
19 April 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

A New Domains-based Isolation Design Flow for Reconfigurable SoCs / Portaluri, Andrea; De Sio, Corrado; Azimi,
Sarah; Sterpone, Luca. - ELETTRONICO. - (2021), pp. 1-7. (Intervento presentato al convegno IEEE International
Symposium on On-Line Testing and robust System Design (IOLTS 2021)) [10.1109/IOLTS52814.2021.9486687].

Original

A New Domains-based Isolation Design Flow for Reconfigurable SoCs

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/IOLTS52814.2021.9486687

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2915616 since: 2022-04-13T15:09:44Z

IEEE International Symposium on On-Line Testing and robust System Design

A New Domains-based Isolation Design Flow for

Reconfigurable SoCs

Abstract— Reconfigurable SoCs are widely adopted in mission-

critical tasks in aerospace and automotive. Though, one of their

main drawbacks is the susceptibility to high-energy particles

both in space and at sea level. Isolation Design Flow is a

promising implementation approach to improve the reliability

of circuits. However, considering the high number of modules in

a complex circuit, especially when redundant techniques are

applied, IDF requires a complex floorplanning stage. In this

paper, the benefits of using IDF are evaluated, both for plain

and hardened-by-redundancy designs. We propose an

implementation methodology to tackle the complexity of

applying IDF to TMR-based circuits that usually make the

implementation approach unfeasible. The impact of different

design policies on the reliability of the system is evaluated

through fault injection campaigns. The proposed method is

applied to the TMR-hardened CORDIC core implemented on

Zynq AP-SoC and compared with other possible solutions. The

results report a significant improvement in the TMR

effectiveness when the proposed domains-based IDF is applied.

Keywords—Fault injection, Isolation design flow, Reliability,

Reconfigurable, SoC, SEU, SRAM-based FPGA.

I. INTRODUCTION

Lately, Reconfigurable Systems on a Chip (SoCs) and

Field-Programmable Gate Arrays (FPGAs) have become

attractive solutions for many safety-critical applications in

the automotive and aerospace industries. Thanks to their

hardware programmability, the designers can meet high

performance and strict requirements with relatively low

costs, power consumption, and time-to-market. One of the

main limitations to the usage of SRAM-based programmable

hardware platforms in safety-critical applications is their

Single-Event Upsets (SEUs) susceptibility [1][2][3]. An SEU

is a harmful modification of the content of a memory cell (i.e.,

a bit) caused by the interaction between a single ionizing

particle and the device matter. The electronic circuit (i.e., the

netlist) implemented by the programmable hardware is

defined by the content of a configuration memory (CM).

Therefore, a modification of the content of the memory may

result in a modification in the circuit that compromises the

nominal behaviour of the application, possibly leading to

critical scenarios.

Due to technology and voltage scaling, SEUs are no longer

concerning only applications operating in outer space but also

at sea level due to the secondary particles [4]. Therefore, the

mitigation of the SEU effects is becoming the main challenge

for adopting electronic devices used in any safety-critical

applications, both at space and ground level. Several SEU

mitigating techniques have been proposed for reconfigurable-

oriented SoCs, especially hardening-by-design techniques

such as hardware redundancy [5][6][7][7].

The Isolation Design Flow (IDF) is proposed as a promising

approach to improve system reliability, acting directly on the

design placement especially when applied to the

reconfigurable logic of SRAM-based FPGAs. The underlying

idea behind IDF is to isolate modules during the

floorplanning phase to build more reliable systems. Indeed,

module isolation helps at detecting faults in the single

modules and limits the propagation of faults between them.

The isolation is obtained by adopting a complex set of Design

Rule Constraints (DRCs) that guarantees isolation but can

easily lead to routing congestion.

Thus, IDF increases the complexity during floorplanning,

especially with numerous modules involved, for example

when modular redundancy is applied. Therefore, the

application of IDF represents a challenging task.

Only a few research works analyzed the benefits introduced

by the IDF in terms of the reliability of the application.

However, the impact of state-of-the-art IDF and the adoption

of different isolation policies on modular redundancy

mitigation techniques are not investigated in any research

work.

This work provides two main scientific contributions. The

first consists on the investigation of applying IDF on an

unmitigated circuit in terms of reliability improvement. The

reliability evaluation is performed through fault injection,

considering both the isolated and non-isolated versions of the

same benchmark design. Moreover, the reliability

improvement of a hardened-by-replication version of the

same circuit is evaluated as well. The topological constraints

make the use of the state-of-the-art IDF for the Triple

Modular Redundant (TMR) version of the circuit infeasible.

Therefore, in this work, we propose a general methodology

to reduce the floorplanning complexity for IDF when applied

to modular redundant designs. Moreover, the proposed

approach for reducing floorplanning complexity is compared

with other solutions based on different aggregation policies

through fault injection. The experimental results show how

the use of the proposed domains-based IDF not only allows

to successfully apply the isolation flow but also produces

remarkable results in terms of reliability of the system

compared to the non-isolated TMR or other module

aggregation policy.

The paper is organized as follows: Section II reviews

previous works related to isolation and mitigation techniques.

Section III gives an overview of the SEUs origin and

elaborates on the Isolation Design Flow. The domains-based

Andrea Portaluri, Corrado De Sio, Sarah Azimi, Luca Sterpone

Dipartimento di Automatica e Informatica (DAUIN)

Politecnico di Torino

Turin, Italy

andrea.portaluri@studenti.polito.it

{corrado.desio, sarah.azimi, luca.sterpone}@polito.it

Isolation Design Flow is described in Section IV. The

experiment environment is presented in Section V. The

obtained results are reported in Section VI. Finally, Section

VII contains conclusions and discussions on further works.

II. RELATED WORKS

So far, few research works have focused on IDF or IDF-

based architectures [9][10][11]. The authors in [9] were the

first to propose a technique to use IDF with a partial

reconfiguration for Xilinx SRAM-based FPGAs, supporting

online module relocation. The approach proposed in [10]

suggests a novel method to ease the bitstream relocation in

presence of IDF constraints. Eventually, the authors in [11]

implement off-chip trusted communication with the partial

reconfigured section. However, even though the mentioned

methods are all highly effective, the FPGA commercial

design tool (e.g., Xilinx Vivado) currently does not support

any partial reconfiguration integrated with IDF. Therefore,

the main challenges remain the need to interface with external

tools and the elevated time needed for implementing the

design. As far as the design is concerned, the author in [12]

lists the most common design-for-reliability solutions such as

hardware redundancy, error-correction coding, and

configuration scrubbing. Among these, TMR represents one

of the most used, effective, and well-known approaches for

SEU mitigation [13]. However, to the best of our knowledge,

no research works have evaluated the efficiency of applying

IDF-based techniques integrated with TMR on increasing the

reliability of the design, which is the focus of this work.

III. BACKGROUND

A. Single Event Upsets and TMR mitigation

Due to the interaction of high-energy particles (e.g.,

ionizing radiation) with the silicon structure of SRAM-based

FPGAs, undesired electric reactions can arise within the

devices. In particular, when a particle strikes atoms in the

silicon lattice, the released energy can change the electric

state of a node producing an SEU. One of the most common

effects of SEUs is the single bit upset, where the content of a

memory cell is flipped. Concerning SRAM-based hardware

programmable devices, a bit upset involving a programmed

memory cell used in the configuration of the netlist can

modify the circuit programmed in the programmable logic.

Therefore, these changes will affect the application

functionality similar to a hardware fault until the next

reconfiguration. A detailed classification of the faults that

SEUs can cause in SRAM-based FPGAs is given in [14]. To

mitigate the effects of SEUs, replication of the modules in the

design is a widely adopted technique (e.g., Duplication With

Comparison and TMR). The basic concept of TMR exploits

the triplication of the hardware modules, that perform the

same operations on the same data. The results of the three

copies are voted, allowing to detect and correct single

misbehavior out of three. However, replication leads to

overhead in terms of power consumption, area, and timing

which is not always affordable. Moreover, the increasing of

modules composing the design can severely vitiate placement

and routing feasibility when the Isolation Design Flow is

pursued.

B. Isolation Design Flow

In the case of an occurring SEU, modules may encounter

chain failures, compromising the correctness of the

application. The Isolation Design Flow (IDF) is a design

technique adopted to assure the non-interference of functions

within the same chip through physical isolation of the

resources, thus preventing fault propagation between

modules. In order to guarantee the isolation between

modules, each module to isolate must have its own

hierarchical instance in the hardware description of the netlist

(HDL). During the design placement phase, a fence must be

used to isolate each module in the design from the others.

Fences are a set of contiguous rows/columns of unused

resources separating two isolated regions. The requirements

on fence width in terms of unused resources is depending on

the specific device. The on-chip communication must be

implemented using trusted routes. Routes (i.e., nets

connecting isolated modules) must fulfill strict requirements

to be marked as trusted. In detail, the routes have to connect

one source and one destination only (point-to-point

connection) and cross only tiles in the fence separating the

two isolated regions that the route is connecting.

Fig. 1. Available routes: A and B are representing non-trusted routes.

Fig. 1 shows a conceptual scheme of isolated regions, fences,

and routes. Route A is not a trusted route since it passes out the

fence region comprised between the two isolated regions that

it is connecting. Route B is not trusted since it does not realize

a point-to-point connection.

Due to the need to respect constraints on fences and trusted

routes, IDF requires an elaborated floorplanning phase that is

only partially supported by the vendor tools. During the

floorplanning, the communication between isolated modules

can be implemented only between adjacently-placed modules.

Moreover, the width of the fence follows some constraints

(usually between 3 and 8 tiles). Thus, the manual

floorplanning process requested for implementing isolation

becomes highly challenging or, in the worst cases, impossible

when the number of modules increases. To cope with the

increase of complexity, it is possible to group modules under

a higher hierarchical level. Therefore, a trade-off between the

isolation modules and the complexity and feasibility of the

design placement and routing should be considered.

IV. THE DOMAINS-BASED ISOLATION DESIGN FLOW

We are proposing a set of design practices for reducing

floorplanning complexity when a replication-based

mitigation approach is used. These rules are intended to

Isolated region 4Isolated region 3

Isolated region 1 Isolated region 2

Trusted

Trusted Trusted

Not trusted (B)

Not trusted (A)

Fence

simplify the floorplanning phase during the isolation design

flow, usually delegated to the designers, that quickly

explodes in complexity when the state-of-the-art IDF is

applied to replicated modules. Indeed, the very high

complexity fails to meet the constraints required by IDF for

topological reasons, forcing the designer to give up on

isolation. Our proposed solution reduces the number of

blocks to be isolated, coupling together different modules

within the same isolated region. However, unaware

relaxation of the isolation constraints and module aggregation

can lead to nullifying the advantages introduced by IDF. For

instance, when coarse-grained TMR is applied, the modules

to be hardened are replicated. The redundant modules are

used for performing the same computation independently.

Then, the results are compared to detect and correct possible

errors through a voter circuit. Since errors that will not affect

more than a single replicated computational unit are filtered

by the voter, the underlying idea is to prioritize the isolation

between modules that contribute to two different data

domains of the voter. Differently, isolation between modules

in the same voter domains (i.e., contributing to the same voter

input) can be relaxed. The reduction of the number of the

isolated regions will consequently reduce the floorplanning

constraints and complexity. The steps for integrating

domains-based IDF in the traditional FPGA design flow are

illustrated in Fig. 2. It consists of the four tasks listed below:

- Pre-Synthesis: the isolated regions are defined. Different

from the state-of-the-art IDF, the modules to include

together in the same isolated region must be regrouped in

the design hierarchy. In this phase, it is important to avoid

grouping together modules belonging to different domains

of the same voter, as explained above. Clock signals or

other inter-region signals must be declared in the placement

constraint file, thus allowing them to cross isolated regions.

- Post-Synthesis: the modules previously identified to form

an isolated region must be declared as isolated, in order to

let the CAD tool know which modules are intended to be

isolated. This property will constraint communication only

through the trusted routes.

- Floorplanning: the floorplanning phase is executed

manually by instantiating placement blocks (pblocks). A

pblock is a collection of physical resources (e.g., LUTs,

PIPs) of the programmable hardware. The routing and the

logic cells of an isolated module will be placed only in the

associated pblock. At this stage, the fencing rules must be

accurately followed in order to achieve correct isolation. An

estimated value of resources needed for the function within

the pblock will be reported by the FPGA design tool in

order to not run into resource overflow.

- Post-implementation: after the implementation, the Vivado

Isolation Verifier (VIV) [15] built-in tool is used to verify

the correct implementation of the IDF rules between the

isolated blocks. This tool generates a report on possible

misplacements of blocks or fences and physical overlay of

modules.

V. THE FAULT INJECTION ENVIRONMENT

For evaluating the benefits introduced by the plain and

domain-based IDF, a fault injection environment has been

developed. The environment automatizes both the faults

generation and faults evaluation tasks, as well as results

collection and analysis. For this work, the PyXEL framework

has been extended to support Essential Bits, allowing to focus

of the analysis only on the sensitive bits of the configuration

memory [16]. Fig. 2 shows the scheme of the experimental

analysis flow. The schema illustrates how the domain-based

IDF phases are integrated with the traditional FPGA design

flow, as well as the steps and modules involved in the fault

injection process.

Fig. 2. The scheme of the developed experimental flow.

A. Fault injection platform and methodology

In order to evaluate and compare the reliability of the

study cases, we developed the environment for performing

fault injection campaigns. The environment runs on a host

computer and communicates with the platform implementing

the circuit under test through serial communication. The fault

injection mechanism relies on the PyXEL framework [16].

PyXEL is a Python library for the analysis of faults in FPGA,

which allows modifying single or multiple bits in the

bitstream to emulate faults. For this work, PyXEL has been

extended to focus on a subset of the configuration memory,

named Essential Bits (EB). The EBs are a subset of the

programmable bits of the specific circuits that are reported by

the vendor tool (i.e., Vivado) as bits that if corrupted may lead

to errors in the circuit [17]. The fault injection campaigns

consist of a collection of single independent trials. For each

trial, an essential bit of the circuit under test is corrupted and

the effect introduced by the fault is evaluated. The generated

faulty bitstream is used for programming the programmable

hardware. Then, a software test routine is loaded in the

processing system of the AP-SoC. The software test routine

stimulates the computing modules on the PL. Then, it sends

the results to the fault injection platform where they are

collected and analyzed. All the steps are fully automatized.

VI. EXPERIMENTAL ANALYSES AND RESULTS

For evaluating the benefits introduced by traditional and

domain-based IDFs, we carried out fault injection analyses.

Fault injection campaigns have been executed using the fault

platform reported in section V. The Zynq-7000 AP-SoC has

been used as the hardware platform. The evaluated

benchmark application is the CORDIC IP provided by the

Pre-synthesis

Post-synthesis &
Floorplanning

Post-implementation

Domains-based IDF

Fault injector

Faulty bitstreams

Zynq-7000 AP-SoC

Report Result analyzer

Block design

Synthesis

Implementation

Bitstream generation

FPGA Design Flow

Programmable Logic

Processing System

Error
distributions

Vivado IP Library. The analyzed designs include both plain

and TMR-hardened versions implemented with and without

traditional and domains-based IDFs. SEU in configuration

memory is the fault model emulated during fault injection

tasks. The reliability analyses have been compared to

quantitively measure benefits introduced by the traditional

and domains-based isolation flows.

A. Benchmark designs

As an application under test, we developed a hardware-

accelerated system to be executed on the Zynq-7000

platform. The Xilinx CORDIC IP Core is the hardware-

accelerated core implemented on the programmable

hardware. The CORDIC IP Core is a widely adopted module

in aerospace applications, where it is used for implementing

transcendental functions and digital signal processing. The

CORDIC IP Core is controlled by a software routine running

on the Cortex-A9 processing system. Communication

between the software routine and hardware modules is

implemented through AXI4 Interconnection Cores. Data

transfers are implemented using AXI DMA [14]. When the

software routine is triggered by the fault injection platform

running on the host computer, it stimulates the cores on the

PL and evaluates if they are working correctly. In detail, the

software routine provides a test vector to the CORDIC IP

Core, compares the results of the hardware computation with

the expected ones, and sends the experiment report to the

results collector module running on the host computer. The

design to be implemented on the programmable hardware

consists of three AXI cores for communication purposes and

a computational core (i.e., CORDIC). The IP Core is

connected to the processor system of the SoC through the

AXI Interface. A hardened version of the benchmark circuit

has been designed using TMR. The CORDIC Core and its

communication interfaces have been replicated three times.

Each replication can be accessed by the PS through the AXI

Interconnect module. The software routine votes the final

results based on the output obtained by the three replicas.

B. Errors classification

The software routine running on the processor system

stimulates the cores on the programmable logic. The obtained

results are compared with the golden results to detect

misbehaviors. If a mitigation approach based on replication

is applied, the software running on the processor system runs

the computation on each replicated module. The results of the

cores are voted and compared to each other to correct or

detect errors. The misbehaviors resulting from the fault

injection campaigns have been classified into four categories:

1. Data Unavailability (DU): we defined data unavailability

when it is not possible to receive any results from the PL,

usually due to faults affecting the communication

modules.

2. Silent Data Corruption (SDC): silent data corruption

occurs when the results obtained by the PL have errors,

but they are detectable only through comparison with the

expected results (i.e., there is no cores replication or the

voting process elected the wrong result).

3. Recoverable Data Corruption (RDC): it occurs when

different results are returned by the cores, but the correct

results are recovered through voting.

4. Detectable Data Corruption (DDC): it occurs when

different results are returned by the cores and it is not

possible to vote a result (e.g., in a TMR design, two

modules return two different results and the third one is

unavailable).

C. Evaluation of IDF benefits on plain benchmark design

Two versions of the plain benchmark design (i.e., without

TMR) have been implemented using standard design flow

and the state-of-the-art IDF. The reliability of the two designs

has been evaluated through a fault injection campaign,

emulating SEUs in the configuration memory. In the design

implemented using state-of-the-art IDF, the block in the

higher level of hierarchy (i.e., Zynq PS, AXI DMA, AXI

Interconnect, and CORDIC) have been selected to be placed,

isolated as required by IDF application notes.

TABLE I. ESSENTIAL BITS OF STANDARD AND IDF CONFIGURATIONS

Design CM bits [#] EB [#] EB in CM [%]

Standard 32,345,856 717,873 2.22

IDF 32,345,856 810,181 2.50

The SEU fault model has been evaluated for each design

through two different fault injection campaigns. Each

campaign consists of 10,000 fault injections affecting the EB

of the benchmark design implemented with and without state-

of-the-art IDF. Table I describes the number of EB in each

configuration and their percentage over the CM bits.

TABLE II. DISTRIBUTION OF ERRORS FOR STANDARD AND IDF DESIGNS

CONSIDERING 10,000 INJECTIONS

Error Type
Implementation Flow

Standard IDF

DU [#] 103 97

SDC [#] 194 148

Total [#] 297 (2.97%) 245 (2.45%)

The campaign resulted in an error rate of 2.97% for the design

without IDF and 2.45% for the design implemented using

IDF. The distribution of the errors is reported in Table II.

TABLE III. RESOURCES UTILIZATION FOR STANDARD AND IDF DESIGNS

Resources

Implementation Flow

Standard IDF

Used [#] Utiliz. [%] Used [#] Utiliz. [%]

LUTs 3,257 6.16 3,539 6.65

Flip-Flops 4,196 3.94 4,555 4.28

Memories 5 3.57 5 3.57

Using IDF, we reduced the error rate by 17.51%, acting only

on the design placement constraints. The overhead in terms

of utilization is reported in Table III. As can be observed, the

amount of additional resources is negligible with respect to

the available ones. However, IDF design requires about 10%

more flip-flops and LUTs compared to the standard one,

which can result problematic for more complex circuits.

D. Isolation policies for redundant design

In order to evaluate the benefits introduced by IDF for

replicated designs, we carried out additional fault injection

analyses on the TMR version of the benchmark design. In

particular, we evaluated the reliability of the circuit resulting

from the standard design flow, proposed domains-based IDF,

and non-domains-based IDF. Please note that even if the

benchmark design under test is very small (i.e., less than 7%

of resource utilization), it has not been possible to implement

the state-of-the-art IDF. Indeed, the number of modules to

isolate when TMR is applied makes it unfeasible to satisfy

the isolation constraints.

The analyzed benchmark implementing TMR is described as

follows:

- Standard (unconstrained) configuration: this benchmark

has been implemented without IDF constraints, thus the

modules are not isolated in this version. The block scheme

of the modules at the higher level of the hierarchy is

presented in Fig. 3.

Fig. 3. Block scheme of the standard design.

- Domains-based IDF configuration: this design implements

the domains-based isolation flow. The modules of a domain

are grouped together in a block. The blocks are isolated

using IDF. A single isolated block is composed of an AXI

SmartConnect block, AXI DMA, and the CORDIC IP, as

represented in Fig. 4.

Fig. 4. Block scheme of the domains-based isolation.

- Non-domains-based IDF configuration: this last isolation

pattern, represented in Figure 5, couples together modules

by task. AXI SmartConnect, DMA, and CORDIC blocks of

the different domains are grouped between them. IDF is

applied to these groups. This configuration has been

proposed to evaluate the benefits of using the proposed

domain-based aggregation policy with respect to an

aggregation policy aiming only to minimize the number of

modules to be placed, without taking into account the

concept of domains.

Fig. 5. Block scheme of the non-domains-based isolation.

Both of the IDF configurations isolate singularly the AXI

Interconnect Module as it is recognized as a weak point of the

design [18][19].

E. Evaluation of domains-based IDF benefits on TMR

The fault injection campaigns consist of 10,000 injections

emulating SEUs in configuration memory, affecting the

essential bits of different versions of the TMR-hardened

benchmark circuit implemented using different design flows.

The total number of CM bits and the EB for each design has

been reported in Table IV.

TABLE IV. EB OF STANDARDS, DOMAINS-BASED, AND NON-DOMAINS-

BASED CONFIGURATIONS

Design
CM bits

[#]

Essential

Bits [#]

EB in CM

[%]

Standard TMR 32,345,856 2,811,321 8.69

Domains-based 32,345,856 2,930,999 9.06

Non-domains-

based
32,345,856 3,002,114 9.28

Concerning the resource utilization, we observed a slightly

higher requirement of logic resources when adopting IDF,

similarly to what was obtained with the plain benchmark. In

particular, IDF needs almost 1.5% of LUTs and 2% more FFs

than the standard configuration when using IDF, as is

reported in Table V.

TABLE V. RESOURCES UTILIZATION FOR STANDARD AND ISOLATED

DESIGNS

Resources

Implementation Flow

Standard TMR Domains-based
Non-domains-

based

Used

[#]

Utiliz.

[%]

Used

[#]

Utiliz.

[%]

Used

[#]

Utiliz.

[%]

LUTs 12,878 24.21 13,064 24.56 13,204 24.82

Flip-Flops 17,706 16.64 17,713 16.65 18,037 16.95

Memories 15 10.71 15 10.71 15 10.71

We carried out the fault injections randomly targeting the EB

of the designs. Due to the definition of EB, not all the

injections will affect bits programming the used resources of

the design. As matter of fact, only some of them will cause

an error in the output of the application. This can happen as a

result of a fault injected in the used resources or the activation

of an unused resource that leads to a conflict. Considering the

three possible configurations we observed the following

results:

- Standard configuration: in this configuration, we detected

a percentage of 5.37% faulty behaviors. Of these, 50.47%

were RDCs, 29.61% DDCs, 15.27% SDCs, and 4.65% of

DUs.

- Domains-based IDF configuration: in this case, the fault

injection campaign produced 2.89% of faulty outputs: in

particular, 65.74% are RDCs, 30.10% DDCs and 4.16%

consists in the DUs. No SDCs have been detected.

- Non-domains-based IDF configuration: the experiment

resulted in a 3.13% of error rate. In detail, we observed

45.37% of RDCs, 32.59% of DDCs, 2.87% of SDCs, and

19.17% of DUs.

The collected data are reported in detail in Table VI.

Comparing both of the configurations with the unconstrained

design, it can be observed that due to the IDF implementation,

the total error rate is slightly dropped with focus on the silent

errors (no SDC and 0.09% of the total with the domains-

based and non-domains-based configurations, respectively).

AXI Interconnect

AXI
SmartConnect #0

AXI DMA #0

AXI
SmartConnect #1

AXI
SmartConnect #2

AXI DMA #1

AXI DMA #2

CORDIC #0

CORDIC #1

CORDIC #2

Zynq PS

Zynq PS

AXI Interconnect

Module #0 (Smart / DMA / CORDIC)

Module #1 (Smart / DMA / CORDIC)

Module #2 (Smart / DMA / CORDIC)

AXI DMA
#0 / #1 / #2

AXI Interconnect

CORDIC
#0 / #1 / #2AXI SmartConnect

#0 / #1 / #2
Zynq PS

TABLE VI. DISTRIBUTION OF ERRORS FOR THE STANDARD TMR, DOMAINS-
BASED AND NON-DOMAINS-BASED CONFIGURATIONS FOR 10,000 SEUS

Error type

Implementation Flow

Standard

TMR

Domains-

based

Non-domains-

based

RDC [#] 271 190 142

DDC [#] 159 87 102

SDC [#] 82 0 9

DU [#] 25 12 60

Total [#] 537 289 313

The domains-based design produced the lowest error rate as

well as the highest RDC ratio among the analyzed

implementations. Such achievements are also supported by

the absence of SDCs, which represent the worst possible

behavior due to their undetectability. The non-domains-based

implementation also brought the decrease of SDC with

respect to the standard design. However, this configuration

appeared to be very sensitive to the DU, which occurred more

than three times with respect to the domains-based case. This

is likely due to its by-task aggregation, where a fault in one

of the communication modules propagates to the

communication infrastructure of all the domains. Figure 6

compares the error classification resulting from the three

implementation methodologies.

Fig. 6. Distribution of errors of 10,000 fault injection campaigns on

standard, intra-domain, and inter-domain configurations.

We have performed further analysis on the causes of the Data

Unavailability errors affecting the three designs. In particular,

we investigated the contribution of the AXI Interconnect

module to these errors compared to the other isolated regions

of the designs. Using the PyXEL framework, we identified the

physical resources affected by the faults resulting in DU

errors. Then, retrieving which module is associated with the

physical resource, the DU errors have been grouped in two

categories: AXI Interconnect-fault (AI-F) and domain-fault

(D-F). The AI-Fs occurs when the fault injection resulting in

DU error targets a resource of the AXI Interconnect Module.

D-F happens when the bit-flip corrupts a memory cell

programming a resource not used by the AXI Interconnect

Module. Table VII reports the results of DU categorization.

TABLE VII. DATA UNAVAILABILITY ANALYSIS

Category

Implementation Flow

Standard TMR
Domains-

based

Non-domains-

based

AI-F [#] 13 11 54

D-F [#] 12 1 6

Total [#] 25 12 60

Fig. 7. The distribution of errors due to the unavailability of data.

The analysis we performed has brought out that the source of

data unavailability when IDF is applied is the AXI

Interconnect in about 90% of the experiment. Since the

normalized values of AI-F for non-domain- and domain-based

are comparable, it is likely the high number of DUs observed

in non-domain-based IDF design are due to random fault

injection produced a higher number of faults in the AXI

Interconnect module. However, it is interesting to notice how

in standard TMR, where AXI Interconnect is not isolated with

respect to the other modules, the contribution of the faults

injected in the AXI Interconnection to DU is much lower. It is

reasonable to suppose that errors not affecting AXI

Interconnect when isolation is not applied, more easily

propagate to AXI Interconnect producing DUs. This effect is

probably prevented when IDF is applied, making faults in the

AXI Interconnect module the main cause of DUs. The

obtained results are summarized in Fig. 7, where we identified

the number of errors due to AI-F and D-F in the three

configurations.

VII. CONCLUSIONS

This paper focuses on the effectiveness of IDF for

redundant designs implemented on programable systems on

a chip, proposing a set of design guidelines in the case of

complex systems unable to implement state-of-the-art IDF,

due to topological issues. The proposed domains-based IDF

has been proved capable of mitigating radiation-induced

faults for mid-to-high complex designs through different fault

injection campaigns. Moreover, it has shown an increase in

the effectiveness of TMR. In particular, Domains-based IDF

prevented all Silent Data Corruption errors and increased the

recoverable errors by about 33%. Future works perspectives

include the development of a placement algorithm to

automatize the floorplanning process following the domains-

based IDF design rules and the application of IDF to SoPC-

based computational clusters.

REFERENCES

[1] H. Asadi, et al., "Soft Error Susceptibility Analysis of SRAM-Based
FPGAs in High-Performance Information Systems," in IEEE
Transactions on Nuclear Science, vol. 54, no. 6, pp. 2714-2726, Dec.
2007.

[2] B. Du et al., "Radiation-induced Single Event Transient effects during
the reconfiguration process of SRAM-based FPGAs," in
Microelectronics Reliability, vol. 100-101, Sept. 2019.

[3] B. Du et al., "Ultrahigh energy heavy ion test beam on Xilinx Kintex-
7 SRAM-based FPGA," in IEEE Transactions on Nuclear Science, vol.
66, no. 7, pp. 1813-1819, July 2019.

0 50 100 150 200 250 300 350 400 450 500 550

Recoverable data corruption Detectable data corruption

Silent data corruption Unavailability

Occurrences [#]

Unconstrained

Non-domains-based

Domains-based

D
e

si
gn

 C
o

n
fi

gu
ra

ti
o

n
s

0 10 20 30 40 50 60 70

D
es

ig
n

 C
o

n
fi

gu
ra

ti
o

n
s

Occurrences [#]

AXI Interconnect-Fault Domain-Fault

Standard TMR

Non-domains-based

Domains-based

[4] R. C. Baumann, Landmarks in terrestrial single-event effects," Nuclear
and Space Radiation Effects Conference, San Francisco, USA, 2013.

[5] W. Wang, et al., "The research of FPGA reliability based on
redundancy methods", in Internation Conference on Computer Science
and Network Technology, Harbin, China, 2011, pp. 1608-1611.

[6] Z. Wang, et al., "The reliability and availability analysis of SEU
mitigation techniques in SRAM-based FPGAs" in European
Conference on Radiation and Its Effects on Components and Systems,
Brugge, Belgium, 2009, pp. 497-503.

[7] W. Lie and W. Feng-yan, "Dynamic Partial Reconfiguration in
FPGAs," in Third International Symposium on Intelligent Information
Technology Application, Nanchang, China, 2009, pp. 445-448.

[8] S. Azimi and L. Sterpone, "Digital Design Techniques for Dependable
High Performance Computing," 2020 IEEE International Test
Conference (ITC), Washington, DC, USA, 2020, pp. 1-10.

[9] L. Gantel, et al., "Module relocation in Heterogeneous Reconfigurable
Systems-on-Chip using the Xilinx Isolation Design Flow,"
in International Conference on Reconfigurable Computing and
FPGAs, Cancun, Mexico, 2012, pp. 1-6.

[10] J. Rettkowski, et al., "RePaBit: Automated generation of relocatable
partial bitstreams for Xilinx Zynq FPGAs," in International
Conference on ReConFigurable Computing and FPGAs (ReConFig),
Cancun, Mexico, 2016, pp. 1-8.

[11] K. Pham, et al., "IPRDF: An Isolated Partial Reconfiguration Design
Flow for Xilinx FPGAs," in IEEE International Symposium on
Embedded Multicore/Many-core Systems-on-Chip (MCSoC), Hanoi,
Vietnam, 2018, pp. 36-43.

[12] M. Wirthlin, "High-reliability FPGA-based systems: space, high-
energy physics, and beyond," in Proceedings of the IEEE, 2015.

[13] A. Sanchez, et al., "Evaluation of TMR effectiveness for soft error
mitigation in SHyLoC compression IP core implemented on Zynq SoC
under heavy ion radiation," in IEEE Internation Symposium on Defect
and Fault Tolerance in VLSI and Nanotechnology Systems, Noordwijk,
Netherlands, 2019.

[14] M. Ceschia et al., "Identification and classification of single-event
upsets in the configuration memory of SRAM-based FPGAs," in IEEE
Transactions on Nuclear Science, vol. 50, no. 6, pp. 2088-2094, Dec.
2003.

[15] Xilinx, "Vivado Isolation Verifier," Xilinx, 2020.

[16] L. Bozzoli, et al., "PyXEL: An Integrated Environment for the Analysis
of Fault Effects in SRAM-Based FPGA Routing," in International
Symposium on Rapid System Prototyping (RSP), Turin, Italy, 2018, pp.
70-75.

[17] Xilinx, "Soft Error Mitigation Controller v4.1 Product Guide," Xilinx,
2018.

[18] Xilinx, "AXI DMA v7.1 LogiCORE IP Product Guide," Xilinx Product
Specification, 2019.

[19] C. De Sio, et al., " On the analysis of radiation-induced failures in the
AXI interconnect module," in Microelectronics Reliability, pp. 243-
254, 2020.

[20] C. De Sio et al., “On the Evaluation of SEU Effects on AXI
Interconnect Within AP-SoCs,” in 2020 Architecture of Computing
Systems – ARCS, 2020.

