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Abstract: It is important to find objective biomarkers for evaluating gait in Parkinson’s Disease (PD),
especially related to the foot and lower leg segments. Foot-switch signals, analyzed through Statistical
Gait Analysis (SGA), allow the foot-floor contact sequence to be characterized during a walking
session lasting five-minutes, which includes turnings. Gait parameters were compared between 20
PD patients and 20 age-matched controls. PDs showed similar straight-line speed, cadence, and
double-support compared to controls, as well as typical gait-phase durations, except for a small
decrease in the flat-foot contact duration (−4% of the gait cycle, p = 0.04). However, they showed
a significant increase in atypical gait cycles (+42%, p = 0.006), during both walking straight and
turning. A forefoot strike, instead of a “normal” heel strike, characterized the large majority of PD’s
atypical cycles, whose total percentage was 25.4% on the most-affected and 15.5% on the least-affected
side. Moreover, we found a strong correlation between the atypical cycles and the motor clinical
score UPDRS-III (r = 0.91, p = 0.002), in the subset of PD patients showing an abnormal number of
atypical cycles, while we found a moderate correlation (r = 0.60, p = 0.005), considering the whole PD
population. Atypical cycles have proved to be a valid biomarker to quantify subtle gait dysfunctions
in PD patients.

Keywords: foot-floor contact; human locomotion; Parkinson’s disease; statistical gait analysis;
UPDRS

1. Introduction

Parkinson’s disease (PD) is a neurodegenerative condition that can cause multiple
impairments, notably in motor function, due to rigidity, bradykinesia, tremor at rest, and
postural instability with frequent falling [1–3]. Although gait impairments are among
the most common and disabling symptoms of PD patients, gait is not routinely assessed
quantitatively, but it is described in general terms [4]. Indeed, to diagnose PD in a clinical
setting, clinicians generally consider clinical manifestations, such as motor and non-motor
symptoms, and rate disease severity based on the Unified Parkinson’s Disease Rating Scale
(UPDRS) [5]. In particular, they evaluate the motor performance of PD patients through
clinical motor examination, using the UPDRS-III score. Such clinical assessment largely
depends on the expertise of the clinicians, and it is subjective, leading to variations in
assessment between clinicians [6].

Instrumented gait analysis has revealed great potential in the objective assessment
of PD locomotor performance [7,8]. In recent years, there has been increased interest in
exploring new sensors and methods to obtain motor outcome measures in PD popula-
tions [9–11]. However, both in the diagnosis and in the management of PD patients, it
is of the uttermost importance to find appropriate and reliable motion biomarkers [9],
especially in the first stages of the pathology [12,13]. In particular, there is evidence that the
foot and lower leg segments better classify motor anomalies than any other segment [14].
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Indeed, in the last decade, there has been a sustained research activity in the study of foot
strike variability [15], foot clearance [12,16,17] (i.e., the height of the foot above ground
during the swing phase), heel-to-toe motion characteristics [18], as well as stride-to-stride
variability [16], in cohorts of PD patients.

From a methodological point of view, walking mats [19] and different foot-worn or
shoe-type sensors [20] have been used, including foot-pressure insoles [18], foot-switches [21],
and Inertial Measurement Units (IMUs) [22]. The use of a continuous walking protocol
instead of short intermittent walks, with no fewer than 30 steps (≥50 steps optimal), was
suggested to obtain reliable results when calculating gait variability measurements [19].
Some walking patterns, such as turning have been found to be affected, even in the early
stages of PD, with increased turning arcs, time to complete the turn, and a larger number of
steps taken to complete the turn [23,24]. It has been suggested that turning/curved walking
is more likely to cause gait instabilities and increased variability compared to straight walk-
ing [23–25]. In particular, it was found that high-functioning and well-treated PD patients,
exhibiting no changes in speed during straight-line walking, increased their gait variability
during curved walking [26]. Although acceleration/deceleration and turning strides are
often ignored in the large majority of works analyzing PD gait, some researchers introduced
in their protocols trajectories, including both straight-line and curved trajectories [21] (e.g.,
4 × 10 m walk [27,28]).

Previous works using Statistical Gait Analysis (SGA) also rely on sessions of continu-
ous walk, recording foot-switch signals for several minutes [29–31], along a path including
both straight-line walking and turnings. However, the analysis is then usually limited to
straight-line walking alone. An important procedure at the base of this technique is the
automatic segmentation and classification of gait cycles, based on the foot-floor contact
sequence adopted by a subject during locomotion [21]. Gait cycles may belong to distinct
“classes”, characterized by a different sequence of gait phases. In healthy individuals, the
most common gait cycle is HFPS, defined as the physiological sequence of Heel Contact (H),
Flat Foot Contact (F), Push Off (P), and Swing (H), with H, F, and P being the sub-phases
of stance [30]. HFPS is considered the typical gait cycle. By contrast, it is atypical any
other gait cycle showing a foot-floor contact sequence different from HFPS. As an example,
a higher percentage of atypical gait cycles was reported in cerebral palsy (CP) children,
compared to normally developing children: The effect was more evident on the hemiplegic
side, but it was also documented on the contralateral side [32]. The most frequently ob-
served atypical cycles were PFPS and PS cycles, in which the forefoot, instead of the heel,
first touched the ground at initial contact. An abnormal percentage of atypical cycles was
also documented in patients who underwent total hip arthroplasty (THA), one year after
surgery [33]. Both the above-mentioned studies [32,33], suggested the potential of using
atypical cycles as biomarkers in detecting subtle gait abnormalities. Nevertheless, these
works did not present any in-depth study of foot-floor contact sequence and atypical cycles,
since they were mainly focused on electromyographic (EMG) activity patterns of muscles.

To the best of our knowledge, there are no studies focusing on the characterization
of atypical gait cycles in PD patients. Furthermore, there is a lack of studies that have
considered a continuous and prolonged overground walk lasting several minutes, including
in the analysis of both straight gait and turnings. On the one hand, this kind of analysis
seems promising for obtaining objective and reliable gait biomarkers for assessing motor
fluency in natural walking conditions. On the other hand, UDPRS-III is currently the
score most used by clinicians to evaluate the motor performance of PD patients. Therefore,
it is important to validate new objective, measurement-based, biomarkers against this
clinical score.

This study aims at describing the differences in foot-floor contact sequences between
PD patients and healthy individuals, analyzing the typical and atypical gait cycles extracted
from the foot-switch signals acquired during a five-minutes continuous walk. Moreover,
the clinical validity of the percentage of atypical gait cycles in the assessment of gait in
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Parkinson’s Disease was checked through a correlation analysis between the percentage of
atypical gait cycles and the motor score UPDRS-III.

2. Materials and Methods
2.1. Sample Population and Experimental Protocol

This study involved 20 patients affected by PD (age: 59.1 ± 8.4 years; height: 175.9 ±
9.5 cm; weight: 77.6 ± 12.3 kg) and 20 healthy volunteers (age: 55.2 ± 9.6 years; height:
168.1 ± 9.5 cm; weight: 70.9 ± 15.7 kg). PD patients were selected among those eligible for
Deep Brain Stimulation (DBS) at the Stereotactic and Functional Neurosurgery Unit of the
University of Turin (Turin, Italy), between October 2018 and October 2020.

The inclusion criteria were:

• the diagnosis of PD, according to the UK Brain Bank principles;
• a good response to levodopa;
• medication-resistant motor fluctuation and dyskinesia;
• age at surgery under 70 years;
• absence of freezing of gait and postural instability unresponsive to pharmacologi-

cal therapy;
• absence of dementia or severe cognitive impairment, psychiatric or behavioral distur-

bances;
• absence of abnormalities at cerebral MRI or relevant condition that increase surgical risk;
• the ability to walk independently for a few minutes without walking aids or external

support, within the pharmacological best-ON time window.

The exclusion criterion was the presence of co-morbidities potentially affecting gait
performance. PD patients’ features were: a disease duration of 12.8 ± 3.7 years, an average
UPDRS-III score of 17.4 ± 8.1 (best-ON condition), and an average Hoehn Yahr score of
1.7 ± 0.4 (best-ON condition), respectively. Control subjects were enrolled among the
patients’ caregivers, excluding those reporting neurological or musculoskeletal disorders
affecting gait. Neuropsychological and behavioral assessments were performed for both
control subjects and PD patients (during their best-ON condition). The Mini-Mental
State Examination (MMSE) [34] was assessed as a screening measure of global cognitive
functioning. More specifically, a test battery assessed five cognitive domains:

• reasoning through Raven Color Matrices (CPM47) test [35];
• memory through Bisyllabic Words Repetition (BWR), Corsi’s Block Tapping (CBT),

and Rey auditory verbal learning (AVLT) tests [36,37];
• attention through Digit Cancellation Test (DCT) and Trail Making A (TMA) test [37,38];
• frontal executive functions through Trail Making B (TMB), Frontal Assessment Battery

(FAB), and Clock Drawing Test (CDT) [39,40];
• phonemic and category verbal fluency [35].

According to the MMSE, all the control subjects and PD patients involved in the study
were classified as normal in terms of global cognitive functioning (i.e., MMSE score higher
than 25).

All the subjects were asked to walk barefoot for approximately 5 min at self-selected
speed, back and forth over a 9-m straight walkway. PD patients were acquired during their
best-ON conditions. Figure 1 shows a schematic representation of the walking path.
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analysis. 
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Scienza di Torino—A.O. Ordine Mauriziano—A.S.L. “Città di Torino” (No. 0092029 
approved on 11 September 2018). Written informed consent was obtained from each par-
ticipant before the experimental sessions, and all the acquisitions were performed in ac-
cordance with the Declaration of Helsinki. 

2.2. Data Acquisitions 
Subjects were equipped, bilaterally, with foot-switches (size: 10 mm × 10 mm × 0.5 

mm; activation force: 3 N), fixed under each barefoot sole through double-sided adhesive 
tape. Foot-switches were placed beneath the heel, the first, and the fifth metatarsal heads 
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acquisition system (Medical Technology, Turin, Italy) to detect the foot-floor contact 
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Figure 2A shows an example of foot-switch placement for a representative healthy 
subject. First, the foot-switches were placed under each bare foot by means of double-
sided adhesive tape. Then, each foot-switch sensor was connected to the multichannel 
acquisition system through a connector fixed to the subject’s leg by means of an elastic 
belt. Figure 2B, represents an example of a foot-switch signal acquired from the left foot 
(more-affected side) of a representative PD patient of the sample population with the in-
dication of the four gait phases (H: Heel Contact, F: Flat-Foot Contact, P: Push-Off, and S: 
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The sampling frequency was 2 kHz. The signals were then imported into MATLAB® 
release 2020b (The MathWorks Inc., Natick, MA, USA) to be processed through custom 
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2.3. Gait Phases Analysis 
The pioneering work by Jackline Perry firsly introduce the Rancho Los Amigos (RLA) 
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Figure 1. Schematic representation of the walking path. Subjects walked back and forth, without interruptions, along a
straight path of 9 m, for approximately 5 min. U-turns were included in the analysis.

The experimenter manually timed each subject’s passage during straight walking
(within the red marks). The average walking speed was defined as the total distance
walked along the straight path divided by the total time required to go through it [41].

This study was approved by the Ethics Committee of A.O.U. Città della Salute e
della Scienza di Torino—A.O. Ordine Mauriziano—A.S.L. “Città di Torino” (No. 0092029
approved on 11 September 2018). Written informed consent was obtained from each
participant before the experimental sessions, and all the acquisitions were performed in
accordance with the Declaration of Helsinki.

2.2. Data Acquisitions

Subjects were equipped, bilaterally, with foot-switches (size: 10 mm × 10 mm × 0.5 mm;
activation force: 3 N), fixed under each barefoot sole through double-sided adhesive tape.
Foot-switches were placed beneath the heel, the first, and the fifth metatarsal heads of
each foot [21]. “Basographic” signals were recorded through the STEP32 multichannel
acquisition system (Medical Technology, Turin, Italy) to detect the foot-floor contact events
and determine the gait phases.

Figure 2A shows an example of foot-switch placement for a representative healthy
subject. First, the foot-switches were placed under each bare foot by means of double-sided
adhesive tape. Then, each foot-switch sensor was connected to the multichannel acquisition
system through a connector fixed to the subject’s leg by means of an elastic belt. Figure 2B,
represents an example of a foot-switch signal acquired from the left foot (more-affected
side) of a representative PD patient of the sample population with the indication of the
four gait phases (H: Heel Contact, F: Flat-Foot Contact, P: Push-Off, and S: Swing).

The sampling frequency was 2 kHz. The signals were then imported into MATLAB®

release 2020b (The MathWorks Inc., Natick, MA, USA) to be processed through custom routines.
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Figure 2. Panel (A) represents the acquisition system. Foot-switches were placed under the heel,
the first, and the fifth metatarsal heads of each foot to detect the foot-floor contact events. Panel (B)
shows an example of foot-switch signal acquired from the more-affected side of a representative
PD patient of the sample population with the indication of the four gait phases (H: Heel Contact, F:
Flat-Foot Contact, P: Push-Off, and S: Swing).

2.3. Gait Phases Analysis

The pioneering work by Jackline Perry firsly introduce the Rancho Los Amigos (RLA)
nomenclature, defining the gait phases in normal and pathological function as initial
contact and load acceptance, mid and terminal stance, pre-swing, initial swing, mid swing,
and terminal swing [42]. In this work, we specifically focus on foot-floor contact gait
phases, as directly measurable through foot-switches.

As a first step, foot-switch signals were filtered through an anti-causal anti-bounce
filter to remove spurious spikes due to switch bounces, and to obtain a 4-level foot-switch
signal modeling the following four gait phases [21]:

i. Heel contact (H): only the foot-switch under the heel is closed;
ii. Flat-foot contact (F): the heel foot-switch and one or both the metatarsal foot-switches

are closed;
iii. Push-off (P): one or both the metatarsal foot-switches are closed;
iv. Swing (S): none of the foot-switches is closed.
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Filtered foot-switch signals were then automatically segmented into gait cycles and
classified in different categories, based on the gait-phase sequence [33]. More specifically,
gait cycles showing the physiological sequence of Heel Contact (H), Flat Foot Contact
(F), Push Off (P), and Swing (H) phases were classified as typical gait cycles. By contrast,
all gait cycles showing a foot-floor contact sequence different from HFPS were classified
as atypical.

Figure 3A shows an example of the 4-level foot-switch signal acquired during a typical
gait cycle of a representative PD patient, with the indication of the gait cycle phases.
Figure 3B represents two examples of foot-switch signals acquired during atypical gait
cycles (PFPS and PS) from a representative PD patient of the sample population.
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Figure 3. Example of 4-level foot-switch signals and gait cycle phases (H: Heel Contact, F: Flat-Foot Contact, P: Push-Off,
and S: Swing) acquired from the right foot (more affected side) of a representative PD patient. Panel (A) represents an
example of a typical gait cycle, while panel (B) shows two examples of atypical gait cycles (PFPS and PS).

The percentage of typical and atypical gait cycles compared to the total number of gait
cycles, acquired during the walking task, was computed for each subject. For the typical
gait cycles, we also analyzed the duration of each gait phase, expressed as the percentage of
the Gait Cycle (%GC). For the atypical gait cycles, we analyzed their distribution over the
walking path (i.e., percentage of atypical gait cycles acquired during the straight walk or
the U-turns) and the most frequently observed atypical gait-cycle classes. The segmentation
of the foot-switch signals into straight paths and U-turns was manually performed based
on the video acquired during each experimental session. Since PD symptoms often begin
on one side of the body, we separately analyzed the most affected side (first impaired lower
limb), and the least affected one. In 9 out of 20 PD patients, the most affected side was the
right one. In control subjects, we separately analyzed the dominant and non-dominant
sides. The dominant side (i.e., the leg used to kick the ball) was the right one in 18 out of 20
control subjects.

Considering steady-state straight-line walking, in addition to gait speed, traditional
spatio-temporal parameters were calculated (cadence and double support), as well as the
duration of the 4 gait phases H, F, P, and S (in the typical gait cycles), for each lower limb.
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Figure 4 shows a schematic description of the methodological steps implemented in
this study.
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the assessment of the results.

2.4. Statistical Analysis

To determine if there is a statistically significant difference in walking speed, cadence,
and double support between PD and control groups, the Lilliefors test (MATLAB® function
“lillietest”) was performed to test the normality of data distribution. Then, according to the
results of the normality hypothesis test, the two-tailed Student’s t-test (in case of normal
distribution) or the Wilcoxon signed-rank test (in case of non-normal distribution) was used,
setting the significance level (α) at 0.05. Two-way analysis of variance (ANOVA) followed
by post-hoc analysis with Tukey’s adjustment for multiple comparisons was used to test
the differences in the gait analysis parameters between Group (PD and Control) and Side
(more-affected and less-affected, or dominant and non-dominant). The effect size of the
statistically significant differences was calculated through the Hedges’ g statistic, defined
as in Equation (1), including the correction for small sample sizes (sample size ≤ 20) [43]:

g =
M1 − M2

SD∗
pooled

=
M1 − M2√

(n1−1)SD2
1+(n2−1)SD2

2
n1+n2−2

(1)

where M1 and M2 are the averages of the two data distributions to be compared, n1 and n2 are
the number of elements of each distribution, and SD1 and SD2 are their standard deviations.

The Hedge’s g statistic quantifies how much one sample distribution differs from
another one in terms of number of standard deviations. According to the study by
Hedge et al. [43], a g (absolute) value of approximately 0.2, 0.5, and 0.8 are considered
as small, medium, and large effect size, respectively.

The statistical analysis was carried out using the Statistical and Machine Learning
Toolbox of MATLAB® release 2020b (The MathWorks Inc., Natick, MA, USA).

2.5. Correlation Analysis

We were also interested in studying the correlation between the percentage of atypi-
cal gait cycles extracted from the more-affected side of PD patients and the clinical scale
UDPRS-III, widely used to evaluate parkinsonian motor impairment and disability. To obtain
a better reproducibility of the study, we normalized the percentage of atypical gait cycles for
each subject, with respect to individual walking speed, defining the following parameter:

Atyp =
Percentage o f atypical gait cycles

Sel f − selected gait speed
(2)
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A correlation analysis between Atyp and UPDRS-III was performed, only for the
PD patients, through linear regression. Starting from the regression line that best fits
the sample data, Pearson’s correlation coefficient (r) was estimated. The 95% Confidence
Interval (95% CI) for the estimated Pearson’s correlation coefficient was also obtained,
using a bootstrap re-sampling technique. The bootstrap resampling technique is widely
used to estimate descriptive statistics and confidence intervals when dealing with small
sample populations (sample size ≤ 20). This procedure involves choosing random samples
with replacement (i.e., each observation of the sample data is separately selected at random
from the original dataset) from the sample data distribution to estimate the confidence
interval for the parameters of interest. More specifically, the 95% CI of r was found by
implementing the bootstrapping procedure in which the sample data were resampled
1000 times with replacement. The MATLAB® function “bootci” was used to implement the
bootstrapping procedure.

The correlation analysis was repeated twice, once considering the whole PD group
(named Whole PD Population), and a second time considering a subset of PD patients, i.e.,
those showing an increased percentage of atypical cycles compared to the control group.
This second group (named PD_with_Atyp) was obtained selecting PD patients with a
normalized percentage of atypical cycles (Atyp) higher than the average level observed in
the healthy population plus one standard deviation, defined as in (3):

Atyp > mean(AtypControl) + 1·std(AtypControl) (3)

where AtypControl is the normalized percentage of atypical cycles of control subjects (com-
puted averaging over the dominant and non-dominant side).

3. Results

First, the comparison between PDs and controls is reported both for traditional spatio-
temporal parameters and specifically considering atypical gait cycles and their characteri-
zation. Then, the correlation analysis (between the normalized percentage of atypical gait
cycles and the clinical scale UDPRS-III) is reported for the PD cohort.

3.1. Gait Analysis: Classical Spatio-Temporal Parameters, Typical, and Atypical Gait Cycles

The straight-line walking speed, cadence, double support, as well as the total number
of gait cycles analyzed, the percentage of typical gait cycles, the duration of each typical gait
cycle phase, and the percentage of atypical gait cycles of the PD and control populations are
reported in Table 1, with the indication of the statistically significant differences (p < 0.05).

On average, the walking speed, the cadence, and the double support of PD patients
were not significantly different from that of control subjects (walking speed: p = 0.31;
cadence: p = 0.53; double support: p = 0.13). Moreover, a similar number of gait cycles was
analyzed in the two populations (p = 0.40).

Two-way ANOVA revealed a statistically significant decrease (p = 0.006, g = 0.64)
in the percentage of typical gait cycles and a significant increase (p = 0.006, g = −0.64)
in the percentage of atypical gait cycles of the PD group compared to the control group.
Moreover, a slightly significant decrease (p = 0.036, g = 0.48) in the duration of the F-phase
was found in PD patients compared to control subjects. No significant interaction effects
were detected between Group and Side.
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Table 1. Gait analysis parameters averaged over Parkinson’s Disease (PD) patients and control subjects.

PD Patients Control Subjects Wilcoxon Test
(p-Value)

Walking speed (m/s) 1.01 ± 0.25 1.08 ± 0.17 0.31

Cadence (cycles/min) 55.7 ± 5.9 54.6 ± 3.3 0.53

Double support (%GC) 11.9 ± 5.5 14.2 ± 3.9 0.13

PD patients Control subjects 2-way ANOVA
(p-value)

More-affected side Less-affected side Dominant side Non-dominant side Group Side

Total number of gait cycles 269 ± 47 278 ± 38 267 ± 16 268 ± 19 0.40 0.69

Typical gait cycles

Percentage of HFPS (%) 74.6 ± 21.5 84.5 ± 10.1 91.9 ± 5.6 91.2 ± 4.9 0.006 0.13

H-phase duration (%GC) 9.6 ± 6.8 9.1 ± 6.0 7.1 ± 1.8 9.9 ± 5.1 0.53 0.34

F-phase duration (%GC) 20.3 ± 10.4 22.2 ± 7.9 25.0 ± 4.8 24.9 ± 6.4 0.036 0.60

P-phase duration (%GC) 25.5 ± 8.2 24.7 ± 5.9 24.4 ± 5.0 22.8 ± 3.9 0.28 0.38

S-phase duration (%GC) 44.6 ± 4.3 44.0 ± 5.1 43.4 ± 2.4 42.3 ± 2.4 0.09 0.31

Atypical gait cycles

Percentage of atypical GC (%) 25.4 ± 21.5 15.5 ± 10.1 8.1 ± 5.6 8.8 ± 4.9 0.006 0.13

Atypical gait cycles are defined as the gait cycles showing a foot-floor contact sequence different from HFPS. Values of parameters are
reported as mean ± standard deviation over the sample populations. Statistically significant differences (p < 0.05) between Group or Side
are represented in bold. Group: PD patients vs. Control subjects. Side: More-affected vs. less-affected side of PD patients; Dominant vs.
Non-dominant side of Control subjects. %GC: Percentage of Gait Cycle.

3.2. Atypical Gait Cycles during Straight Walking and U-Turning

The percentage of atypical gait cycles detected during straight walking and U-turning
averaged over the PD and control populations are represented in Table 2, with the indication
of the statistically significant differences (p < 0.05).

Table 2. Percentage of atypical gait cycles in straight path and U-turns in PD patients and control subjects.

Percentage of
atypical GC
(%)

PD Patients Control Subjects 2-way ANOVA
(p-Value)

More-Affected Side Less-Affected Side Dominant Side Non-Dominant Side Group Side

Straight walking 12.3 ± 18.3 4.8 ± 7.8 2.0 ± 2.5 2.5 ± 3.4 0.007 0.12

U-turning 13.1 ± 6.1 10.7 ± 4.4 6.1 ± 4.1 6.3 ± 3.0 <0.0001 0.36

Atypical gait cycles are defined as the gait cycles showing a foot-floor contact sequence different from HFPS. Values of parameters are
reported as mean ± standard deviation over the sample populations. Statistically significant differences (p < 0.05) between Group or Side
are represented in bold. Group: PD patients vs. Control subjects. Side: More-affected vs. less-affected side of PD patients; Dominant vs.
Non-dominant side of Control subjects. %GC: Percentage of Gait Cycle.

Two-way ANOVA showed statistically significant differences in the percentage of
atypical gait cycles during straight walk (p = 0.007, g = −0.65) and U-turns (p < 0.0001,
g = −1.26) between Group (PD and Control), while no significant differences were detected
between Side (p = 0.12, and p = 0.36, respectively). No significant interaction effects were
detected between Group and Side.

3.3. Characterization of Atypical Gait Cycles

The analysis of the most frequently observed foot-floor contact sequences revealed the
existence of 10 different gait cycle classes (considering both the PD and control populations):
The typical class of HFPS gait cycles and 9 atypical classes of gait cycles (i.e., gait cycles
showing foot-floor contact sequences different from HFPS). The most common atypical
cycles were:

• PFPS and PS: gait cycles characterized by forefoot initial contact;
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• FPS: gait cycles characterized by flat-foot initial contact;
• HFHFPS: gait cycles characterized by an unstable heel contact (although heel strike is

present).

Figure 5 shows the boxplots of the percentage of atypical cycles relative to the 9 most
frequently observed atypical foot-floor contact sequences, in PDs and controls.
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Two-way ANOVA showed statistically significant differences in the percentage of
PFPS (p = 0.006, g = −0.63) and PS (p = 0.013, g = −0.56) gait cycles between Group (PD and
Control), while no significant differences were detected between Side (p = 0.38 and p = 0.18,
respectively). No significant interaction effects were detected between Group and Side.

In particular, an average percentage of PFPS gait cycles of 6.7% ± 7.3% and 5.8% ± 1.0%
was computed for the more-affected and less-affected side of the PD population, respec-
tively, while an average value of 3.7% ± 0.8% and 2.7% ± 2.9% was obtained for the
dominant and non-dominant side of the control group, respectively. Considering the PS
gait cycles, an average percentage of 6.1% ± 9.5% and 2.0% ± 0.9% was obtained for the
more-affected and less-affected side of the PD population, respectively, while an average
value of 0.4% ± 0.3% and 1.1% ± 3.9% was computed for the dominant and non-dominant
side of the control group, respectively.

3.4. Correlation Analysis Considering UPDRS-III

In this section, we present the results of the correlation analysis obtained considering:
(i) the whole PD group, and (ii) the subgroup PD_with_Atyp. This latest is composed of pa-
tients showing a value of Atyp higher than 17.5% (“control level” defined by Equation (3)).
Eight out of twenty PD patients satisfied this condition.
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Figure 6 reports the correlation analysis between Atyp (more-affected side) and
UPDRS-III, including the bootstrap resampling histograms for the whole PD population
(Figure 6A) and the PD_with_Atyp subgroup (Figure 6B).
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Considering the whole PD group, a moderate correlation (r = 0.60, p = 0.005) was found
between Atyp (more-affected side) and UPDRS-III (95% CI: [−0.07, 0.88]). Considering
the subgroup PD_with_Atyp, a strong correlation was found (r = 0.91, p = 0.002) between
Atyp (more-affected side) and UPDRS-III (95% CI: [0.59, 0.98]).

4. Discussion

Gait disturbance is a key component of motor impairment in parkinsonian patients.
Therefore, it is not surprising that a large body of experimental work was aimed at describ-
ing and monitoring locomotion abnormalities in PD, most often through automatic motion
analysis techniques [10,14,24,26–28,44–48].

In this work, we proposed and validated the percentage of atypical gait cycles (defined
as those gait cycles showing a foot-floor contact sequence different from HFPS) as a
motor biomarker that is useful for an objective assessment of the gait performance of PD
patients, specifically focusing on the foot-floor contact quality, which is related to distal
motor control.

It is worth highlighting that when the foot–floor contact sequence is studied, an
inaccurate evaluation of the gait events can be particularly detrimental in the clinical
setting applications. Furthermore, the identification of the gait events in neurological
disorders can be more complex than in healthy subjects with intact locomotor function,
specifically for the way in which the foot first touches the floor at the beginning of each gait
cycle. As an example, the “normal” rearfoot strike (i.e., the heel touches the ground first)
may be partially or totally missing in some patients, due to an impaired control of the ankle
joint. Depending on the severity of the motor dysfunction, a specific portion of the patients’
strides (or the wholeness of the strides) can display an alternative (pathological) sequence
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of foot-floor contact. Indeed, these abnormal strides can initiate with a forefoot strike,
usually complicating the analysis. However, systems specifically designed for clinical gait
analysis can overcome this challenge [29].

The signals acquired in this study were collected through a portable, lightweight, low-
cost system for clinical gait analysis exploiting foot-switches [49]. Many different systems
based on body-worn sensors are employed for diagnostic and monitoring applications in
parkinsonian patients [10,50,51]. The large majority of instrumented gait studies on PDs
carries out measurements, either by means of systems based upon IMU sensors [14,52,53]
and/or foot Force Sensing Resistors (FSR) of various kinds [28,54]. The wide variety of
sensors used for detecting gait events, and timing the gait cycle phases, fall into two broad
categories: Sensors that allow for a direct measure of the gait events (foot-switches and
FSR) and those that indirectly reconstruct the timing of these events (IMUs) [21]. Indeed
IMUs, i.e., accelerometers, gyroscopes, and magnetometers, necessitate customized signal
processing to gain information on gait events and, hence, model reconstruction errors may
be intrinsically higher. Not only they often require cohort-specific algorithms to tackle the
challenges of studying gait events in neurological populations, but also different processing
strategies are required to cope with straight path and turnings. For this reason, our strategy
was to directly record the foot–floor contact sequence of PDs (and age-matched controls)
through foot-switches.

Foot-switches are easily mounted directly under the barefoot sole (through bi-adhesive
tape), without the need for dedicated shoes or sensing insoles. The time to prepare the
subject is usually less than five minutes, which is fully compatible with clinical require-
ments. The selection of patient-specific anatomical landmarks under the foot (heel, first
and fifth metatarsal heads, these latest simply identified through bone palpation) avoids
sensorized shoes or shoe-insoles from being worn differently by specific patients and/or
that sensors move with respect to the foot during gait. Moreover, foot deformities are not
rare in parkinsonian patients.

Another aspect to be considered is that a single foot-switch provides a signal for either
foot contact (on) or lack of contact (off). This binary characteristic directly produces a
“sharp” timing of the gait phases, useful in gait event detection. Other techniques, e.g.,
those relying on foot plantar pressure measurements [55], are based on many small sensors
that allow for detailed monitoring of the foot–floor pressure. However, they do not directly
provide sharp indications on the sub-phases of stance. Typically, some pre-processing of
the insole pressure signal is required [18].

4.1. Gait Analysis: Classical Spatio-Temporal Parameters, Typical and Atypical Gait Cycles

On average, we analyzed more than 500 gait cycles for each subject, considering
both lower limbs. In the PD population, which we examined during best-ON condi-
tions, the straight-line walking speed was not different from that of controls (PD speed:
1.01 ± 0.25 m/s; controls’ speed: 1.08 ± 0.17 m/s; p = 0.31). The overall number of gait cy-
cles recorded during the 5-min walking task was also similar (PDs: 269 ± 47 and 278 ± 38
gait cycles were recorded on the most and less affected side, respectively; Controls: 267 ± 16
and 268 ± 19 gait cycles were recorded on the dominant, and non-dominant side, respec-
tively; p = 0.40). The fact that the straight-line speed and the total number of recorded gait
cycles were similar between PD and control populations allows us for directly comparing
their gait parameters, since no bias arising from gait speed or mismatch in the number of
strides collected is demonstrated. On the other hand, this provides indirect evidence that, at
least in their best-ON condition, the PD individuals belonging to the examined population
showed only very mild gait dysfunctions, which is not detectable considering straight-line
speed or the overall number of gait cycles traveled in five minutes. In addition, considering
traditional spatio-temporal parameters, we also found that cadence and double support
of the examined parkinsonian patients were not altered, during steady-state straight-line
walking (PD cadence: 55.7 ± 5.9 cycles/min, controls’ cadence: 54.6 ± 3.3 cycles/min,
p = 0.53; PD double support: 11.9 ± 5.5%GC, controls’ double support: 14.2 ± 3.9%GC,
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p = 0.13). This distinguishes our study from those of others, also considering mild PD
dysfunctions. As an example, the work of Ref. [47] reports a reduction of the average
walking speed and cadence of early-stage PD patients (seven individuals), and discussed
their tendency to bradykinetic gait along a straight trajectory of about 6 m. That work also
found a similar double-support timing between PD and controls, in accordance with the
present study. This work highlighted the importance of studying atypical gait cycles, in
addition to typical ones.

Considering typical gait cycles (HFPS, characterized by normal heel strike), we found
only a small decrease of the flat-foot contact (F) duration in PD patients compared to
controls, at the limit of the statistical significance (p = 0.04). The F-phase duration decreased
only by 4%GC (value obtained by averaging the two lower limbs). Notice that it was
possible to reveal this subtle difference because we considered, separately, the sub-phases of
stance (heel contact, flat-foot contact, and push-off), instead of estimating the whole stance-
phase duration (H+F+P). While traditional gait analysis typically provides measurements
of only two main phases (stance and swing), the analysis of the 4-level basography allows
for timings four gait phases, for each lower limb. Separating stance into its sub-phases
often provides more sensitive outcome measures, as it was already suggested in previous
studies related to other neurological populations, e.g., hemiplegic children after cerebral
palsy [32,56,57], and patients affected by mild ataxia [30]. Furthermore, it is advisable to adopt
gait partitioning methods that do not require pathology-specific templates, or the a-priori
definition of the number of gait phases. Even if the most common approach is based on the
four-phase model, models with a different number of gait phases are also used [58–60].

Considering atypical cycles, the differences between PDs and controls become defi-
nitely more evident. We found a consistent increase (+42%, p = 0.006) in the total percentage
of atypical cycle of parkinsonian patients with respect to controls (PD more affected side:
25.4% ± 21.5%, PD less affected side: 15.5% ± 10.1%; controls’ dominant side: 8.1% ± 5.6%,
controls’ non-dominant side: 8.8% ± 4.9%).

In the present work, we focused on foot-floor contact analysis. Future studies can
advantageously consider the combined investigation of foot-floor contact sequences and
ankle kinematics [32,61].

4.2. Atypical Gait Cycles during Straight Walking and U-Turning

This study suggests that the percentage of the atypical gait cycle is a sensitive param-
eter, able to grasp subtle deviation from normality, not detectable by traditional spatio-
temporal parameters used in gait analysis.

We found a significant increase in the percentage of atypical cycles in PD patients
during both the straight path and U-turns. Averaging both sides, the PD patients showed
overall 8.9% atypical gait cycles during straight walk (PD more-affected side: 13.4% ±
18.3%, PD less-affected side: 4.4% ± 7.8%) and 11.9% atypical gait cycles during U-turns
(PD more-affected side: 13.1% ± 6.1%, PD less-affected side: 10.7% ± 4.4%). Averaging the
dominant and non-dominant side, the control population showed overall 2.3% atypical gait
cycles during straight walk (controls’ dominant side: 2.0% ± 2.5%, controls’ non-dominant
side: 2.5% ± 3.4%) and 6.2% atypical gait cycles during U-turns (controls’ dominant side:
6.1% ± 4.1%, controls’ non-dominant side: 6.3% ± 3.0%).

Gait cycles initiating with a forefoot strike (PFPS and PS), instead of a heel strike, are
among the most frequently observed atypical cycles in the PD group, and their percentage
is significantly increased compared to controls (PFPS in PDs: 6.7% ± 7.3% and 5.8% ± 1.0%
for the more-affected and less-affected side, respectively, PFPS in controls: 3.7% ± 0.8% and
2.7% ± 2.9% for the dominant and non-dominant side, respectively, p = 0.006; PS in PDs:
6.1% ± 9.5% and 2.0% ± 0.9% for the more-affected and less-affected side, respectively,
PS in controls: 0.4% ± 0.3% and 1.1% ± 3.9% for the dominant and non-dominant side,
respectively, p = 0.013). The authors hypothesize that the presence of forefoot-strike cycles,
and in particular, PS cycles (where the heel never touches the ground during the entire
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stride), can be related to an increase in fall risk. However, further research is required to
provide evidence in this regard.

4.3. Correlation Analysis Considering UPDRS-III

Furthermore, this study confirmed the validity of the use of the normalized the
percentage of atypical gait cycles in the discrimination of PD patients with different degrees
of motor impairment. We found that when atypical gait cycles are present in PD patients
in an increased amount compared to a control population, their normalized percentage is
strongly correlated with UPDRS-III (r = 0.91, 95% CI: [0.59, 0.98], p = 0.002).

5. Conclusions

The percentage of atypical cycles proved to be a valid biomarker to quantify subtle
gait dysfunctions in parkinsonian patients. Besides the description and characterization
of the atypical gait cycles in PD, control subjects and their comparison, the novelty of this
work resides in the large number of gait cycles analyzed along a continuous motor task
lasting five minutes, which includes both straight-line walking and U-turnings. This kind
of protocol enabled the detection of very mild gait abnormalities in the distal motor control
of PD patients, not perceptible by traditional spatio-temporal parameters used in gait
analysis. Through the segmentation of foot-switch signals (directly providing information
on gait events), it was possible to measure the occurrence of different foot-floor contact
sequences. Furthermore, we demonstrated that, when there is an abnormal percentage of
atypical gait cycles in a parkinsonian subject, this objective parameter is strongly correlated
with UPDRS-III, which is commonly used by neurologists for (subjectively) assessing the
PD motor dysfunctions. This documents the applicability of the proposed methodology in
the clinical management of PD patients.
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