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Computational framework for real-time diagnostics and
prognostics of aircraft actuation systems
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Abstract

Prognostics and Health Management (PHM) are emerging approaches to product life

cycle that will maintain system safety and improve reliability, while reducing operating

and maintenance costs. This is particularly relevant for aerospace systems, where high

levels of integrity and high performances are required at the same time. We propose a

novel strategy for the nearly real-time Fault Detection and Identification (FDI) of a dy-

namical assembly, and for the estimation of Remaining Useful Life (RUL) of the system.

The availability of a timely estimate of the health status of the system will allow for an

informed adaptive planning of maintenance and a dynamical reconfiguration of the mis-

sion profile, reducing operating costs and improving reliability. This work addresses the

three phases of the prognostic flow – namely (1) signal acquisition, (2) Fault Detection

and Identification, and (3) Remaining Useful Life estimation – and introduces a com-

putationally efficient procedure suitable for real-time, on-board execution. To achieve

this goal, we propose to combine information from physical models of different fidelity

with machine learning techniques to obtain efficient representations (surrogate mod-

els) suitable for nearly real-time applications. Additionally, we propose an importance

sampling strategy and a novel approach to model damage propagation for dynamical

systems. The methodology is assessed for the FDI and RUL estimation of an aircraft

electromechanical actuator (EMA) for secondary flight controls. The results show that

the proposed method allows for a high precision in the evaluation of the system RUL,

while outperforming common model-based techniques in terms of computational time.
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Management (PHM), Aircraft Actuation systems, Multifidelity Modeling, Machine

Learning

1. Introduction

The steadily increasing complexity of aircraft systems results in large amount of

heterogeneous components to integrate. Each component is characterized by its own

set of failure modes, which can interact with those of the other components, increasing

the overall system failure rate and making the fault identification and isolation process5

difficult and time expensive. This can eventually lead to worsen the reliability and

availability characteristics of the vehicle. The traditional approach to system life-cycle

management is based on scheduling maintenance interventions a priori : components are

replaced at the end of their design life, regardless their actual health status [1, 2, 3].

This strategy leads to high maintenance costs and cannot guarantee that no failure will10

occur before the predicted end of life, for example as the result of an undetected man-

ufacturing defect; to reduce risk on safety-related equipment, critical components are

redounded [4, 5], increasing weight and further reducing basic reliability. Conversely,

latest approaches like Condition Based Maintenance (CBM) [6, 7, 8] and Integrated Ve-

hicle Health Management (IVHM) [9, 10, 11] aim to account for advances in Prognostics15

and Health Management (PHM) disciplines, in order to better manage the maintenance

schedule, reducing costs and increasing mission reliability [12, 13, 14, 15, 16]. PHM

relies on continuous monitoring of the actual health status of components, to adaptively

estimate the system Remaining Useful Life (RUL) [17, 18, 19, 20]. The benefits promised

by CBM and IVHM motivate the great interest in enabling next generation systems and20

vehicles to autonomously detect damages and faults at their early stage, and predict

the associated RUL during operations. This capability would allow to replace compo-

nents only when really needed, avoid disposing systems that are still healthy, and even

recalibrate systems operational envelope to guarantee a longer and safer system life.

Common approaches to PHM leverage either model-based strategies (i.e. relying on25

physics-based representations of the monitored system [21, 22, 23, 24, 25]) or data-driven

methods [26, 27, 28, 29]. A review of model-based condition monitoring strategies to en-

able system prognostics is provided by Tinga and Loendersloot [30]. In [31] a structured

residual between the system response and a digital twin is compared to a threshold in

order to detect faults of industrial equipment. In [32] faults are detected online with30

a data-driven algorithm, and later identified offline employing a model-based strategy.

Henry et al. [33] propose to compare attitude command and measurement of the inertial
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platform to determine failures in the attitude control system of a spacecraft. Huang et

al. [34] and Zhao et al. [35] provide reviews of data-driven approaches to prognostics

leveraging statistical methods and deep learning. In addition, Rengasamy et al. [36]35

discusses the use of deep learning schemes for planning of aircraft maintenance and

overhaul. In [37] an Extreme Learning Machine (ELM) is employed for fault detec-

tion of wind turbines, while in [38] feedforward networks are used for similarity-based

prognostics. Autoregressive integrated moving average (ARIMA) is applied to the RUL

prediction of milling machine cutting tools in [39]. Model-based techniques usually re-40

quire large computational resources, and cannot be executed in real-time by on-board

hardware. Data-driven methods, conversely, need large datasets for training, which are

usually not available from field. Although latest generation aircraft include widespread

sensor networks that monitor and record large amount of data, a suitable statistical

characterization of rare events is still difficult to obtain. As an example, few field data45

is available regarding the system-level effects of critical failure modes that have by design

a low probability to occur. In addition, thoroughly testing data-driven algorithms for

safety-critical applications can be a demanding task, since interpretability, explainability

and generalization of machine-learning results are still mostly open challenges.

This paper proposes a computational framework for a nearly real-time estimation of50

the Remaining Useful Life for dynamical assemblies from measurements available from

installed feedback or diagnostic sensors. Those can be of heterogeneous nature: for

example, current flowing inside an electric circuit, position and speed of an actuator,

pressure and temperature of hydraulic fluid at given locations of the system. A prelimi-

nary version of this framework was presented in [40]; starting from that work, we revised55

the implementation of the algorithm, refined the framework, and extended the discussion

of results and performances of the PHM strategy. The implementation is optimized to

better leverage the offline-online structure of the framework and achieve fast real-time

performances, while tracking the required computational effort. Additional extensive

parametric studies have been conducted to investigate the performances and support60

the algorithmic choices proposed in this paper. The methodology combines an optimal

signal compression strategy with reduced order modeling and machine learning tech-

niques; this allows to obtain a computationally efficient map from the measured signals

to the RUL, and to reduce the storage and processing power required for on-board, time

and resource-constrained computations. Our strategy learns surrogate models of the65

system offline: online, these surrogate models are employed to speed up the computa-

tional burden associated with the determination of the current system health condition
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and with the estimation of the RUL. Additionally, offline we determine the location of

a set of informative components of the monitored signals to store and process; those are

employed online to reduce the dimensionality of the problem.70

As an application of our methodology, we consider the case of actuators for aircraft

flight control systems (FCSs). FCSs are critical aircraft systems because a failure can

lead to the impossibility to control the vehicle, with catastrophic consequences. Hence,

health monitoring for FCSs has great potential to bring significant improvements in

terms of mission reliability, operating costs, aircraft performance, and eventually relax75

requirements on system redundancies. The problem is inherently challenging: the mod-

els of FCS equipment need to combine different disciplines, as mechanical, aerodynamic,

structural, hydraulic, and electrical/electronic subsystems operate together to achieve

the required performances. The number of possible failure modes is high, and so the

dimensionality of the FDI problem. Additionally, different faults may result in similar80

effects on the system behavior, or particular operating conditions may be misidentified

as faults. All these aspects make this application an interesting demonstration case for

the proposed strategy, as they highlight the shortcomings of current approaches.

In this manuscript, Section 2 introduces the general formulation of the problem,

Section 3 details the methodology we propose for the prognostic analysis, Section 485

presents the demonstration problem discussed in this paper and the associated physical

models, and Section 5 presents the results of our investigations.

Signal measurement

and storage

FDI

(system identification)

RUL estimation

Figure 1: Schematic representation of the ideal RUL estimation flow
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2. Prognostics and Health Management (PHM): problem formulation

The common prognostics flow includes three steps, namely signal measurement and

storage, Fault Detection and Identification (FDI) and estimation of Remaining Useful90

Life (RUL), as depicted in Figure 1. In the signal measurement and storage phase,

an output signal is measured from the system with a standard acquisition frequency.

The signal, sensitive to the system condition, is an indicator of the health status of the

components, and can be used to inform the subsequent FDI phase. In the FDI phase, the

system output is processed to identify the early signs of damage and wear. Eventually, in95

the RUL estimation phase, the identified health condition is used to inform an estimate

of the actual remaining useful life of the system.

In a traditional PHM process, the signal measurement and storage phase is the only

one performed in real-time. It consists in acquiring data y(k, t) from the available sensors

installed on the system. The acquisition frequency is usually fixed, and results from a100

compromise between hardware capabilities and retained information. The result of the

acquisition phase is a vector y(k), dependent on the health condition of the system k.

Large amounts of data can be easily produced in this phase, which can be cumbersome

to store and to deal with in the following phases of the PHM process: this motivates

why the FDI and RUL estimation tasks are usually performed offline. We address this105

issue aiming to compress the useful information in order to reduce the dimensionality

of the FDI problem.

The subsequent FDI phase estimates the current health condition of the monitored

system by processing the signals acquired and compressed in the previous step. Common

approaches to FDI rely on the use of models, reliable representations of the physical110

systems and emulators of their dynamic behavior: a system output signal, sensitive

to the damage condition, is measured and compared to the output signal computed

with a numerical model. In [41], a physics-based model of aircraft flight dynamics is

evaluated to compute the residual between the response of the physical system and

its digital twin; then a statistical anomaly detection algorithm analyzes this residual115

to identify faults of the aileron actuation. A similar approach is proposed in [42] to

determine anomalous behavior of the flight control actuator of a UAV; the strategy

analyzes the effects of the failure at aircraft level: as a result, incipient faults are not

detectable. In [43], a dynamical observer leveraging a Kalman Filter is employed for

the model-based condition monitoring of wind turbines. Hence, the FDI problem is a120

system identification problem whose solution (the current fault condition kc) is the one

that minimizes (ideally vanishes) the discrepancies between the measured signal y and

5

d013692
Highlight

d013692
Highlight

d013692
Highlight



the simulated one ymodel(k):

kc = arg min
k

(erry(y,ymodel(k)) (1)

where, in the most general case, the error function erry(y,ymodel(k) is a monotonically

increasing function of ‖y − ymodel(k)‖; the particular norm to be used may vary, and125

usually is chosen depending on the peculiar characteristics of the measured signals. If

a purely model-based technique is employed, the computation of ymodel(k) is usually

expensive. The need to evaluate the error function iteratively within an optimization

algorithm leads to computational times incompatible with real-time execution; addition-

ally, the definition of a proper error function may be challenging. Conversely, data-driven130

strategies are faster, but require large datasets for training, as highlighted by Booyse et

al. [44]. Such amounts of field data are often unavailable, especially during the design

and validation of equipment, since their collection can only be carried out with several

thousands of hours of operation of such equipment. The health condition k determined

with FDI is employed for the estimation of Remaining Useful Life.135

The RUL of a system is the remaining time until the system will no more be able

to meet its functional or performance requirements, that is, the time when the system

will not be able to perform its function either at all or within the design performance

parameters [45, 46]. This definition can be formalized as:

RUL = max(t)

s.t. φa(k(t)) = “healthy”
(2)

where φa(k) is an assessment function. φa(k) is a binary valued function assuming140

the possible values “healthy” or “faulty” that determines whether the fault vector k

corresponds to a healthy system or not (i.e. whether the system is still compliant to its

functional and performance requirements).

With the traditional approach to life cycle management, the system useful life is

computed a priori in the design phase, solely from the probabilistic combination of145

components failure rate. This strategy does not account for the real evolution of the

components health status, and then produces estimates affected by a very large uncer-

tainty interval [1, 2, 3, 4]. Popular approaches to RUL estimations aim at obtaining a

more precise estimate of the system life either by extrapolating the current fault propa-

gation rate [47], or by employing a model of damage growth until the damage condition150

reaches a threshold. In [48], a statistical approach combines a semi-markov model and

the Maximum Likelihood Estimation (MLE) method to infer a degradation model for

the equipment. Nascimento and Viana [49] discuss the use of recurrent neural networks
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merging physics-informed and data-driven knowledge to model the time evolution of

structural fatigue. Jacazio et al. [50, 51] propose to employ particle filtering to estimate155

the system RUL; in [52] particle filtering is combined with Canonical Variate Analysis

(CVA) and Exponentially Weighted Moving Average (EWMA) in order to determine the

RUL of rotating equipment. However, these methods often require a significant compu-

tational effort, or may be highly influenced by the effect of uncertainty in the estimation

of the fault condition. Additionally, the definition of a proper critical failure threshold160

may be difficult: usually individual thresholds are set for each considered failure mode,

not accounting for the combined effect of multiple faults. These can affect the system

performance in a different way than the linear superposition of the effects of individual

faults. As a result, a more general and comprehensive definition of a critical failure level

may be needed.165

Active research in PHM aims to enable early estimate the RUL, much in advance to

the actual failure event, in order to allocate time for the optimal planning of mainte-

nance strategies and for the logistics of fleet management. This motivates the interest

for advanced FDI procedures to detect incipient faults at their early stages, before the

system-level performances of the equipment start becoming significantly and adversely170

affected. To capture incipient faults, we specifically developed an importance sampling

strategy (Section 3.1) for the computation of the dataset needed for training the ma-

chine learning tools. The proposed technique is intended to get denser sampling for

small faults, where most useful information is expected. Nevertheless, the choice of

an adequate sampling procedure is problem dependent, and other sampling strategies175

are used in different prognostic applications, such as estimating the probability of rare

failures [53].

Both FDI and RUL estimation tasks imply the execution of a system emulator:

usually this model is associated with an expensive computational effort. Therefore,

most existing model-based [21, 22, 23] and data-driven [26, 54, 27] strategies are not180

suitable for real-time execution. Specifically, we wish to perform the FDI and RUL

estimation tasks on-board, which requires to meet the hardware resources limitations to

achieve a nearly real-time process. Therefore specific strategies are needed to achieve

such computational efficiency and to meet these constraints.

3. Methodology185

Our methodology proposes specific combinations of physics based knowledge and

machine learning techniques into an original computational framework. Our hybrid
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framework merges physics and data, and comprises efficient computational procedures

to cover all the three phases of the flow described in Figure 1 in real-time. Specifically,

offline we merge physics and data to compute surrogate models, which are then employed190

to speed up the online computations. Figure 2 provides schematic representation of our

hybrid framework for the entire prognostics flow.

For the first phase of signal acquisition and storage, we aim to reduce the data

required to store a system output signal y(k, t). A uniform standard acquisition sampling

with a suitable frequency produces a vector y(k) whose size is impractical for the storage195

and subsequent processing. For example, monitoring a single electromechanical actuator

may imply the acquisition of currents and voltages with frequencies in the order of

tenths of kilohertz, resulting in a datarate up to several MB/s. To address this issue,

offline we define an optimal signal compression in two steps: projection based model

reduction (Proper Orthogonal Decomposition) and unsupervised machine learning (Self-200

Organizing Maps) are combined to determine a set of informative components of y(k)

to store and process. Online, the compressed output ŷ(k) is a vector containing only the

selected informative components of y(k). To improve robustness against measurement

uncertainty, ŷ(k) is not fed directly to the subsequent phases. Online we adopt Gappy

POD to reconstruct POD coefficients from the compressed representation of the signal205

ŷ; those are used as input for fault estimation.

The second phase is the Fault Detection and Identification (FDI): this step aims

at identifying the health condition of the system, i.e. the specific fault vector k, with

limited computational resources. Offline, we use supervised machine learning (Multi-

Layer Perceptron) to compute a model for the fault condition k as a function of the210

coefficients α of the POD expansion. Online we use the surrogate model learned offline

to estimate the fault vector k from the reconstructed POD coefficients.

The third phase is the RUL estimation. Here, a simple model of damage propaga-

tion is evaluated to compute an estimate of the remaining life of the system. In this

phase, an estimator of the computationally expensive assessment function is needed as a215

stopping criterion for the damage propagation. To meet the constraints in terms of time

and available processing power, we propose the use of a binary classifier, specifically a

Support Vector Machine (SVM) to replace the complete assessment function. The SVM

is trained offline on the reference dataset and employed online to speed up the RUL

estimation.220

The strategy is schematically illustrated in Figure 2: Sections 3.2, 3.3 and 3.4 describe

the two steps signal compression, the FDI phase and the RUL estimation procedure,
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Figure 2: Schematic representation of our hybrid framework for the entire prognostics flow

respectively; Section 3.1 describes the collection of the reference dataset used to learn

the models (offline).

3.1. Importance sampling via particular scaled latin hypercube strategy225

Learning the surrogate models requires the collection of a training dataset representa-

tive of the system behavior under the expected operating conditions. It can be collected

according to a variety of sampling strategies, depending on the specific problem at hand.

For the application discussed in this paper we propose a particular importance sampling

method. The reference data can be collected from a variety of different sources including230

historical data, numerical simulations of the systems through evaluations of high fidelity

models, or experimental measurements. In this paper we use data from high-fidelity,

accurate models of the systems, considered as a ground-truth reference.

The data set in organized into the following quantities of interest, as also shown in

Figure 3:235

• Fault conditions matrix K: K = [k1,k2, ...,kns ]> is a ns-by-nk matrix con-

taining in its rows the ns fault combinations ki collected in the dataset. ki are the

nk-dimensional fault vectors that carry the information about the system health

condition. Each fault vector encodes in its elements a combination of progressive

damages of the system. The elements of the fault vectors are, in general, related240

to physical quantities of different nature, such as the friction coefficient between

two sliding surfaces of a mechanism, the mechanical play of a transmission, or the

resistance of an electric circuit; to avoid the effect of different scales and inhomo-
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Collection of reference dataset 

(High dimensional)

High fidelity models of system dynamics

(computationally expensive)

Importance sampling to capture early stage faults

Status SignalsFaults

Importance Sampling

OFFLINE - Learning models

Figure 3: Importance sampling of high fidelity data

geneous measurement units, we chose to normalize those quantities, in order to

bound the elements of ki between 0 and 1.245

• Measured signals matrix Y: Y = [y1,y2, ...,yns
] is a ne-by-ns matrix contain-

ing in its columns the output vectors y(ki) of the system. y(ki) are the output

signals of the system for each sampled fault combination ki, expressed in the form

of ne-dimensional vectors by capturing them at a fixed acquisition frequency.

• Assessment function matrix Φ: Φ = [φa,1, φa,2, ..., φa,ns ] is a 1-by-ns matrix250

containing the values of the assessment function corresponding to each fault com-

bination. φa,i = φa(ki) is the value of the assessment function for the fault vector

ki.

The particular sampling strategy for collecting the dataset is problem dependent.

The application presented in this paper requires to detect the early signs of a system255

damage with high accuracy in order to determine the Remaining Useful Life in advance

enough to plan corrective actions [55]. For this reason, the training dataset shall be

denser of health conditions close to the nominal one, that is, when either no faults

are present or faults are small and do not have a significant effect on the system per-

formances. In this context, we implemented a form of importance sampling strategy260

through a scaled latin hypercube. This technique is meant to increase the density of

sampling points near the nominal condition; this allows to collect more informative

samples to capture small and incipient faults.
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For example, the assessment function is expected to assign “healthy” labels to fault

conditions k near the nominal condition k0, and “faulty” labels to fault conditions far265

from the nominal one. Being the number of parameters large, a uniform distribution of

points in the domain of k would result in a small fraction of points near the nominal

condition (i.e. “healthy” fault combinations), and the surrogate assessment function

would be difficult to train. This sampling strategy is employed, in combination with

the physics-based models described in Section 4.2, to obtain the reference data of the270

matrices K, Y and Φ.

3.2. Signal Acquisition and Compression

The first obstacle that results in a computationally expensive process is the high

dimensionality of y. Any output signal measured from the system (i.e. currents and

voltages of an electrical machine, hydraulic pressures, accelerations etc.) with a uniform275

sampling is a vector composed by ne = ∆tfs elements, where fs is the acquisition

frequency and ∆t is the observation time. In most applications, to capture the required

amount of information, fs needs to be in the order of tenths of kilohertz and ne can

easily be in the order of several thousands. This requires large storage capabilities

and processing power for the subsequent Fault Detection and Identification phase. For280

instance, the use of common least squares methods for the subsequent FDI phase involves

the QR factorization of an ne-by-nk matrix, where nk is the number of fault parameters,

which computational cost (O(n3e)) makes the online/on-board execution impractical for

the large ne of common output signals y.

To overcome this problem, we use a particular strategy for the optimal selection of285

a small number of the sampling points to retain, store and process. A first approach

of this kind was introduced by Mainini and Willcox [56], where Proper Orthogonal

Decomposition and Self-Organizing Maps are combined for the optimal placement of

sensors for on-board assessment of structural capabilites. In this work a similar approach

is adopted to reduce the computational burden associated to the FDI task by reducing290

the problem dimensionality to nw � ne.

The process is shown schematically in Figure 4. The selection of the signal points to

process online is computed offline through a two-step procedure to learn a compression

map: it combines low order representations of high dimensional data (projection based

model reduction) and machine learning techniques (unsupervised machine learning) to295

identify the most informative instants of time of the measured signal to be stored for

the subsequent online Fault Detection and Identification.
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Reconstructed 
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ONLINE - Onboard PHM
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To Online Fault DetectionTo Offline Fault Detection

From Importance Sampling

OFFLINE - Learning models

Signal acquisition and compression

Figure 4: Flow chart of the signal compression strategy

3.2.1. Offline: Learn an informative compression map

We aim to determine an informative compression map for the signal y(k, t). Only

those points of the signal will be stored and processed online, reducing the required300

computational resources. The offline signal compression process takes as input a set of

measurements from the system. For this purpose, we use the fault conditions in K and

the associated output signals (snapshots) y assembled into the columns of the ne-by-ns

measurement matrix Y. Through the proposed two-steps offline compression strategy,

we determine the set of informative time-locations for the signal. The compression305

process is articulated into the two steps leveraging Proper Orthogonal Decomposition

(POD) and Self-Organizing Maps (SOMs) respectively.

Linear projection via Proper Orthogonal Decomposition (POD). The first step of com-

pression employs data gathered by simulations or experimental campaigns, with the pur-

pose of obtaining a reduced order representation of the system. This reduced model is310

computed through Proper Orthogonal Decomposition (POD). POD [57, 58, 59, 60, 61] is

a projection based reduced order modeling technique commonly employed to obtain low

dimensional representations of high dimensional quantities, through the identification of

underlying features (in the form of dominant modes). One of the most employed strat-

egy is the method of snapshots [62]. Data points are represented in the ne-dimensional315

space, and the dominant modes are the principal directions along which the points are

dispersed. The eigenvalues associated with each mode encode the variance of the data

set along that direction.
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We apply POD to the measurements matrix Y, in order to extract the modes as-

sociated with the largest eigenvalues, that explain most of the variance of the dataset.320

The POD modes constitute an orthonormal basis for the measured signals collected in Y

[63, 64]: it is optimal in the least squares sense and can be computed through Singular

Value Decomposition (SVD) of matrix Y to obtain a representation of each training

signal as:

y(k) = y0 +

ns∑
i=1

viαi(k) (3)

where y0 denotes a reference signal (in our application the system output in nominal325

conditions), ns is the number of snapshots, equivalent to the total number of POD

modes, vi are the POD modes and αi(k) are the coefficients of the POD expansion.

The eigenvalue λi associated to each mode vi is a measure of the dispersion of the high

dimensional training data along the direction defined by the mode itself: by considering

only the first nm modes of the POD expansion (equation 3), the fraction of retained330

information is given by the cumulative sum of the eigenvalues
∑nm

i=1 λi/
∑ns

i=1 λi. The

POD modes are ordered according to their associated eigenvalue, so we can truncate

the expansion to retain only the first nm � ns modes and to get a low dimensional

representation of the signal. If the cumulative sum of the retained eigenvalues is close

to 100%, the information lost in the compression is accordingly small; additionally, if335

the training set is statistically representative of the actual system behavior, the same

compression can be applied to signals not belonging to the training set.

Through POD we obtain a set of basis vectors vi and the associated coefficients αi

for each column of the training set Y. Bases and coefficients of the POD expansion are

employed both offline and online in the following steps of our procedure.340

Non-linear projection via Self-Organizing Map (SOM). In the second step of signal

compression we use the first nm POD basis vectors to find a compressed representation

of the basis vectors themselves through a Self-Organizing Map (SOM). This compressed

representation is identified in the form of a set of nw � ne highly informative time-

locations for storing and processing the signal.345

A Self-Organizing Map is a single layer neural network that can be used to identify

subsets of similar data through unsupervised competitive learning [65, 66, 67]. The nw

neurons of the SOM have representations in the input space as weight vectors whose

values are updated during the training. In this case the input space is the nm + 1

dimensional parameter space given by the time coordinate t and the nm modes of the350

POD (see Section 3.2.1). The training set for the SOM is given by the first nm modes
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of the POD and the corresponding time coordinate t, arranged in an ne-by-(nm + 1)

array T:

T = [t,v1, ...,vnm ] (4)

where t and vi are column vectors of ne elements. During training, all the points of the

training set are presented to the network multiple times (epochs) in a different order, to355

avoid a training bias. For each training point τ i (the i-th row of T), a winner neuron l

is the one whose weight vector wl is the closest to the input point:

l = arg min
j

(‖τ i −wj‖) (5)

where ‖ · ‖ denotes the L2 norm adopted as similarity metric for the study discussed in

this work. The neighbor neurons are activated according to a neighborhood function,

defined in the space of the topological representation of neurons, usually decreasing with360

the distance from the winner neuron and symmetric about the winner neuron [65, 67].

One of the key characteristics of SOMs is that during training, the weight vectors of

the neurons are updated to represent a non-linear projection of the high dimensional

training data (the first nm POD modes) onto a lower dimensional manifold, where

prototype vectors encode representative points of the POD modes [56, 68]. From this365

perspective, self-organizing maps can be seen as a nonlinear generalization of POD,

where the weight vectors of the neurons correspond to the POD eigenvectors, while the

radius of each cluster of data is related to the associated eigenvalue [69]. As a result,

once training is complete, the first components of all the nw weight vectors encode the

most informative time-locations t̂ for the signal y.370

3.2.2. Online

Online, these specific values in the time coordinate are used to store and process the

measured signals. Those signals are acquired in real-time by sensors installed on the

monitored equipment, with a constant frequency high enough to capture the information

related to the considered progressive failures. This results in a continuous data stream375

from the sensor to the acquisition electronics, with a rate than can reach the order of

megabytes per second for a single sensor. Data measured during the observation time

∆t could be stored in an ne dimensional vector y. However, leveraging the two steps

compression computed offline, we can store only the nw informative components. The

resulting compressed signal is a nw-by-1 vector ŷ(k), with nw � ne, that preserves the380

useful information regarding the faults affecting the system. As such, ŷ(k) is used as

informative input for the subsequent phase.
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In principle, the compressed signal ŷ(k) can be directly processed for the detections

and identification of the associated fault condition; however, ŷ(k) carries measurement

noise and a random error on the signal would directly affect the identification of faults385

(FDI). To mitigate the effect of measurement noise, we propose to compute the POD

coefficients α(k) from the compressed signal ŷ(k) via Gappy POD and move the FDI

task onto the reduced space identified by the POD in Equation 3.

Gappy POD is a procedure derived from Proper Orthogonal Decomposition and

is commonly used for the recovery of incomplete data [70, 71, 72, 73]. Given ŷ, the390

reconstructed signal can be obtained as a linear superposition of the first nm POD

modes computed offline (Equation (3), Section 3.2.1). The expansion coefficients αj(k)

are computed to minimize the squared error between the known points of the compressed

signal ŷ and its reconstruction in the nw informative elements.

An approximation of the uncompressed signal could be recovered as the linear com-395

bination of the first nm modes weighted by the coefficients α, as per Equation (3).

However, for the purpose of this work, we are not interested in the reconstruction of

the original signal, but exclusively in recovering the POD coefficients α(k). These are

employed in the next step to identify an estimate of the fault condition k, as they encode

the physical information of the system health in a compressed representation, easier to400

be dealt with by the FDI process.

3.3. Fault Detection and Identification (FDI)

The Fault Detection and Identification (FDI) phase of our strategy aims at identify-

ing the health condition of the system (the specific fault vector k) from the information

of the compressed signal ŷ. This task is a parameter identification problem and is405

formulated as an optimization problem (Equation 1). However, the use of common

gradient-based or meta-heuristic optimization algorithms for parameter identification

requires the iterative evaluation of system emulators that are frequently expensive. The

accuracy level required for a reliable identification of the fault condition demands for

the evaluation of models of the dynamical system that are usually too computationally410

expensive to evaluate online [74, 75].

To meet the efficiency requirements of time constrained online evaluations, we em-

ploy feedforward Neural Networks to estimate the fault vector k from the compressed

representation provided by the reconstructed POD coefficients α. Specifically, a Multi-

Layer Perceptron (MLP) maps the POD coefficients to the fault vector. As shown in415

Figure 5, The FDI task is split into an offline phase, in which the Neural Network model
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Figure 5: Flow chart of the Fault Detection and Identification process

is trained, and an online phase, in which it is evaluated to estimate k.

3.3.1. Offline: Learn a model for fault identification from reduced representations of the

signal

In order to estimate the fault vector k within a computational time suitable for real-420

time evaluation, we train offline a neural network to obtain a surrogate model for the

fault condition k from the low dimensional representations of the measurement provided

by α(k).

The specific implementation of Multi-Layer Perceptron (MLP) adopted in this paper

is characterized by a standard feedforward architecture, with a single hidden layer; more425

complex machine learning strategies may be tested in future works. The network receives

in input the POD coefficients α(k) and returns the fault vector k. The hidden layer has

nh neurons with sigmoid activation function, while the output layer has nk neurons with

a linear saturated activation function. The specific choices for the activation functions

reflect the physical characteristics of the input and output variables of the problem.430

hidden layer output layer

Figure 6: Architecture of the two layer perceptron employed for the FDI task. Wh are the

weights of the hidden layer neurons, Wo are those of the output layer
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The saturation is introduced to account for the bounds of the output fault vector

whose components are bounded between 0 and 1, as defined for our application (Section

4.2). Figure 6 shows the complete network architecture. The weights and biases of each

neuron are determined during training, in order to tune the network to approximate

the expected output for a training data set. The training dataset is given by the input-435

output pairs (αi,ki), including the fault vectors k collected with the sampling strategy

detailed in Section 3.1 and the associated POD coefficients computed as per procedure

described in Section 3.2.1.

During training, a Levenberg-Marquardt backpropagation algorithm [76, 77] updates

the weight and bias variables to minimize a performance function, defined as the mean440

squared error between the expected and actual output of the network for the training

set. The training is stopped when either the maximum number of epochs is reached or

the performance gradient decreases below a threshold. Once training is complete, we

obtain a model to map from α to k using the ns training signals.

3.3.2. Online: Estimation of the fault condition445

The input of this phase are the POD coefficients α estimated via Gappy POD, as

per Section 3.2.2. Those are fed to the MLP model learned offline, in order to estimate

the faults k. This approach is preferred over the straight adoption of a neural network

over the full dimensional dataset because the compression allows to significantly reduce

the computational cost, both in training and in evaluation of the MLP [78]. The output450

of the FDI process is an estimate of the fault vector k, to be employed in the subsequent

RUL estimation.

3.4. Estimate the Remaining Useful Life (RUL)

The estimation of the Remaining Useful life is the last phase of the PHM process.

We aim to complete it onboard, given the fault condition k estimated through the FDI455

procedure discussed in Section 3.3.

In this paper we propose a strategy for RUL estimation relying on a damage tolerant

approach to system design similar to that adopted for the estimation of fatigue life

in aircraft structures. Leveraging the definition introduced by Equation (2), the heath

state k detected at the mesurement time t0 = 0 is used as an initial value to compute the460

evolution of the health condition through a specific model for damage propagation. The

damage propagation model is in the form of an Ordinary Differential Equation (ODE)

whose evaluation provides the rate of damage growth as a function of the current system

health and the operating and environmental conditions. An assessment function φa(k)
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Figure 7: Flow chart of the RUL estimation process

is employed as a stopping criterion for the integration of the ODE model: according465

to the definition of Equation (2), it evaluates the system performances for each value

assumed in time by the fault vector, to determine whether that specific fault vector is

compatible with the system operation. When a faulty system is detected, the integration

is stopped and the last time step is assumed as the system RUL.

The damage propagation model in the form of ODE may not be computationally470

expensive since a limited number of factors can be accounted for in the estimation of fault

propagation rate (heat dissipation, vibrations, degradation of surfaces). Conversely,

the evaluation of the assessment function φa(k) usually implies multiple executions

of the models of system dynamics, which are expensive and unsuited for nearly real-

time applications. To address this limitations we use supervised learning techniques475

(specifically Support Vector Machines, SVMs), which are trained offline on reference

data to obtain surrogates of the assessment function to employ online. The online-

offline structure of the proposed RUL prediction process is represented in Figure 7.

3.4.1. Offline: Learning a model for the assessment of the health status

The assessment function φa(k) is essentially a binary classifier: it analyzes the be-480

havior of the system in presence of the fault combination k and determines whether

in this condition the functional and performance requirements are met. This process

usually involves the resolution of a dynamical model of the system and requires a high

computational effort. To meet the time constraints for on-board estimation, we adopt a

standard implementation of a Support Vector Machine (SVM) as a binary classifier and485
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a surrogate for the assessment function φa(k) to run online.

A Support Vector Machine [79, 80, 81, 82] is a machine learning paradigm commonly

used for data classification and regression. During its training process, the SVM iden-

tifies an optimal linear boundary to separe the two classes of the input data points. In

our application, as the classes are not linearly separable, a polynomial kernel function is490

used to mapthe input points to a transformed predictor space where a linear boundary

can be identified.

After training, new input points are classified according to the sign of a score function

that quantifies the distance of the input from the boundary. The sign of the score

function constitutes our surrogate for the assessment function φa(k), suitable to run495

online and used for the RUL estimation process.

3.4.2. Online

The SVM trained offline is employed as a surrogate assessment function to speed up

the real-time computations involved in RUL estimation.

The fault propagation rate can usually be described by an Ordinary Differential500

Equations (ODE) model, accounting, in the most general case, for the current health

condition of the system, the environmental and operating conditions, and the expected

mission profile. The evolution of the system health status is computed through the

numerical integration of this ODE model. The initial condition is set as the fault vector

k estimated in the previous FDI phase. At each integration time step ti the surrogate505

assessment function φ̃a(k) determines whether the current fault vector k(ti) corresponds

to a healthy system or not. Since this has to be evaluated iteratively, the use of the full

model-based assessment function φa(k) would result in long computational times, not

suitable for real-time evaluation. When a faulty condition is detected by the (surrogate)

assessment function, the integration is stopped. At this point we can assume:510

RUL = t (6)

where t is the current integration time. That is, the Remaining Useful Life of the

system is assumed to be equal to the timestep when the system transitioned from a

healthy condition to a faulty one.

4. Diagnostics and Prognostics of Aircraft Actuation Systems

We develop and demonstrate our methodology for the real-time prediction of Re-515

maining Useful Life for aircraft actuators. Actuation systems involve the interaction of
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several, heterogeneous engineering disciplines, such as electronics and software, electri-

cal machines, mechanical systems, hydraulics, structures, thermal dissipation problems,

fluid dynamics, vibrations, and tribology. Additionally, damage propagation may be af-

fected by operating conditions that are not completely predictable, as opposed to similar520

actuation devices employed for static applications, such as for industrial automation. As

a result, faults affecting such systems have effects on performances that are difficult to

predict, and the associated detailed models are computationally expensive.

Computational methodologies intended to address the open challenges of diagnostic

and prognostics for aircraft actuators are of critical interest for mission reliability and525

cost effectiveness of the whole fleets. Failures in such subsystems can lead to increased

down time of the vehicle and may require risk mitigation, since most of these devices

are safety critical.

Similar actuation technologies are employed in different fields of engineering, sharing

the same open challenges regarding health monitoring and management. As an example,530

the failure of an actuator on a production line can require the shutdown of the whole

production line for repair, with significant income losses. Given the multidisciplinary

nature of the considered application, computational techniques developed to address the

prognostic analysis of servo actuators can be extended to deal with health monitoring

of similar components not necessarily within the domain of actuation systems. Specif-535

ically, any dynamical system involving power electronics, electrical machines, sensors,

or mechanical and hydraulic power transmission, can be a potential application of the

proposed health monitoring strategy.

4.1. Problem Setup

The particular application addressed in this paper is the real-time estimation of540

Remaining Useful Life for an Electromechanical Actuator (EMA) for aircraft Flight

Control Systems from on-board measurement of the motor current. EMAs [83, 84, 85, 86]

exploit an electric motor coupled to a mechanical transmission to convert power from

the aircraft electric system into mechanical power to move the flight control system

aerodynamic surfaces. Those actuation systems are commonly employed in small scale545

UAVs and for secondary flight controls of larger manned aircraft.

The use of EMAs in aircraft systems is gradually spreading as they promise to achieve

significant reductions in operating costs, through weight and fuel savings, and simpli-

fication of maintenance interventions [87, 88, 89, 90]. On the other hand, the inherent

nature of some EMA failure modes (such as jamming of the mechanical transmission)550
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Figure 8: Architecture of the Electromechanical Actuator

holds them back from safety critical applications: in this context, PHM techniques would

increase the safety of operations and permit to exploit the full potential of all-electric

system architectures[91, 92, 93].

The block diagram of Figure 8 shows the architecture of the considered EMA. This

includes a BrushLess Direct Current (BLDC) electric motor along with its power and555

control electronics, a transmission to increase the torque for the user, and a Linear

Variable Differential Transformer (LVDT) sensor to close the position feedback loop.

For this study, we consider the effects of five different failure modes, chosen among

the most common for EMAs [94, 95, 96] and characterized by a slow propagation rate, to

allow an effective estimation of the Remaining Useful Life. Those are namely variations560

in dry friction (k1) and backlash (k2), partial short circuit of each of the three stator

phases (k3,4,5), rotor static eccentricity (k6,7) and controller proportional gain drift (k8);

this results in a fault vector k = [k1, k2, k3, k4, k5, k6, k7, k8] of nk = 8 elements. The

complete definition of the fault vector k is illustrated in Table 1. We chose the stator

envelope current as the informative variable y to monitor for the prognostic analysis.565

The reason for this choice is twofold: it is highly sensitive to a number of fault modes and

can be easily measured in a physical system, or is already measured with the purpose

of closing a current feedback loop.

Table 1: Definition of the fault vector k

fault parameter fault mode lower bound (ki = 0) upper bound (ki = 1)

k1 dry friction nominal friction 300% of nominal friction

k2 backlash nominal backlash 100 times nominal backlash

k3 phase A short circuit no short circuit full short circuit

k4 phase B short circuit no short circuit full short circuit

k5 phase C short circuit no short circuit full short circuit

k6 rotor eccentricity no eccentricity eccentricity equal to air gap width

k7 eccentricity phase −180o 180o

k8 proportional gain drift 50% of nominal gain 150% of nominal gain
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4.2. Physical models of system dynamics

Two models of the actuator with different fidelity are employed: a High Fidelity570

(HF) model (Section 4.2.1) is used only offline as the source of reference data: for the

high accuracy of the model this dataset can be used as a good emulator of ground

truth reference data [97]. A Low Fidelity (LF) model (Section 4.2.2) is used within the

assessment function to determine the frequency response of the actuator and compare

it with its requirements. The accuracy of the LF model is considered suitable for the575

sake of this task; the computational cost of the HF model would be impractical for

the iterative evaluation required by the assessment function, even for offline execution.

Section 4.2.3 describes the model for the damage propagation rate, employed for the

RUL estimation process.

4.2.1. High Fidelity (HF) model580

The HF model is the accurate dynamical model of the EMA, simulating in detail

the physical behavior of the actuator subsystems and components. The model accounts

for the effects of Pulse Width Modulation (PWM) three-phase current control logic of

the motor power electronics, and includes a complete lumped parameters model of the

electromagnetic coupling between stator and rotor. This HF model is employed as a585

simulated test bench, to compute the reference data in replacement of a physical system.

The architecture of the model is shown in the block diagram of Figure 9. The Ac-

tuator Control Electronics (ACE) block compares the commanded and actual positions
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Figure 9: Detailed block diagram of the High Fidelity Model
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to compute a reference current signal Iref for the motor. The BLDC Power Electron-

ics subsystem simulates the three-phase inverter used to power the BLDC motor. It590

applies the needed voltages (VA, VB and VC for the three motor phases, respectively)

on the motor windings to produce the currents IA, IB and IC , managing the phase

commutation according to the ACE and to the rotor position θm. The BLDC Elec-

tromagnetic model contains the rotor-stator magnetic coupling model, to compute the

counter-electromotive force, and the motor torque Tm. The motor-transmission dynam-595

ical model is a nonlinear second-order model of the actuator mechanics; it computes the

angular positions θm and θu of motor and user respectively, accounting for backlash, dry

friction and mechanical endstops. The signal acquisition block computes the envelope

IHF of the three phase currents, low-pass filtered to suppress high frequency noise: the

resulting output signal y is employed for the PHM analysis.600

The HF model is implemented in the Matlab-Simulink simulation environment. Its

accuracy comes at the expense of a relatively high computational effort. The simulation

of a reference 0.5 seconds test signal takes about one minute on a common laptop PC,

making this model unsuitable for real-time applications.

4.2.2. Low Fidelity (LF) model605

The LF model is a simplified dynamical representation of the same EMA, with

complex subsystems represented by simpler blocks. This model is used iteratively to

compute the assessment function φa(k) (see Sections 3.4 and 4.2.3).

The block diagram of the model is shown in Figure 10. The most computationally

expensive sections of the HF model are the three-phase inverter and the computation of610

the magnetic flux across the air gap. Those subsystems are differently handled in the

LF model, replaced by a first order DC model whose governing equation directly relates

the motor current Im, voltage Vm and torque Tm through the back-Electromotive Force

(back-EMF) coefficient κv:

PID 

controller +
-

+
-

Back-EMF

Motor-User 

dynamics

(2° order

model)

Back-emf model

Commanded

position 

Load

Signal

filter

Figure 10: Block Diagram of the Low Fidelity Model
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RIm + Lİm = Vm − κvω (7)

Tm = κvIm (8)

where R and L are the stator resistance and inductance, and ω is the motor angular615

speed. This simplified model does not allow accounting directly for the electric faults of

partial short circuit and rotor eccentricity. This paper follows the approach proposed by

Berri et al. [97], evaluating the electrical faults through modulating functions applied

to the back-EMF computation.

The computational time needed for the execution of the LF model is about two620

orders of magnitude lower than that of the HF model. The average root mean square

discrepancy between the HF and LF model is in the order of 1%.

4.2.3. Damage propagation model

The model of damage propagation is an ODE based model assuming that each fault

grows linearly with the others. It is expressed as:625

k̇(t) = F∆k(t) + ε (9)

where k̇ denotes the fault growth rate, ∆k(t) = k(t) − k0, k0 is the fault vector in

nominal conditions, ε is an independent identically distributed normal noise, and F is

a square matrix whose Fij element expresses the influence of the j-th fault parameter

on the growth rate of the i-th fault parameter. The matrix F depends on the physics of

the system, and can be identified from field data. The integration is stopped when the630

assessment function φa(k) indicates that the fault condition k achieves damage levels

that jeopardize the system performance. The assessment function calls the LF model

iteratively with a set of input frequencies to compute the system Bode diagram (it would

be very impractical to use the HF model, even for offline computations). Then, the phase

margin, gain margin and cutoff frequency are compared to the thresholds imposed by635

performance requirements to determine whether the actuator is working correctly or

not. The computational time of the assessment function on a common laptop PC is

in the order of 10 seconds: despite the use of the LF model, the computational cost is

not compatible with real-time RUL estimation; this motivates the need of developing

a surrogate model for the assessment function to handle the task efficiently (Section640

3.4.1).
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5. Results and Discussion

This section discusses the results obtained with the application of the offline and

online phases of the PHM methodology to the specific problem considered in this paper.

A training set is collected from data computed with the physics-based models of Section645

4.2. Specifically, a set of ns = 10000 fault combinations is computed with the importance

sampling strategy described in Section 3.1, to obtain the matrix K. Throughout the

computational framework, 70% of this dataset is employed to train the algorithms,

while 30% is used for testing and evaluation; the in-training test allows to mitigate the

risk of overfitting. In our application, k7 is usually excluded by the distribution rescaling650

process. This parameter encodes the phase of the rotor static eccentricity with respect to

the stator windings; then, its probability distribution is necessarily uniform, and should

not be modified. The HF model of the actuator (Section 4.2.1) is evaluated for each fault

combination; a test command is employed, consisting in a linear chirp characterized by

a 0.5s duration, 5 · 10−3rad amplitude, 0Hz start frequency and 15Hz end frequency.655

The output signals y(t,k) are acquired with a constant frequency of 20kHz (resulting

in ne = 10001), necessary to capture the information required by the FDI, and then

assembled into the columns of the measurement matrix Y. The assessment function

described in Section 4.2.3 provided the “healthy” or “faulty” labels associated for each

fault combination, to be stored into the matrix Φ. Two additional validation sets, not660

used in the offline training of the algorithms, are assembled to assess the performance of

the proposed strategy. A first validation set is computed to assess the offline training of

surrogate models and the online compression and FDI (Section 5.1). This includes 500

fault combinations, sampled as per Section 3.1, and the associated signals and values

of the assessment function. A second validation set is employed to assess the online665

RUL estimation procedure (Section 5.2). This dataset includes 100 simulated run-to-

failures, each with the record of fault combinations, the corresponding HF signals and

assessment function values, and the RUL (with the associated uncertainty) computed

through the damage propagation model described in Section 4.2.3. The validation of the

online procedure requires the initial faults to be small (i.e. near the nominal condition);670

otherwise, the system would be already faulty, its remaining Useful Life would be null,

and the real time RUL estimation could not be properly tested. Therefore, this second

test set is sampled with the procedure of Section 3.1 on a restricted domain in k, to

include mostly “healthy” conditions.

The following sections describe the application of our methodology to the problem675

of RUL estimation for aerospace EMAs, described in Section 4. In particular, Section
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Figure 11: Placement of 30 sampling points over the first POD mode

5.1 shows the offline learning of surrogate representations of the models that describe

the physics of the considered problem; Section 5.2 discusses the results of the online

procedure. All computations were performed on a desktop PC with a i5 3330 quad-core

processor @3.00GHz and 8GB of memory, running Windows 10 and Matlab R2016a680

5.1. Offline: learning models for efficient surrogate representations

The following paragraphs discuss the application of the offline procedure to the

specific problem addressed in this work: the results of the strategy for determining the

optimal time coordinates to store and compress the measured signal, derived through

the procedure described in Section 3.2; the performance of the model that maps the685

fault vector k(α) as a function of the POD coefficients, derived according to Section

3.3.1; the outcome of the surrogate model for the assessment function φa(k), derived as

per Section 3.4.1.

Two-steps data compression. The matrix Y of of the training dataset is employed to

learn the informative compression map described in Section 3.2. Y is used to compute690

the POD expansion in the form of Equation (3) whose first nm modes are retained and

used for (i) optimal points selection for signal compression (determined offline) and (ii)

POD coefficient reconstruction via gappy POD (to run online).

For the offline identification of the most informative signal points we use the two

steps procedure of Section 3.2 that allows us to compute a set of nw = 30 points. Those695

are optimally placed to capture the information of the first nm POD modes. In this

paper, the number of points is chosen to retain sufficient information for the FDI on

the base of a previous investigation presented in [75]. Figure 11 shows an example of

placement of the sampling points for nm = 1: the points are not equally spaced in time,

but rather tend to be placed by the algorithm in the most significant points to capture700

the shape of the mode.
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Figure 12: Error in fault identification (top), computational time in evaluation (middle) and

in training (bottom) for variable number of neurons in the hidden layer.

Learning the model for k(α). For the FDI step, a Multi-Layer Perceptron with one

hidden layer is used to compute the estimated fault vector k from the coefficients α

reconstructed via Gappy POD. The training set for the neural network model is com-

posed by the POD coefficients computed in the previous step, and the matrix K. The705

choice of a suitable number of neurons for the network emerges from a tradeoff between

accuracy and computational time. A study was performed on the number of neurons,

by varying the neurons of the hidden layer from 5 to 100, while the number of neurons

of the output layer remains constant at nk = 8. Figure 12 shows the computational

time of the network in training and in evaluation, as well as the mean squared error in710

the fault identification plotted against the number of neurons in the hidden layer.

By increasing the number of neurons in the hidden layer, the accuracy initially

increases and the mean squared error decreases down to 5% for 20 neurons. Adding more

neurons does not produce significant benefits, neither on accuracy nor on computational

time in evaluation; conversely, the increased complexity of the model reflects in longer715

computational times for training. Therefore, we consider the network with 20 neurons

in the hidden layer as the most efficient candidate to perform the FDI for the addressed

application. The computational time required by Gappy POD for the estimation of

POD coefficients is at least one order of magnitude shorter than that required by the
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Figure 13: Performances of network architectures with two hidden layers

MLP in evaluation; so, the use of POD coefficients instead of the signal does not carry720

a significant penalty in computational time for real-time FDI. Figure 13 shows the

performances of deeper learning architectures for the same FDI problem. MLPs with

two hidden layers were considered, trained in the same conditions of the networks of

Figure 11. It can be observed that the higher number of hidden layers makes the

training more demanding and the networks are not able to converge on the considered725

problem.

The fault vector kestimated computed by the network is employed as initial condition

for the RUL estimation.

Learning the model for the assessment function. For the surrogate modeling of the

assessment function φa(k), we employ a polynomial kernel SVM, trained with the matrix730

K as the input and Φ as the target. A parametric study to determine suitable settings

for the SVM was discussed in [98]. The SVM is assessed over the 500 signals of the

validation set. Figure 14 illustrates the ROC curve of the classifier; for the employed

decision threshold, we observe a true positive rate of 96.75% and a false positive rate

of 1.33%. It is possible to observe a success rate of 98.2% for the SVM emulating the735

assessment function φa(k), as pointed out in Table 2). The average computational time

for the evaluation of the SVM classifier is in the order of 1ms, which allows to sensibly
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Figure 14: ROC curve of the SVM classifier
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Figure 15: Predicted Remaining Useful Life with estimated fault condition and SVM surrogate

assessment function

reduce the computational effort up to four orders of magnitude with respect to the

evaluation time required by the complete assessment function.

5.2. Online: Results for the entire real-time PHM information flow740

A final test assesses the whole real-time PHM flow, including the signal compression

and FDI strategy in combination with the RUL estimation method. The SVM based

Table 2: Performance of the SVM; test set composed of 500 fault combinations, of which 123

corresponding to a healthy actuator and 377 corresponding to a system failure

correctly detected 119 96,75%

correctly undetected 372 98,67%

missed detections 4 3,25%

false positives 5 1,33%

total correct 491 98,20%

total wrong 9 1,80%

F1-Score 0.9636
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RUL estimation is computed with the initial condition kestimated estimated through the

FDI algorithm described in Section 3.3; the results, shown in Figure 15, are compared

to the expected RUL (with the associated uncertainty interval) computed through the745

full damage propagation model. The global RUL estimate is affected by the errors

introduced by both the RUL estimation itself and the FDI; then, the uncertainty is

necessarily higher than that of the FDI algorithm alone (see Appendix 6), resulting

in a slightly greater dispersion. RUL values larger than 4000 hours are commonly

underestimated. In these cases, the initial fault parameters assume very small values,750

that are of the same order of magnitude of the uncertainty associated to the FDI process.

The identified fault condition is commonly worse than the actual one, which results

in estimating a faster fault propagation and a shorter RUL. Larger system faults can

be detected with higher relative accuracy and the dispersion associated with the RUL

estimate decreases. Therefore, our strategy achieves a higher accuracy when it is needed,755

that is when a failure is about to occur. When the Remaining Useful Life is long, there is

no stringent need to know its value with high precision because there is long time ahead

to plan the maintenance strategy at best, purchase spares and schedule replacements.

Additionally, in the first part of the system operational life, an underestimation of the

RUL is preferable to an overestimation, for obvious safety reasons, and does not trigger760

an unnecessary maintenance intervention, since the estimated time to failure is still long.

Figure 16 compares the uncertainty associated to the physics-based model for RUL

with the relative error in RUL estimation errRUL resulting from the RUL estimation

alone (starting from kactual) and in combination with the FDI (starting from kestimated).

We adopted a normalized absolute error as a performance metric; an asymmetric error765

definition would highlight the advantage of underestimating RUL, but would result in a
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Figure 16: Comparison between the uncertainty of the physics-based model for RUL evaluation

(left), the error of the real-time RUL estimation process (middle) and the error of the entire

PHM online information flow (right).
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less conservative evaluation:

errRUL =
|RULestimated −RULactual|

RULactual
(10)

and the uncertainty of the physics-based model is:

∆RUL =
|RUL95% −RUL5%|

RULactual
(11)

where RUL95% and RUL5% are the upper and lower bounds of the RUL with 90%

confidence. The error of the RUL estimation is the same order of magnitude of the770

uncertainty interval of the physics based model. The error associated with the whole

PHM process is still the same order of magnitude, but its distribution is more skewed to

the right compared to the error of the RUL estimation alone. This reflects in a higher

median error, confirming the underestimation of very long RULs that emerges from the

comparison from Figures 20 and 15.775

The absolute variance of the error is relatively high, being usually in the order of 20%

of RUL, and in some cases almost comparable to the RUL itself. This behavior is partly

due to the inherent uncertainty in the rate of damage propagation, which depends on

a multitude of uncontrollable and unpredictable variables, such as environmental con-

ditions and the particular time-history experienced during the system operational life.780

However, the error decreases as the damage grows, so the information about the system

life is provided with higher accuracy when needed more (when a maintenance interven-

tion needs to be planned). Additionally, this data driven strategy allows for a higher

accuracy than the traditional a priori estimate [1, 2, 4, 3], and adds virtually no cost for

the implementation, since no dedicated hardware is required. The computational time785

required online by the whole PHM process is in the order of milliseconds and allows the

FDI and RUL estimation to be performed in real-time. In contrast, traditional model

based approaches require computational times that range from minutes to tenths of

minutes, which would be completely unsuited for on-board applications. These strate-

gies [74, 99] imply solving numerically systems of ODEs with very small integration790

timesteps, and the indentification is performed over the full dimensional dataset with

empirical or semi-empirical optimization algorithms.

6. Concluding remarks

A comprehensive methodology for real-time fault detection and prognostics of dy-

namical assemblies has been proposed. Our methodological framework leverages a com-795

bination of projection-based model reduction and machine learning strategies to achieve

31

d013692
Highlight

d013692
Highlight

d013692
Highlight



reliable and timely estimates of the system useful life. The method has been developed

and assessed for the overall Prognostics and Health Management (PHM) process ap-

plied to an electromechanical actuator for aircraft flight control systems. In addition, a

simple model for estimating the fault propagation rate has been proposed, and a custom800

sampling technique has been employed to capture sufficient information from the system

with a limited number of samples, which resulted particularly effective for our specific

application.

The strategy permits to achieve an accuracy in FDI and RUL estimation that is

comparable to computationally-intensive physics-based methods; at the same time, it805

requires few online data storage and processing resources, allowing for a fast and reli-

able on-board, real-time execution: the online computational time for fault detection is

reduced by several orders of magnitude with respect to standard computationally ex-

pensive, physics-based methods. The availability of RUL estimate in real-time would

permit to efficiently inform adaptive maintenance planning, allowing for significant cost810

reduction with respect to the standard periodical inspections and replacements, based

on the analysis of the average failure rate of the components. The results show that

our strategy for the real-time estimate of Remaining Useful Life allows to achieve high

prediction accuracy when the monitored components are approaching the end of their

operative life: this permits a dynamic and informed scheduling of maintenance inter-815

ventions and an adaptive delivery of supplies and spares; additionally, the mission can

be dynamically reconfigured to avoid overstressing faulty subsystems. When the system

behaves nominally, our strategy tends to underestimate its useful life; however, this oc-

currence is safe and does not result in planning the unnecessary replacement of healthy

components, since both the actual and estimated RUL are long.820

Future developments include the assessment of alternative machine learning strate-

gies for the FDI and RUL estimation, a more exhaustive study on uncertainty propaga-

tion, and the experimental validation of the models and algorithms.

Appendix A: Individual validation of the signal acquisition, diagnostics, and

prognostics tasks825

This section presents the application of the online process to the considered problem.

Specifically, to assess the performance of the prognostic framework, first we test the

signal compression, the FDI phase, and the RUL estimation phase separately; then,

the RUL estimation is employed in combination with the FDI strategy to establish the

overall accuracy of the method (Section 5.2).830
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Figure 17: Signal reconstruction via Gappy POD with a variable number of retained modes nm

Signal acquisition and compression. The signal is compressed online by storing and

processing only the measures corresponding to the time coordinates determined offline

through the procedure described in Section 3.2. Online, Gappy POD is employed to de-

termine the coefficients α(k) from the stored signal. Figure 17 shows the reconstruction

of a compressed signal from the test set via Gappy POD, with an increasing number of835

POD modes. To assess the accuracy of the signal estimate, we evaluate the normalized

root mean squared error errα of the POD coefficients αgappy estimated with Gappy POD

with respect to the coefficients αfull computed using the full signal:

errα =

√
1
nm

nm∑
i=1

(αgappy
i − αfull

i )

max (αfull)−min (αfull)
(12)

Figure 18 shows the error computed for increasing size of the gappy matrix G, that

is, for increasing number of dominant components used for signal reconstruction through840

Gappy POD (according to Equation (3)).

For a number of modes larger than 10, it is already possible to identify the coefficients

of the POD modes with an error in the order of 1%, comparable to the discrepancy

yielding for the LF model with respect to the HF model (See Section 4.2). We choose

to employ the first 22 POD modes for the following steps, corresponding to about 97%845

of the snapshot information; as shown in Figure 18, for our application this number of

modes yields the minimum mean value of errα. The use of a larger number of modes

might increase the risk of including misleading information, affecting the accuracy of the

signal reconstruction via Gappy POD. Additionally, with more than 30 modes (i.e. more

modes than sampling points) the gappy matrix G becomes ill conditioned; the signal850
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Figure 19: FDI error on each fault parameter

reconstruction is strongly affected by numerical noise with an increase of computational

time and an error the same order of magnitude of the signal. A similar behavior has

been already observed in literature [100].

Fault Detection and Identification. This section describes the assessment of the online

performance of the two-layer perceptron for the FDI algorithm. Figure 19 shows the855

error on parameter identification highlighting the contribution of each component of the

fault vector. The average error for each variable |kestimated
i − kactuali | is at most in the

order of 1%, which is comparable to the discrepancy between the HF and LF model.

Then, our data driven FDI technique performs comparably to a more traditional model-

based technique, which commonly exploits an online optimization algorithm to match860

the HF and LF responses [74]. The FDI accuracy with respect to the individual fault

parameters depends on the particular application and on the sensitivity of the monitored

variable to the different fault modes. Figure 19 highlights how, for the considered

application, the FDI performs better in the identification of the dry friction fault (k1):

the envelope current (i.e. the analyzed output signal y) is highly sensitive to this failure865
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Figure 20: Expected Remaining Useful Life with physics-based assessment function and SVM,

assuming the FDI error to be null (i.e. starting from the actual fault condition).

mode, resulting in better accuracy. On the other hand, the rotor eccentricity (k6) is

identified with a higher error and greater dispersion. This failure mode results in high

frequency disturbances of the monitored signal, and the effect of information loss due to

the truncation of the POD expansion is worse. The computational time is in the order

of a few milliseconds, allows computations to be run onboard, and enables real-time870

fault detection.

Estimate the Remaining Useful Life. To assess the accuracy of the online RUL esti-

mation procedure alone, we test the performance of our online RUL step leaving out

the error contribution associated with the FDI step. To do so, we test the SVM based

algorithm using the reference fault vector kactual as initial condition, in place of the875

estimate computed in the FDI phase kestimated.

Figure 20 shows the upper and lower bound of the RUL (with 90% confidence) as

a function of the expected RUL. On the horizontal axis is reported the RUL computed

by the full model (i.e. the damage propagation model of Section 4.2.3 in combination

with the assessment function φa(k)) at 50% probability, which we assume to be the880

actual value. The red dashed line is the bisector of the first quadrant, and represents

an ideal RUL estimate (i.e. not affected by any error). The tolerance band represents

the uncertainty interval of the full model: its lower and upper bounds correspond to the

RUL computed by the full model respectively at 5% and 95% probability, respectively.

The blue crosses are the RUL values estimated with the SVM model from the actual885

initial condition; in most cases, the estimated values fall within the uncertainty interval

associated to the reference physics-based model.
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