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Extracting relevant and useful information from measurements is an issue of paramount 

importance and it can be considered as complementary to the process of data acquisition. This 

is a crucial point especially in the field of chemical measurements, where data sets can consist 

of hundreds or even thousands of variables so their interpretation can require long time. 

Chemometrics try to tackle this issue by applying mathematical and statistical tools to data 

coming from chemical, biological or medical analyses. Among possible methods, Principal 

Components Analysis (PCA) has found wide application in the I&M field thanks to its ability 

to identify patterns in acquired measurements and classify data in different groups. Possible 

applications span from chemicals detection [1] to concentration estimation of compounds in a 

given system [2]. Actually many studies demonstrated the possibility to use PCA to process 

different kind of data [3], in some cases coupling PCA to other tools such as artificial neural 

networks to improve the processing performance [4]. 

Many books addressed PCA in an exhaustive and complete way, so readers can refer to them 

in order to obtain a thorough discussion of this topic [5] [6]; aim of this article is rather to 

provide only a simple dissertation for a beginner in this field to show how powerful the PCA 

is. Specifically, detailed indications for the analysis of spectroscopic measurements are 

provided, as this kind of data is often left out in many reviews concerning PCA. Moreover, tips 

and instructions are given to let the reader write his/her own code and implement such data 

processing using the Python programming language not only for spectroscopic data, but more 

in general for any kind of data. 

 

PCA Basics 

Modern instrumentations allow researchers to collect huge amount of data in an easy and often 

automated way. Obviously, this is true also for the field of chemistry, where the possibility of 



performing fast and inexpensive analyses has generally moved the critical point in the design 

of experiments from phenomenon measurement to data interpretation.  

When more than one quantity is measured for each sample, it is possible to define this data set 

as multivariate, i.e. each measurement is composed of many variables; this is the case for 

example when measuring length, width, and weight of different objects. It is possible to 

describe multivariate measurements as a matrix composed of m rows, representing m analysed 

samples, and n columns, indicating each of the analysed variables. In chemistry, common 

examples for multivariate data sets are spectroscopic measurements, i.e. those analyses in which 

the interaction between the sample and an electromagnetic radiation is studied. Actually, 

techniques like Infra-Red spectroscopy or UV-Visible spectroscopy probe the sample using not 

just a single wavelength, but rather using a range of wavelengths in order to identify and study 

different chemical bonds. So, when dealing with spectroscopic measurements it is possible to 

talk about multivariate measurements, and each of the analysed wavelengths is a variable 

composing the acquired data set. 

In multivariate measurements there is real possibility to have correlation between different 

variables, so a great benefit can derive from removal of redundant information. Principal 

Components Analysis (PCA) is, in its simplest definition, a method to perform variables 

reduction in an acquired data set. The original data matrix is transposed into a new space having 

lower dimension but where the new variables constituting the model (named principal 

components) account for most of the variability contained in the original data set. In matrix 

notation, it is possible to describe this operation as follows: 

X=T∙PT+E (1) 

where X is the original data matrix (having dimension m x n), P is the loading matrix that is the 

eigenvectors representing the new space (with dimension n x k, where k is the number of 

variables in the PCA model usually much lower than n), T is the score matrix, composed of the 

eigenvalues derived from X matrix decomposition and having dimension m x k and eventually 

E is the residual matrix, sometimes referred to as error matrix, which contains the variance 

burden not explained by the PCA model. The eigenvectors and eigenvalues introduced in 

equation (1) can be obtained from the diagonalization of the covariance matrix calculated for 

the original data matrix X. This procedure can be carried out using any programming language 

allowing matrix calculation; in this paper, a hands-on example is provided using the free Python 

language. Actually, in the last decades this programming language has gained increasing 



consideration in the scientific world thanks to its easy syntax and to its numerous standard and 

external libraries. For example, PCA can be easily implemented using few lines of codes thanks 

to the open-source Scikit-learn library, which provides all necessary operations to perform 

needed calculations. Anyway, before moving to this step, first it is necessary to perform some 

preliminary processing to the acquired data matrix in order to obtain meaningful results from 

PCA. Actually, this chemometric technique is deeply influenced by measurement noise and by 

the signal magnitude, so these two factors should be minimized or made similar for all samples 

before computing the principal components of the PCA model. In the next section, these pre-

processing operations will be described in detail, presenting the example of spectroscopic 

measurements. 

Pre-processing 

Pre-processing operations can be divided in four steps: 1) interval selection, 2) baseline 

removal, 3) smoothing and 4) normalization.  

Step 1: Not all measurements carry useful information, so the first step is usually to identify the 

meaningful data. When dealing with spectroscopic measurements, often not the whole spectrum 

is worth attention, but only some ranges where characteristic peaks of the analyzed compounds 

are present. Because of this, generally the best choice is to limit the processed dataset to this 

part of the spectrum and to linearly interpolate it to generate a set number of data points. This 

way it is possible to avoid building a model influenced by not relevant spectral regions and all 

samples will be constituted by the same abscissa coordinates.  

Step 2: The baseline of the acquired spectrum is removed. Actually, it is not uncommon to have 

spectra characterized by an offset or by a sloping line due to instrument drift or side phenomena 

occurring when performing the measurement. One of the possibilities is to compute the baseline 

by means of symmetric least square smoothing, as described in [7]. This operation can be easily 

performed in Python taking advantage of the Scipy library, that allows the user to perform 

matrix operations and solve matrix expressions [8]. After computing the baseline, this 

background can be subtracted from the original spectrum.  

Step 3: The signal-to-noise ratio (SNR) can be improved by applying a smoothing filter to the 

original data. One of the most popular filter is the so-called Savitzky-Golay filter, which is 

based on local least-squares polynomial approximation [9]. It can be applied to the analyzed 

dataset using the savgol_filter function from Scipy library. Input parameters for this function 

are the window length and the polynomial order for the fitting curve; they should be carefully 



chosen in order to avoid any over-smoothing, that would lead to loss of information in the final 

data, as one of the side effects of any smoothing filter is to reduce peak height, with possible 

elimination of small peaks or shoulders. Because of this, input parameters for Savitzky-Golay 

filter should be tailored to each specific application, but a general rule of thumb often found in 

many publications is to use a window length of 15 points and a 2nd order polynomial.  

Step 4: The normalization can be carried out by means of the Standard Normal Variate 

Transformation, i.e. using the following expression for each measurement point:  

𝑦𝑆𝑁𝑉 =
𝑦−𝑦́

𝑠𝑡𝑑
 (2) 

where, 𝑦𝑆𝑁𝑉  is the variable value after transformation, 𝑦 is the original variable, 𝑦́ is the mean 

value in the original spectrum and std is the standard deviation [10]. In this way, all spectra 

composing the dataset will be mean-centered and scaled to unit variance. 

The effect of all pre-processing operations can be observed in Figure 1. The reported spectra 

are acquired analyzing copper sulphate and copper hydroxychloride crystals (respectively, on 

the left and on the right) using Raman spectroscopy. This spectroscopic technique probes the 

sample under investigation using a laser radiation having wavelength either in the visible or in 

the infra-red range. Vibrational modes at molecular level can cause inelastic scattering in the 

analyzed material, which would result in the emission of photons with different energies 

(Raman scattering). This signal is finally collected by a detector in order to compose the Raman 

spectrum of the sample. The great advantage of this technique is the possibility to identify 

specific compounds, because each bond in the compound generates its characteristic peaks, but 

at the same time spectra interpretation is often not straightforward, due to possible presence of 

a large number of peaks in the acquired spectrum. In the two examples shown in Figure 1, only 

wavelengths between 200 cm-1 and 1200 cm-1 are selected (step 1), as this range is the most 

important for inorganic compounds. Actually, even if additional peaks can be found in the 

region between 3000 cm-1 and 3500 cm-1 (see spectrum on the right in Figure 1) associated to 

the OH bond stretching, the first part of the spectrum is generally considered as the ‘fingerprint 

region’ for identification of minerals. After selection of the interval of interest, the large 

background signal due to the fluorescence emission is removed (step 2), Savitzky-Golay filter 

is applied to improve the signal-to-noise ratio (step 3) and Standard Normal Variate 

Transformation  is applied to normalize the spectra to unit variance (step 4). In this example, 

SNR (computed as the ratio between the highest peak and the baseline noise) improved of about 



7% in both spectra. Results of all pre-processing are shown at figure bottom, where the most 

important peaks are labelled indicating the bond they can be related to. 

 

Figure 1 On top: spectra acquired using Raman spectroscopy on  copper sulphate (antlerite 

Cu3(SO4)(OH)4, - on the left) and on  copper hydroxychloride (clinoatacamite Cu2(OH)3Cl -, 

on the right). At the bottom: the same spectra after applying the four-step pre-processing. 

 

Principal Components computation 

After the pre-processing, it is possible to build the PCA model and compute the principal 

components. As mentioned above, this can be readily done using the Scikit-learn class 

sklearn.decomposition.PCA [11], that as input parameter allows the user to choose the number 

of components to build the model.  

In order to show the capabilities of the PCA for spectra processing, hereinafter a practical 

example is provided. Fourteen Raman spectra of different copper sulphates (namely antlerite, 

brochantite, chalcanthite, langite and orthoserpierite) are processed to show the possibility of 

easily discriminating among spectra that, at a first glance, could look very similar. All spectra 

have been extracted from the RRuff database, an open access library that provides a unique tool 

for researchers interested in mineralogy and materials science [12], so the reader can download 

them to carry out the processing independently and then use this code to interpret his/her own 

data. 

In Python environment, let the initial fourteen spectra be in an array-like object (named 

all_data), in which the spectra are stored after performing the pre-processing as previously 

described. It is possible to apply dimensionality reduction of this dataset, that has initial 

dimension of 14 x 1000, as follows: 



from sklearn.decomposition import PCA as sklearnPCA 

k=3 

model_pca = sklearnPCA(n_components= k) 

model_pca.fit(all_data) 

eigenvalues = model_pca.transform(all_data) 

First the number of components for the model is chosen, here k; then the model is fitted with 

the original dataset (all_data) and eventually the original data (all_data) is projected on the 

principal components just computed. This way it is possible to calculate the final eigenvalues  

(with dimensions m x k). The choice of the components’ number in the first instruction does not 

affect the subsequent computation and the eigenvectors will not be modified by the number of 

considered components. However, it is a critical point because it affects the total variance 

explained by the model: using a low number of components could create a model that is not 

able to correctly fit the acquired data, leading to not reliable results. 

It is possible to start analyzing the obtained result computing the per cent cumulative explained 

variance for the considered components: 

cev = np.cumsum(model_pca.explained_variance_ratio_)*100 

As hinted previously, choosing the correct number of components for the model is not trivial. 

First of all, it is necessary to build a model that captures a sufficiently high fraction of the initial 

variance, otherwise it would be not representative of the acquired data set; a common advice is 

to reach at least 70% or even 80% of the initial variance. Another important rule of thumb is to 

add components only if they have an explained variance of at least 4% or 5%, to avoid fitting 

noise instead of spectra features.  

In the described example, the trend for cumulative explained variance is shown in Figure 2. In 

this case, the best choice would be probably to use the first three components in order to avoid 

any over-fitting and also allow a prompt visual representation of the data. As can be seen from 

the plot, the first three components already account for almost 90% of the initial variance, so 

the fourth and subsequent, capturing individually less than 5% of the variance, can be omitted. 

At this point it is possible to visualize the eigenvectors that, dealing with spectroscopic data, 

show the main features present in the spectra:  

eigenvectors = model_pca.components_ 



It is possible to use the loadings in order to check which features (i.e. peaks) the explained 

variance is representing and thus reach a more clear results interpretation. Actually, the original 

spectrum can be expressed as a linear combination of eigenvectors and eigenvalues, according 

to the following expression, equivalent to (1): 

X = t1p1
T + t2p2

T + … + tkpk
T + E  (3) 

As it is not possible to have negative peaks in Raman spectroscopy, features in negative domain 

will correspond to negative eigenvalues or they will be compensated by another component so 

as to obtain positive values in the linear combination (3). 

As an example, in Figure 2 it is possible to see that the first two components are characterized 

by a sharp peak before 1000 cm-1, which is characteristic of sulphates, slightly shifted 

depending on the specific mineral. Immediately close to it and also in other regions of the 

spectrum there are minimum points, that thus can be explained looking at the corresponding 

eigenvalues. 

 

Figure 2 On left: cumulative explained variance as a function of the components number in the 

PCA model. Each marker is labelled with the per cent variance captured by the corresponding 

PC. On the right: loadings associated to the first three components in the PCA model.  

 

The effect of the addition of an increasing number of components can be observed in Figure 3. 

The figure shows how the model progressively approximates the acquired spectrum thanks to 

the use of a higher number of components, until reaching a satisfactory result with 3 PC. 

Specifically, the first two components fit the main features in the high-wavenumber region, 

while the third one is able to fit the peaks in the part of the spectrum below 600 cm -1. 



 

Figure 3 Reconstruction of two spectra (R060090 on the left and R100199 on the right) using 

an increasing number of PCs. Original spectrum is represented in black, colored lines are used 

for the model; it is possible to see how the addition of PCs improves the goodness of fit. Samples 

names stand for the spectra Rruff ID. 

 

After the number of components has been chosen, it is possible to move to the main outcome 

of the PCA model, that is the clustering of the different samples in the so-called ‘score’ plot.   

Score charts, also named ‘biplots’, show the eigenvalues of the different samples (two at the 

time), so spectra that appear close in these plots are similar to each other. In the presented 

example (shown in Figure 4), it is possible to see that the measurements group in five clusters, 

corresponding to the five analyzed copper sulphates (in order to make it more evident, different 

compounds were labelled with different colors). As can be seen, langite and brochantite have 

similar positive PC1 values, but are discriminated by PC2, which is positive only for the latter. 

Both have a peak at about 970 cm-1, modelled by PC1, while langite has an additional sharp 

peak at about 430 cm-1, captured by a minimum in PC2 loading, which is not present in 

brochantite. The three other compounds, having negative PC1 values, are characterized by a 

peak at about 986 cm-1, modelled by the PC1 minimum in that region. The discrimination 

among chalcantite, antlerite and orthoserpierite is then obtained thanks to PC2 and PC3, that 

are able to model the differences in the spectral region below 600 cm -1. Antlerite and 

orthoserpierite have similar spectra, as highlighted by the similar PC1 and PC3 eigenvalues, 

but can be differentiated thanks to PC2. 



 

Figure 4 Score plots of the first three components (PC1-PC2, PC1-PC3 and PC2-PC3). Percent 

variance captured by each PC is reported in parenthesis along each axis. Samples names stand 

for the spectra Rruff ID. 

 

This simple example demonstrated how it would be possible to easily discriminate different 

compounds after acquiring several measurements on unknown samples. As a matter of fact, 

PCA alone would not be able to identify the species, as this would require additional techniques 

such as Partial Least Square Discriminant Analysis (PLS-DA) [5][6], but it can greatly speed 

up the analysis of large number of measurements providing an effective and unsupervised 

method to recognize differences in acquired spectra. 

 

Outliers detection and model optimization  

Obtaining a satisfactory and clear clustering is not always straightforward when dealing with 

PCA. This could be because analyzed samples do not show relevant differences to be classified 

in different groups, but sometimes this could be due to a not correct model construction. PCA 

is deeply influenced by outliers and noisy measurements, so they should be removed and 

analyzed separately to avoid spoiling the model. It is possible to identify the presence of outliers 

thanks to the calculation of two quantities: leverage and root mean square deviation (RMSD) 

[13]. The former is defined as the diagonals of the “hat matrix” (H): 

𝐻 = 𝑇(𝑇𝑇𝑇)−1𝑇𝑇  (4) 

where T is the score matrix, while the latter can be computed as follows:  

𝑅𝑀𝑆𝐷 = √
∑ (𝑋−𝑇𝑃𝑇)2
𝐽
𝑖=1

𝐽
  (5) 



where is J the number of points for each measurement (1000 in the example here presented), X 

is the original data matrix, T is the score matrix and P is the loading matrix. Leverage quantifies 

the influence of a single sample on the model construction; measurements characterized by high 

leverage values should be discarded from the processing because they tend to bias the model. 

A common choice often found in literature is to set the threshold value equal to 3 times the 

average leverage value, but sometimes a more restrictive view sets this limit to 3 times the 

median value [14]; in this way, all measurements will give a similar contribution to model 

construction. On the other hand, root mean square deviation quantifies the difference between 

the original spectrum and the same spectrum after inverse transformation from PC space to the 

original variables. So, in this case the principal components number has a great influence on 

the calculated RMSD because it affects the residual variance in each spectrum. In Figure 5 it is 

possible to see the plot of leverage and RMSD for each of the analyzed samples. All 

measurements fall in the range below three times the median leverage value, indicating the 

absence of outliers. Then, looking at the RMSD, it is possible to see that almost all samples are 

characterized by a value below 0.30, demonstrating that the model is able to correctly fit them.  

 

Figure 5 Plot showing leverage and root mean square deviation (RMSD) for each of the 

analyzed samples in the three-component PCA model. The blue horizontal line represents the 

model residual variance, while the two red vertical lines indicate three times the median and 

average leverage value. Samples names stand for the spectra Rruff ID. 

 

In order to further investigate the goodness of the model, it is possible to plot the spectrum after 

inverse transformation superimposed to the original one. In this way the user can directly 

control which regions of the spectra are correctly fitted and which not. This is a crucial point 

because, even if the model is not able to fit the whole spectrum, it is essential that it correctly 

fits the most important features, otherwise it should be discarded. In Figure 6 one spectrum is 



shown for each of the identified groups. As can be seen, the model is able to correctly fit all the 

main peaks and discrepancies can be observed only in limited parts of the spectrum. 

 

Figure 6 Goodness of fit can be shown superimposing the measured spectra (here as black 

dots) and the result coming from the three-component PCA model (here as yellow line). In this 

plot, one representative spectrum for each of the identified groups is displayed, from top: 

chalcantite, antlerite, brochantite, langite and orthoserpierite. 

Conclusions 

This paper presented the most important operations to perform Principal Components Analysis. 

As discussed, this chemometric technique provides a powerful tool for unsupervised features 

extraction from large data sets and it can be effectively used to discriminate between different 

groups in acquired measurements, facilitating results interpretation. It can represent a 

considerable help for researchers dealing with different kind of measurements, and specifically 

for chemists, in order to extract relevant information and reduce data sets dimension. Moreover, 

as the processing effort is not particularly high (time required for PCA model construction is 

less than 200 ms using an average computer), this technique can also be used to implement real-

time applications [15]. 

 

References 

[1] E. Garcia-Breijo, R. M. Peris, C. O. Pinatti, M. A. Fillol, J. I. Civera and R. B. Prats, 

Low-Cost Electronic Tongue System and Its Application to Explosive Detection, IEEE 

Transactions on Instrumentation and Measurement, 62 (2013), pp. 424-431. 



[2] C. E. Teixeira, L. E. Borges da Silva, G. F.C. Veloso, et al., An ultrasound-based water-

cut meter for heavy fuel oil, Measurement, 148 (2019), pp. 1-9. 

[3] H. Lizhi, K. Toyoda, I. Ihara, Discrimination of olive oil adulterated with vegetable oils 

using dielectric spectroscopy, Journal of Food Engineering, 96 (2010), pp. 167-171 

[4] L. Xu, C. Tan, X. Li, Y. Cheng and X. Li, Fuel-Type Identification Using Joint 

Probability Density Arbiter and Soft-Computing Techniques, IEEE Transactions on 

Instrumentation and Measurement, 61 (2012), pp. 286-296. 

[5] J. N. Miller, J. C. Miller, Statistics and Chemometrics for Analytical Chemistry, 

Pearson, Harlow, 2010, ISBN 978-0-273-73042-2. 

[6] P. Gemperline, Practical Guide to Chemometrics, CRC Press, Boca Raton (FL, USA), 

2006, ISBN 1-57444-783-1.  

[7] P. H. C. Eilers, A perfect smoother, Analytical Chemistry, 75 (2003), pp. 3631-3636. 

[8] P. Virtanen et al., SciPy 1.0: fundamental algorithms for scientific computing in Python, 

Nature Methods, 17, (2020), pp. 261–272. 

[9] A. Savitzky, M. J. E. Golay, Smoothing and Differentiation of Data by Simplified Least 

Squares Procedures, Analytical Chemistry, 36 (1964), pp. 1627-1639. 

[10] R. J. Barnes, M. S. Dhanoa, S. J. Lister, Standard Normal Variate 

Transformation and De-Trending of Near-Infrared Diffuse Reflectance Spectra, 

Applied Spectroscopy, 43 (1989), pp. 772-777. 

[11] F. Pedregosa et al., Scikit-learn: Machine Learning in Python, Journal of 

Machine Learning Research, 12 (2011), pp. 2825-2830 

[12] B. Lafuente, R.T Downs, H. Yang , N. Stone, The power of databases: the RRUFF 

project, In: Highlights in Mineralogical Crystallography, T. Armbruster and R. M. Danisi, 

eds. Berlin, Germany, W. De Gruyter, (2015) pp. 1-30. 

[13] K. Kumar, Principal Component Analysis: Most Favourite Tool in Chemometrics, 

Resonance, 22, (2017) pp. 747-759. 

[14] A. F. Mejia, M. B. Nebel, A. Eloyan, B. Caffo, M. A. Lindquist, PCA leverage: outlier 

detection for high-dimensional functional magnetic resonance imaging data, Biostatistics, 

18 (2017) pp. 521-536. 

[15]  B. D. de Senneville, A. El Hamidi, C. Moonen, A Direct PCA-Based Approach for 

Real-Time Description of Physiological Organ Deformations, IEEE Transactions on 

Medical Imaging, 34 (2015), pp. 974-982. 

 



Author bio 

Leonardo Iannucci is currently a research fellow at Politecnico di Torino in the Department of 

Applied Science and Technology. He got the M.S. degree in Materials Engineering in 2016 and 

then in 2019 he received the PhD in Metrology cum laude from Politecnico di Torino. His main 

research fields are corrosion science, electrochemical measurements and materials 

characterization. 


