 and x18): with the single “optimum” model, the

vulnerability of these NPPs is “underestimated”. This shows the importance of adopting the

robust and probabilistic approaches.

Then, we compare the results of the following three columns, which represent the three cases

employing B(= 100) compatible classification models. For the simple case results, there are

some ameliorations in the group, whereas there is one NPP (x16) that is assigned to a worse
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Table 8: Resume of after-action assignments of the considered NPPs with budget constraint and B = 100. White

cases of the third to the sixth comlumns indicate unchanged assignments.

category than before. This is explained as follows. In the procedure of majority voting, the

number of models that originally assign x16 to A3 is slightly lower than that to A4. With the

actions obtained by the simple optimization, some models that originally assigned x16 to A3,

now evaluate it in category A2; at the same time, the number of models that assign it to A4 does

not change, becoming the majority. This further calls for the adoption of robust and probabilis-

tic approaches. Indeed, the robust case gives a better result than the simple one. No NPPs are

assigned to a worse category as before (x16). More NPPs are improved (x2 and x18) but there is

still only one NPP that is ameliorated from the worst category (A4).

Finally, the probabilistic case shows a more promising way to choose the set of protective ac-

tions. Actually, 8 out of 18 NPPs are ameliorated. Among these, 4 were originally assigned to

A4, whereas the other 4 were originally assigned to A3. This matches well our “expected use”

of the limited resources (Bg = 40), implicitly defined by the weighted objective function Ix.
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Table 9: Qualitative highlights and lessons learned from the analyses.

A summary of the qualitative highlights and lessons learned from the analyses is reported in

Table 9.

5.2 Sensitivity analysis on the weights adopted in the objective function of the probabilistic

optimization

As presented in the previous sections, the set of protective actions generated from the probabilis-

tic case shows a more satisfactory result than the others in the present application. A sensitivity

of the performance of the probabilistic approach to the weights included in the objective func-

tion is, thus, carried out for completeness.

We consider the whole group of NPPs and the B = 100 compatible classification models. The

weights used to represent the importance of changes from A4 to A3, A3 to A2 and A2 to A1

are 100,50,25. Now, we change to a uniform set of weights (100,100,100) and count the cu-

mulative number of changes from each category to its adjacent improved category for all NPPs

and all models. The changes are compared for each NPP between its original and the corre-

sponding after-action category evaluated independently by each compatible model. A change
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Figure 6: Distribution of number of cumulative changes of category for x in considering B = 100 classification

models, two sets of weights of objective function and 4 different budgets

of categories more than one for a NPP is considered as the combination of single changes from

different “original” assigned categories (e.g., for one NPP that is ameliorated from A4 to A3, it

is counted as one change from A4 to A3, one from A3 to A2 and one from A2 to A1).

We discover that, reasonably, with a very small amount of budget (e.g., Bg < 10), the algorithm

cannot find any action, since resource is not enough to make any amelioration. With a very large

budget (e.g., Bg > 702 = total cost of all highest level actions applied on all NPPs), since

the resource is adequate, there is no need for the weights to steer its allocation: for the differ-

ent weights set, the final ameliorations are the same. Focusing on realistic cases of limited and

relatively small budgets, we consider 4 different budgets, Bg = 20,40,50 and 90 and run two

optimizations with the weights of the objective function set at (100,50,25) and (100,100,100),

respectively. The results are shown in Figure 6. It is obvious that, the bigger the budget, the

bigger the number of cumulative changes after actions. For budgets Bg = 40,50 and 90, the

number of ameliorated NPPs originally assigned to the worst category (A4) is bigger in the
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case of the objective function with weights (100,50,25) than in the case of uniform weights

(100,100,100). For the budget Bg = 20, the number of ameliorated NPPs originally assigned

to the worst category (A4) is the same with both weights sets. But with the set (100,50,25),

a larger number of NPPs originally assigned to the second worst category (A3) is ameliorated

than with uniform weights (100,100,100).

The results of this sensitivity study show and confirm that the use of priority weights (100,50,25)

in the objective function makes the probabilistic optimization framework able to steer the al-

location of the linked budget on protective actions that can ameliorate the performance of the

NPPs, with preferential consideration to those originally assigned to worse categories.

6 CONCLUSIONS

We have addressed the issue of selecting a set of protective actions for minimizing the vulnera-

bility of safety-critical systems (in the case study, nuclear power plants), within an optimization

framework based on an empirical classification model. In particular, an MR-Sort model trained

by means of a small-sized set of data representing a priori-known classification examples has

been used.

Three optimization approaches have been developed and investigated: (i) one single classifi-

cation model is built to evaluate and minimize system vulnerability; (ii) an ensemble of com-

patible classification models, generated by the bootstrap method, is employed to perform a

”robust” optimization, taking as reference the “worst-case” scenario over the group of models;

(iii) a distribution of classification models, still obtained by bootstrap, is considered to address

vulnerability reduction in a ”probabilistic” fashion (i.e., by minimizing the ”expected” vulner-

ability of a fleet of systems). To the best of the authors’ knowledge, it is the first time that an

inverse classification problem is formulated and considered for the optimization of the choice of
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protective actions to reduce the vulnerability of a group of safety-critical systems (e.g., Nuclear

Power Plants), taking into account the uncertainty associated to the classification models.

From the results obtained, it can be concluded that a combination of protective actions can be

obtained using only a single classification model, but this set of actions is not robust with respect

to the uncertainty of the classification model. The robust optimization may, then, be used for a

more conservative set of actions, coping with model uncertainty. Eventually, the probabilistic

optimization seems most practical for real cases, for the following reasons: (i) as for the robust

case, it handles the uncertainty coming from the finite data set available and the compatible

models; (ii) by maximizing the expected value of the bootstrapped probability distribution of

the objective function, some “ extreme” compatible models of the bootstrapped ensembles are

”neglected”, which is reasonable and more realistic.

The proposed methodological framework provides a powerful tool for systematically and prag-

matically evaluating the safety and vulnerability as well as other characteristics of critical sys-

tems.

For future research, the following issues will be considered. Since one set of weights is usually

an insufficient basis for giving priorities, the sensitivity of investment priorities to the weights

of criteria can be tackle: for example, in (Martinez, Lambert, & Karvetski, 2011; Karvetski

& Lambert, 2012; Thekdi & Lambert, 2014) a “scenario” is introduced that reflects a set of

weights for each stakeholder, such as emphasis on particular aspects of safety in the aftermath

of a major nuclear incident.

As presented in (Hamilton, Lambert, Keisler, Linkov, & Holcomb, 2013), an influential set of

weights can suggest R&D priorities in protection of energy systems.

Moreover, a set of weights can also be brought by other stakeholders, such as owners, operators

and users etc.: each set of weights presumably leads to variation in the preferred safety invest-
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ments (Rogerson & Lambert, 2012).

In addition, the proposed methodology could be easily integrated in a business process of safety

management, where we seek for the best compromise among risks, costs and benefits in al-

locating investments in safety-critical systems in the presence of uncertainties, as suggested in

(Thekdi & Lambert, 2014). In this line of thoughts, our approach could be used, e.g., by agencies

to preserve and sustain the compliance of risk, safety and security programs with organizational

and administrative guidelines, by identifying the relative priorities among policy initiatives and

actions (e.g., multiple and possibly competing risk assessment, management and communica-

tion procedures and missions) (Teng et al., 2012 and 2013). Since the method basically relies

on a general and flexible classification model, it might be adopted in several different contexts,

e.g., health, environment, risk communication, cost-benefit analysis, etc.

Finally, although in this work significant efforts have been made to assign numerical values to

the costs and impacts of actions (in order to represent the problem as realistically as possible), in

a non-fictitious situation the task is expected to be much more complex. Actually, the relations

between the actions and the criteria taking into account the dependencies of different attributes

and systems are always difficult to identify: in such cases, resorting to the judgment of real

experts/users/decision makers and possibly to real historical data will be mandatory.
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