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Summary

In computational electromagnetics, phenomena such as wave propagation, radi-
ation and scattering can be modeled through a variety of integral equations. Using
the Boundary Element Method (BEM), these equations can then be solved nu-
merically with computers. Unfortunately, integral equations are usually prone to
instabilities under certain simulating conditions. For instance, one of the most em-
ployed formulation is the Electric Field Integral Equation (EFIE), which is adapted
to model metallic objects as Perfect Electric Conductors (PEC). This formulation
is however affected by breakdowns at low and high frequencies that result in detri-
mental consequences on the performance of the solver. More precisely, the condition
number of the EFIE matrix obtained in those cases increases, which in turn impacts
the accuracy of the solution and the convergence speed of iterative solvers.

This thesis provides an in-depth investigation of scenarios at low and high fre-
quencies and presents stable and accurate original BEM integral equations. One
of the research axes involves low frequency simulations of lossy conductors for the
modeling of eddy currents. A strategy employing quasi-Helmholtz projectors is
devised based on an asymptotic study of the Poggio-Miller-Chang-Harrington-Wu-
Tsai (PMCHWT) equation. The second part focuses on high frequency problems
for PECs. A theoretical analysis of the eigenvalues of integral operators in two
dimensions is presented using Fourier modes. A novel Combined Field Integral
Equation (CFIE) is then proposed for reliable and resonance-free simulations at
high frequency for the case of the canonical infinite cylinder.
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Chapter 1

Introduction and Outline

Computational science is a rapidly expanding concept combining mathematical
models and high computing performance to solve complex problems. In particular,
computational electromagnetics is a sub category of computational physics based
on Maxwell’s equations to describe all types of wave propagation scenarios. Typical
problems include scattering from arbitrarily shaped objects and antenna radiation.
A variety of methods are available to model time-harmonic phenomena, each with
their own strengths and weaknesses. For instance, the most frequently employed
approaches are the Finite Element Method (FEM), the Finite Difference Method
(FDM) and the Boundary Element Method (BEM). The latter strategy is used
throughout this thesis as the model of choice to solve integral equations.

The thesis is divided into chapters covering the majority of the research carried
out during the program. Starting with the foundations of electromagnetic theory,
Chapter 2 introduces Maxwell’s equations and the mathematical derivations leading
to a set of widespread and classic integral formulations. Each of these equations is
suited to particular scenarios and possesses its own limitations. The second half of
the chapter presents the BEM which translates integral equations into numerical
problems that are solvable by a computer.

Chapter 3 then delves into the concept of preconditioning, which constitutes
the focus of the thesis and represents a significant aspect of computational elec-
tromagnetics. The role of the condition number of the matrices obtained with the
BEM is illustrated through the example of the classic low frequency breakdown of
the Electric Field Integral Equation (EFIE). Some techniques employed to improve
the computational complexity are presented.

The simulation of eddy currents at low frequencies is explored in Chapter 4. This
type of scenario is highly relevant as it appears in a variety of industrial applications.
This low frequency configuration for conductive objects is more difficult to navigate
and analyze compared to Perfect Electric Conductors (PEC) due to the complex
material characteristics. A novel method is presented, based on an asymptotic
study of the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) equation and

1



Introduction and Outline

the application of quasi-Helmholtz projectors.
In Chapter 5, we investigate the case of PECs at high frequency. The chapter

highlights particular behavior occurring in that frequency range using a spectral
analysis in two dimensions. The standard electric and magnetic field operators
are examined to identify the ill-conditioning observed at large frequencies. A new
high frequency stable formulation is introduced by appropriately combining the
characteristics of each operator.

Lastly, closing remarks summarizing the objectives achieved throughout the
thesis are given in Chapter 6, alongside future prospects and open leads on the
topics that have been treated.
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Chapter 2

Background and Notation

This chapter lays the groundwork for the rest of the thesis by introducing the
core concepts and notions of computational electromagnetics. The well-known
Maxwell’s equations governing the laws of electromagnetism are first introduced,
followed by the derivation of several classic integral formulations commonly used
to model and simulate a majority of practical scenarios. The Boundary Element
Method (BEM) is presented next, as the key technique employed throughout this
work, which adapts those equations into a format suitable for numerical computer
simulation. The theoretical development is partly based on [54].

2.1 Maxwell’s Equations
As the starting point for the study of electromagnetism, we introduce the follow-

ing set of Maxwell’s equations, which can be written under various forms. Here they
are given under their differential form and in the frequency domain, at a position
r in a continuous medium,

∇ × E(r) = −jωµH(r) , (2.1)
∇ × H(r) = jωϵE(r) + j(r) , (2.2)

∇ · D(r) = ρe(r) , (2.3)
∇ · B(r) = 0 . (2.4)

For the vectorial quantities, we denote as E the electric field, H the magnetic field,
D the electric flux density, B the magnetic flux density, and j the electric current
density. As for the scalar quantities, j is used for the imaginary number, µ and ϵ are
the magnetic permeability and electric permittivity of the medium, ρe represents
the electric charge density, and lastly, ω is the angular frequency. Here and in the
rest of the thesis, we assume and omit the time dependence ej ωt for time-harmonic
fields, where t is the time.

3



Background and Notation

The flux densities D and B are related to the fields E and H through the
constitutive relations

D = ϵE , (2.5)
B = µH . (2.6)

For some materials, the permittivity and permeability can vary depending on the
fields (linearity), position (homogeneity), direction (isotropy), or frequency (disper-
sion). However, throughout this work, we will consider non-varying media unless
specified otherwise. The quantities ϵ and µ are defined with respect to the corre-
sponding values for the vacuum, ϵ0 and µ0, as

ϵ = ϵrϵ0 , (2.7)
µ = µrµ0 , (2.8)

where ϵr and µr are called relative permittivity and permeability. The values for
the vacuum are

ϵ0 = 8.854 × 10−12 F m−1 , (2.9)
µ0 = 4π × 10−7 H m−1 . (2.10)

For the forthcoming integral equation derivation, Maxwell’s equations are sym-
metrized by introducing the equivalent magnetic charge density ρm and a magnetic
current density m to obtain

∇ × E(r) = −jωµH(r) − m(r) , (2.11)
∇ × H(r) = jωϵE(r) + j(r) , (2.12)

∇ · D(r) = ρe(r) , (2.13)
∇ · B(r) = ρm(r) . (2.14)

This manipulation creates analogies between electric and magnetic quantities and
allows simplifications throughout the reasoning.

2.2 Electric and Magnetic Fields in Free Space

2.2.1 Electromagnetic Potentials
Solutions to Maxwell’s equations can be derived in a homogeneous and infinitely

large space, called free space, by defining electromagnetic potentials. Using the
linearity of the equations and the principle of superposition, we divide the electric
and magnetic fields into sums of contributions from electric and magnetic sources,

E = Ee + Em , (2.15)
H = He + Hm , (2.16)

4



2.2 – Electric and Magnetic Fields in Free Space

where the indices e and m stand for the electric and magnetic sources, respectively.
Each of the fields satisfies Maxwell’s equations. Therefore, we have, for the fields
created by the electric sources,

∇ × Ee = −jωµHe , (2.17)
∇ × He = jωϵEe + j , (2.18)

∇ · De = ρe , (2.19)
∇ · Be = 0 , (2.20)

and for those created by the magnetic sources,

∇ × Em = −jωµHm − m , (2.21)
∇ × Hm = jωϵEm , (2.22)

∇ · Dm = 0 , (2.23)
∇ · Bm = ρm , (2.24)

where we omitted the position vector r for clarity. We start by considering the
case where there are no magnetic sources, i.e. when m = 0 and ρm = 0. From
eq. (2.20), the properties of the divergence operator and the constitutive relation
Be = µHe, we introduce the vector potential Ae such that

µHe = ∇ × Ae . (2.25)

Then, by replacing eq. (2.25) into eq. (2.17), we obtain

∇ × (Ee + jωAe) = 0 . (2.26)

Considering the property of the curl operator, this cancellation leads to the intro-
duction of the scalar potential Φe

Ee + jωAe = −∇Φe . (2.27)

Now we substitute eqs. (2.25) and (2.27) into eq. (2.18), resulting in

∇ ×
(︄

1
µ

∇ × Ae

)︄
= jωϵ (−∇Φe − jωAe) + j ,

= −jωϵ∇Φe + ω2ϵAe + j . (2.28)

For any vector field F , using the vectorial identity

∇ × ∇ × F = ∇(∇ · F ) − ∇2F , (2.29)

we obtain
∇(∇ · Ae) − ∇2Ae = −jωϵµ∇Φe + k2Ae + µj , (2.30)

5



Background and Notation

where the wave number k is defined as

k = ω
√
ϵµ . (2.31)

Until now, only the curl of Ae has been determined. Since the choice of its diver-
gence is arbitrary, we opt for the Lorenz gauge by defining

∇ · Ae = −jωϵµΦe , (2.32)

which simplifies eq. (2.30) into a Helmholtz equation to be solved for Ae,

∇2Ae + k2Ae = −µj , (2.33)

where ∇2 represents the vector Laplacian operator. Summarizing, the fields gener-
ated by the electric sources are written with respect to Ae as

Ee = 1
jωϵµ∇(∇ · Ae) − jωAe , (2.34)

He = 1
µ

∇ × Ae . (2.35)

Proceeding similarly for the magnetic sources by considering j = 0 and ρe = 0, we
have the Helmholtz equation for the vector potential Am,

∇2Am + k2Am = −ϵm , (2.36)

and the fields generated by the magnetic sources,

Em = −1
ϵ
∇ × Am , (2.37)

Hm = 1
jωϵµ∇(∇ · Am) − jωAm . (2.38)

Lastly, substituting the different contributions into eqs. (2.15) and (2.16), the total
electric and magnetic fields become

E = 1
jωϵµ∇(∇ · Ae) − jωAe − 1

ϵ
∇ × Am , (2.39)

H = 1
µ

∇ × Ae + 1
jωϵµ∇(∇ · Am) − jωAm . (2.40)

The remaining step is to find expressions for Ae and Am by solving the Helmholtz
equations (2.33) and (2.36).
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2.2 – Electric and Magnetic Fields in Free Space

2.2.2 Green’s Function
The fundamental solution to the Helmholtz equation in free space is called the

Green’s function, denoted Gk, obtained by considering a Dirac delta function δ on
the right hand side as

∇2Gk(r) + k2 Gk(r) = −δ(r) . (2.41)

With the additional constraint imposing that the wave must travel outward and
vanish at infinity, expressed through the Sommerfeld (or Silver-Müller) radiation
condition

lim
∥r∥→∞

∥r∥
(︄
∂Gk(r)
∂∥r∥

+ jk Gk(r)
)︄

= 0 , (2.42)

the expression for the Green’s function in free space reads

Gk(r) = e−jk∥r∥

4π∥r∥
, (2.43)

where ∥ · ∥ represents the Euclidean norm. By convolving eq. (2.41) with, for
example, µj(r) on both sides, we derive the following equation

µ∇2
∫︂∫︂∫︂

V
Gk(r − r′) j(r′) dr′ + µk2

∫︂∫︂∫︂
V
Gk(r − r′) j(r′) dr′ = −µj(r) , (2.44)

where V is the volume containing the sources. From this equality, we can identify
the expression for the vector potential Ae as

Ae(r) = µ
∫︂∫︂∫︂

V

e−jk∥r−r′∥

4π∥r − r′∥
j(r′) dr′ . (2.45)

Similarly, by convolution with ϵm(r), the vector potential Am is written

Am(r) = ϵ
∫︂∫︂∫︂

V

e−jk∥r−r′∥

4π∥r − r′∥
m(r′) dr′ . (2.46)

Replacing these expressions into eqs. (2.39) and (2.40), we obtain the fields gener-
ated by the current densities j and m in free space

E(r) = −jωµ
∫︂∫︂∫︂

V
Gk(r, r′) j(r′) dr′ + 1

jωϵ ∇(∇ ·
∫︂∫︂∫︂

V
Gk(r, r′) j(r′) dr′)

− ∇ ×
∫︂∫︂∫︂

V
Gk(r, r′) m(r′) dr′ , (2.47)

H(r) = ∇ ×
∫︂∫︂∫︂

V
Gk(r, r′) j(r′) dr′ + 1

jωµ ∇(∇ ·
∫︂∫︂∫︂

V
Gk(r, r′) m(r′) dr′)

− jωϵ
∫︂∫︂∫︂

V
Gk(r, r′) m(r′) dr′ , (2.48)

where the Green’s function has been rewritten as Gk(r, r′) = Gk(r − r′).
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Background and Notation

Figure 2.1: Interface between two media Ω0 and Ω1.

2.3 Formulation of Integral Equations

2.3.1 Boundary Conditions
The fields derivation from Maxwell’s equations in the previous section is valid

in free space. When an obstacle is present, a discontinuity is introduced along its
surface. In this case, boundary conditions are defined to express this discontinuity.
We consider the interface between an object Ω1 with boundary Γ and the outside
medium Ω0. Electromagnetic fields (E,H) and (E′,H ′) are propagating inside
Ω0 and Ω1, respectively. The unit normal n̂ to the surface points toward Ω0, as
illustrated in Figure 2.1. The discontinuities for the electric and magnetic fields are
expressed through the following boundary conditions

js = n̂ × (H − H ′) , (2.49)
ms = −n̂ × (E − E′) , (2.50)

where js and ms are electric and magnetic surface current densities tangential to
the surface boundary.

2.3.2 Surface Equivalence Principle
We are interested in the problem of scattering by an object Ω1 in the presence of

an exciting electromagnetic field (E,H) in the outside medium Ω0. The incident
fields induce currents inside the object, which in turn generate scattered fields.
Consider the original problem illustrated in Figure 2.2a. According to the surface
equivalence principle, the fields (E,H) inside the object can be replaced by other
virtual fields (E′,H ′) provided that suitable surface current densities are placed
on Γ. According to the boundary conditions given previously, they are defined as

js = n̂ × (H − H ′) , (2.51)
ms = −n̂ × (E − E′) . (2.52)

Due to the uniqueness theorem [54], the fields generated by these current densities
are the same as those of the original problem. This creates the equivalent prob-
lem shown in Figure 2.2b. In particular, the interior fields can be chosen so that

8
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(a)

(b)

(c)

Figure 2.2: Surface equivalence principle: (a) Original problem, (b) equivalent
problem, and (c) equivalent problem where the interior fields are equal to zero and
the interior medium is identical to the exterior medium.
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(E′,H ′) = (0,0), which results in

js = n̂ × H , (2.53)
ms = −n̂ × E . (2.54)

Since the fields are null, the interior medium can be substituted to be identical to
the outside medium, creating a free space environment in which the expressions
of the electric and magnetic fields (2.47) and (2.48) become valid, as illustrated in
Figure 2.2c.

2.3.3 Electric and Magnetic Field Integral Equations
The scenarios studied in our work involve Perfect Electric Conductors (PEC)

and dielectrics, for which the equivalence principle can be applied according to their
properties. In both cases, the quantities to be calculated are the surface current
densities js and ms from which the scattered fields can be obtained. Therefore, the
volume integrals involved in the determination of the electric and magnetic fields
(2.39) and (2.40) are reduced to integrals on the surface Γ only. In this setting, a
few remarks need to be considered regarding the expressions of the various integrals.

Due to a singularity that occurs on the boundary [66, 84], an additional term
appears from the curl of the vector potentials (2.45) and (2.46). Considering a
point r0 ∈ Γ and r approaching the surface from outside, this is written as

lim
r→r0

∇ ×
∫︂∫︂

Γ
Gk(r, r′) f(r′) dr′ = −1

2 n̂(r0) × f(r0)

+ ∇ × p.v.
∫︂∫︂

Γ
Gk(r0, r

′) f(r′) dr′ , (2.55)

where f can be js or ms, and p.v. denotes the principal value of the integral. From
now on, we omit the notation for the principal value. Moreover, vector identities
are used to move the curl operator inside the integral on Γ

∇ ×
∫︂∫︂

Γ
Gk(r, r′) f(r′) dr′ =

∫︂∫︂
Γ

∇Gk(r, r′) × f(r′) dr′ , (2.56)

as well as the divergence operator for the double derivative term,

∇(∇ ·
∫︂∫︂

Γ
Gk(r, r′) f(r′) dr′) = ∇

∫︂∫︂
Γ
Gk(r, r′) ∇′ · f(r′) dr′ . (2.57)

The primed divergence indicates that the derivative is taken with respect to the
primed variable r′.

Next, we define integral operators on Γ to rewrite the fields conveniently. We
first introduce the electric operator T k, which is the sum of the vector and scalar
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2.3 – Formulation of Integral Equations

potential operators T A,k and T Φ,k, respectively,

T k = −jkT A,k + 1
jkT Φ,k , (2.58)

(T A,kf)(r) = n̂ ×
∫︂∫︂

Γ
Gk(r, r′) f(r′) dr′ , (2.59)

(T Φ,kf)(r) = n̂ × ∇
∫︂∫︂

Γ
Gk(r, r′) ∇′ · f(r′) dr′ . (2.60)

Then, we have the magnetic operator Kk, defined as

(Kkf)(r) = n̂ ×
∫︂∫︂

Γ
∇Gk(r, r′) × f(r′) dr′ . (2.61)

Now, omitting the position vector for clarity, we take the cross product of the
scattered fields (2.47) and (2.48) with the normal vector on Γ to obtain

n̂ × Es = η T k(js) − 1
2 ms − Kk(ms) , (2.62)

n̂ × Hs = 1
2 js + Kk (js) + 1

η
T k(ms) , (2.63)

where we have used the property that, for any vector v tangent to Γ,

n̂ × (n̂ × v) = −v , (2.64)

and η =
√︂
µ/ϵ is the impedance of the medium. We then need to include the

incident fields Ei and H i to the equations, given that

js = n̂ × H i + n̂ × Hs , (2.65)
ms = −n̂ × Ei − n̂ × Es , (2.66)

from which the surface equations become

−n̂ × Ei = η T k(js) + 1
2 ms − Kk(ms) , (2.67)

−n̂ × H i = −1
2 js + Kk(js) + 1

η
T k(ms) . (2.68)

These two equations are respectively called the Electric and Magnetic Field Integral
Equations, commonly abbreviated as EFIE and MFIE.

In particular, PECs are widely employed as an ideal model for good conductors,
allowing for several simplifications. For instance, there is no electric field inside such
objects, and the surface magnetic current density is null. In other words, ms = 0,
and the EFIE for PECs reads

η T k(js) = −n̂ × Ei . (2.69)

Similarly, the MFIE for PECs is

− 1
2 js + Kk(js) = −n̂ × H i . (2.70)
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2.3.4 Poggio-Miller-Chang-Harrington-Wu-Tsai Equation
In the case of dielectrics, the fields are derived from both the electric and mag-

netic currents. Additionally, to include the properties of the interior medium, the
equivalence principle is applied by exchanging the roles of the exterior and interior
media to cancel the exterior fields, thus creating another set of equations. Through
this manipulation, the material parameters of the object are properly taken into
account.

Consider a dielectric Ω1 of electric permittivity ϵ1 and magnetic permeability
µ1, as illustrated in Figure 2.3. The object is illuminated from the exterior by an
electromagnetic wave (Ei,H i). First, the EFIE (2.67) is defined on the surface,
outside and inside, to obtain

η0T k0(js) − 1
2 ms − Kk0(ms) = −n̂ × Ei in Ω0 , (2.71)

η1T k1(js) + 1
2 ms − Kk1(ms) = 0 in Ω1 . (2.72)

Both equations are then summed, canceling the identity terms and resulting in the
first equation on the surface Γ

η0T k0(js) + η1T k1(js) − Kk0(ms) − Kk1(ms) = −n̂ × Ei . (2.73)

The same procedure is then followed for the MFIE (2.68), which gives

−1
2 js + Kk0(js) + 1

η0
T k0(ms) = −n̂ × H i in Ω0 , (2.74)

1
2 js + Kk1(js) + 1

η1
T k1(ms) = 0 in Ω1 . (2.75)

Figure 2.3: Dielectric object Ω1 immersed in the air in the presence of an incident
electromagnetic field (Ei,H i).
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After summation, the second integral equation reads

Kk0(js) + Kk1(js) + 1
η0

T k0(ms) + 1
η1

T k1(ms) = −n̂ × H i . (2.76)

Together, eqs. (2.73) and (2.76) form a system of two equations with two unknowns,
written compactly under block matrix form as(︄

η0T k0 + η1T k1 − (Kk0 + Kk1)
Kk0 + Kk1

1
η0

T k0 + 1
η1

T k1

)︄(︄
js

ms

)︄
=
(︄

−n̂ × Ei

−n̂ × H i

)︄
. (2.77)

This formulation is broadly used to solve problems involving dielectrics and is called
the Poggio-Miller-Chang-Harrington-Wu-Tsai (PMCHWT) equation [71, 22, 94].

2.4 Boundary Element Method
Several prevalent approaches to model and study scattering and radiation prob-

lems in electromagnetism transform Maxwell’s equations into matrix systems that
can be solved numerically. Among them is the BEM, also called the Method of Mo-
ments (MoM) in electromagnetism, which only requires to model the boundaries
between different linear and homogeneous media. This leads to relatively small,
but dense matrices. In contrast, the Finite Element Method (FEM) requires the
discretization of the entire volume, increasing the dimension of the problem by
one although the resulting matrices are sparse. Furthermore, often approximate
boundary conditions need to be defined in the case of the FEM whereas this is
intrinsically enforced in the BEM.

2.4.1 Geometry Discretization
The BEM is used to solve linear boundary value equations of the form

Zx = b , (2.78)

where x is an unknown quantity defined on the surface of an object. The first step
to build the matrix equation is the discretization of the surfaces of interest. In
three dimensions, surfaces are typically divided into flat triangular or quadrilateral
elements, with the former being preferred for its better flexibility in modeling both
smooth and sharp shapes.

The main parameter for the meshing procedure is the size of the elements, char-
acterized by the average edge length, usually denoted as h. Ideally, the elements
should be as regular and homogeneous as possible and small enough to capture ge-
ometrical details. A simple example is illustrated in Figure 2.4 with the discretiza-
tion of a sphere, in which the first two meshes are unsatisfactory. Additionally, the
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(a) (b)

(c)

Figure 2.4: Discretization of a sphere with radius 1 m: (a) Coarse mesh (h = 0.4 m),
(b) Irregular mesh (h = 0.3 m) and (c) Fine mesh (h = 0.1 m).

Nyquist-Shannon sampling theorem imposes that h < λ/2, where λ is the wave-
length. In this work, for instance, we construct meshes with the requirement that
h < λ/10 to increase reliability and precision, which is especially relevant for higher
frequencies. On the other hand, the more elements, the larger the discretized prob-
lem becomes, slowing down the entire solving process. A balance must therefore be
carefully established between accuracy and speed when considering the geometry
and simulating conditions.
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2.4.2 Basis Functions
The constructed mesh serves as the support for the basis functions used to dis-

cretize the unknown of the equation. These functions can be either scalar or vecto-
rial, depending on the nature of the unknown quantity. In practice, basis functions
are chosen to exhibit the same properties as the unknown to be represented. Specif-
ically, they must have sufficient derivability as imposed by the operators in which
they appear.

In the case of vectorial quantities such as surface vector fields or current den-
sities, we introduce the widely used divergence-conforming Rao-Wilton-Glisson
(RWG) basis functions [75] defined on pairs of triangular elements as

f i(r) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
li

2A+
i

(r − r+
i ) if r ∈ c+

i

li
2A−

i

(r−
i − r) if r ∈ c−

i ,
(2.79)

where c±
i form a pair of adjacent triangles with respective areas A±

i and common
edge ei of length li, and r±

i are the position vectors of the vertices opposite to the
common edge. An example of RWG function is illustrated in Figure 2.5.

For scalar quantities, such as potentials or normal components of vectorial val-
ues, we define the pulse basis functions, which are essentially the indicator functions
for each cell element ci

pi(r) =
{︄

1 if r ∈ ci

0 if r /∈ ci .
(2.80)

Once the functions have been selected, a vectorial unknown y can be decom-
posed with RWG functions as

y(r) ≈
Ne∑︂
i=1

aif i(r) , (2.81)

Figure 2.5: RWG function on a pair of triangular elements.
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where Ne is the number of mesh internal edges. For a scalar unknown x, the
decomposition with pulse functions is

x(r) ≈
Nc∑︂
i=1

bipi(r) , (2.82)

where Nc is the number of mesh elements. Following this strategy, the coefficients
{ai, i = 1 . . . Ne} and {bi, i = 1 . . . Nc} then become the unknowns of the discretized
equation.

2.4.3 Matrix Building
The decomposition of the unknown(s) constitutes half of the discretization pro-

cess. Given that there are now N unknowns, we need N independent equations to
uniquely solve the system. This is achieved with N testing or weighting functions
by integrating the original equation over their respective supports. The operator
appearing in the integral equation under study maps the set of unknowns to the
range and the testing functions must be chosen in the dual of the range of the
operator.

We consider the vector potential operator (2.59) as an example to illustrate the
procedure. For a testing function gm and a source function fn, the corresponding
operator integral reads

⟨gm,T A,k(fn)⟩ =
∫︂∫︂

Γ
gm(r) · n̂ ×

∫︂∫︂
Γ
Gk(r, r′)fn(r′) dr′dr . (2.83)

In practice, the difficulty of the implementation of such integrals depends on the
operator and the selected basis functions, requiring careful treatment when dealing
with singularities arising due to the Green’s function. When the distance between
the respective supports of the testing and source functions is sufficiently large, the
integral does not present singularities. In this case, simple approaches such as
the Gaussian quadrature are amply satisfying. However, if the testing and source
function domains are very close or overlap, specific schemes such as singularity
extraction [44, 40, 53, 86, 93] or singularity cancellation [38, 45, 89] need to be
used to ensure that the integrals are computed accurately.

To build the entire matrix equation, the right hand side needs to be tested as
well with each function. For a given function gm, the corresponding right hand side
element is

⟨gm, b⟩ =
∫︂∫︂

Γ
gm(r) · b(r) dr . (2.84)

We also write the unknown decomposition as described before

x(r) ≈
N∑︂

i=1
xif i(r) . (2.85)
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Therefore, the matrix equation obtained with the BEM becomes

Zx = b ⇔

⎛⎜⎜⎜⎜⎝
Z11 Z12 . . . Z1N

Z21 Z22 Z2N
... . . . ...

ZN1 ZN2 . . . ZNN

⎞⎟⎟⎟⎟⎠
⎛⎜⎜⎜⎜⎝
x1
x2
...
xN

⎞⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎝
b1
b2
...
bN

⎞⎟⎟⎟⎟⎠ . (2.86)

From here, a naive approach to solve this equation is simply to invert the matrix
Z and calculate

x = Z−1b . (2.87)
Although this is a valid method in most cases, it is extremely expensive in terms
of computation time and memory, especially with a high number of unknowns.
Moreover, if the matrix does not exhibit adequate properties, this approach can
fail entirely, as will be discussed in the following chapter.
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Chapter 3

Introduction on Preconditioning
for Integral Equations

Computational electromagnetics is a scientific field in which Maxwell’s equa-
tions are transformed and manipulated to be solved numerically. The previous
chapter presented the Boundary Element Method (BEM) that discretizes integral
equations for a variety of propagation scenarios. One of the major challenges is to
develop computationally efficient and stable solvers, in terms of time and memory
consumption. In particular, the aim is to have the solving process be as fast and
accurate as possible regardless of the selected parameters and simulating condi-
tions. We start with an overview of the computational complexity of the BEM and
a brief presentation of fast solver techniques, then introduce the essential role of the
matrix condition number and its influence on the performance of integral equation
solvers. We also describe the classic example of the low frequency breakdown for
the Electric Field Integral Equation (EFIE) and detail preconditioning methods
based on the quasi-Helmholtz decomposition.

3.1 Computational Complexity
For relatively simple problems, discretized via the BEM with a small number of

unknowns N , the solution can be obtained with acceptable time and memory con-
sumption by following a naive approach. The matrices of the discretized operators
are computed explicitly element by element, which results in a time complexity
of O(N2) and a memory storage of O(N2). Here the Laudau symbol O implies
N → ∞. The computation of the right hand side vector, instead, has time and
memory complexities of O(N). From there, the simplest way to solve the equation
is to directly invert the system matrix, which is an operation with a higher time
cost of O(N3). Therefore the overall complexity of a naive boundary element solver
is O(N3) in time and O(N2) in memory.
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When the discretization of the problem requires a higher number of elements,
for instance to model large objects, small geometric details, or for high frequency
simulations, the computation becomes unaffordably expensive. Clearly, accelera-
tion strategies are necessary to generalize the use of the BEM and to allow for
more sophisticated scenarios. For this reason, different techniques are available in
literature that have been developed to offer a better performance, achieving overall
time and memory complexities down to quasi-linear with O(N logN) [25]. Among
the most widespread algorithms are the Adaptive Cross Approximation (ACA) [12,
100], the Multi Level Matrix Decomposition Algorithm (MLMDA) [63, 77], the
Fast Multipole Method (FMM) [46, 30], and its enhanced version, the Multi Level
Fast Multipole Method (MLFMM) [60, 82, 81]. These strategies typically generate
a compressed form of the system matrix to bypass its full explicit construction.
Moreover, they are designed to allow fast matrix-vector products, with which in-
tegral equations can be solved using Krylov subspace iterative solvers [47] such as
the Conjugate Gradient Squared (CGS) [50, 83, 80] or the Generalized Minimal
Residual Method (GMRES) [79, 11]. In general, the convergence of these solvers is
not guaranteed for every problem and their choice is motivated by the properties of
the system matrix, for instance, symmetry or positive definiteness. Assuming that
there exists an iterative solver that converges for the scenario under consideration,
we denote as Niter the number of iterations required until convergence to a solution.
The overall time complexity is thus O(NiterN logN).

Ideally, the number of iterations should be kept constant so as to reach and
maintain a cost of O(N logN). The notion of preconditioning is closely related
to the convergence speed of these iterative solvers. As will become clear in the
next section, the condition number of the equation matrix influences the number
of iterations, and thus the optimization of the solver complexity.

3.2 Matrix Condition Number
For any linear and invertible matrix A ∈ CN×N , its condition number is defined

as

κ(A) = ∥A∥.∥A−1∥

= σmax(A)
σmin(A) , (3.1)

where ∥ · ∥ represents the matrix 2-norm or spectral norm, and σ denotes singular
values, with σmax(A) being the maximum and σmin(A) the minimum singular value
of A. The condition number of a matrix, also called conditioning, acts as an
indicator of its stability. For a linear equation of the form Ax = b, a small variation
of the input will result in a larger variation in the output the higher the condition
number of the matrix A. Therefore, a small condition number is desirable as it
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reflects a good stability and the matrix is said to be well-conditioned, with the
smallest achievable condition number being κ(A) = 1, attained for any unitary
matrix. On the contrary, for a large unbounded condition number, which can be
infinite, the problem is ill-conditioned. In this case, iterative solvers are unlikely to
produce a solution in a reasonable amount of time or may converge to an incorrect
result. Instead, a low condition number is usually a good indicator of fast and stable
convergence [24]. This property is crucial to reach an optimal time complexity of
O(N logN).

For a given equation system, the condition number may vary depending on
different parameters, such as the frequency of simulation, the level of mesh dis-
cretization or the material properties. This can lead to strong ill-conditioning in
some cases (e.g. low frequency, fine discretization), thus severely limiting the ap-
plicability of those integral equations. The concept of preconditioning focuses on
the improvement and stabilization of the matrix conditioning, with the best results
obtained via strategies tailored to the desired formulations and target scenarios.

3.3 Low Frequency Breakdown of the EFIE
In this section, we will present the ill-conditioning of the EFIE for Perfect

Electric Conductors (PEC) (2.69) at low frequencies. This issue has been widely
treated in literature [92, 8, 21, 98, 72, 96] and thus constitutes a good reference
example to develop a better understanding of the importance of preconditioning. In
the low frequency regime, we consider k → 0 while the mesh discretization remains
fixed. The line delimiting low and high frequency can be roughly determined by the
electrical size of the object under study. For instance, if the largest dimension of
the object is larger or smaller than the wavelength, the frequency is considered to
be high or low, respectively. For an object of diameter a = 1 m, the low frequency
regime can be considered when

ka = 2πf
c

≪ 1 , (3.2)

where f is the frequency, and c is the speed of light in vacuum. Expressed with the
frequency on the left hand side, we have

f ≪ c

2π ≈ 4.8 × 107Hz , (3.3)

corresponding to frequencies below the order of the MHz, which involves many
practical applications. For this reason, the ill-conditioning of the EFIE holds a lot
of interest in computational electromagnetics.

We recall the electric operator composed of the vector and scalar potential
operators

T k = −jkT A,k + 1
jkT Φ,k . (3.4)
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Figure 3.1: Singular value decomposition of the EFIO at different frequencies for a
sphere of radius 1 m.

When the frequency decreases, the first term behaves as O(k), whereas the second
term follows O(1/k). In the rest of the chapter, the O notation implies k → 0. Due
to these reciprocal scalings, one term vanishes while the other grows unbounded as
the frequency tends to zero. To evaluate the impact on the condition number, we
examine the variation of the singular value spectrum for the Electric Field Integral
Operator (EFIO) at different frequencies. The spectrum of the electric operator is
plotted in Figure 3.1 for a sphere of radius 1 m, discretized with 1048 elements and
1572 unknowns. The condition numbers obtained at these frequencies are given
in Table 3.1 and indicate a growth following O(1/k2). This is the low frequency
ill-conditioning of the EFIO, which is the most treated BEM breakdown due to the
popularity of the EFIE. One of the available strategies is based on the decomposition
of the equation into solenoidal and non-solenoidal components, which is presented
next.

Table 3.1: Condition number of the EFIO at varying frequencies for a sphere of
radius 1 m.

Frequency Condition number
102 Hz 1.55 × 1014

104 Hz 1.54 × 1010

106 Hz 1.54 × 106
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3.4 Quasi-Helmholtz Decomposition
In vector calculus, the Helmholtz decomposition theorem states that any vector

field F that is sufficiently smooth and rapidly decays at infinity can be decomposed
into a solenoidal part F s and an irrotational part F i. In other words,

F = F s + F i , (3.5)

with
∇ · F = ∇ · F i , ∇ × F = ∇ × F s . (3.6)

Instead, a quasi-Helmholtz decomposition is a separation into a solenoidal compo-
nent F s and a non-solenoidal one F ns, rather than irrotational, i.e.

F = F s + F ns , (3.7)

with
∇ · F = ∇ · F ns , ∇ × F = ∇ × F s + ∇ × F ns . (3.8)

This concept has been used as a remedy to the low frequency breakdown of the
EFIE. It can be implemented in practice with the Loop-Star or Loop-Tree decom-
positions [87, 98, 58, 39], which are made of functions defined as linear combinations
of Rao-Wilton-Glisson (RWG) basis functions. In the following, we will consider
the Loop-Star decomposition, but the reasoning is still valid for the Loop-Tree ver-
sion. The Loop and Star basis functions span the entire RWG space, the first set
being solenoidal and the second set being non-solenoidal.

We first redefine the RWG functions (2.79) without the edge length normaliza-
tion, which gives

f i(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
r − r+

i

2A+
i

if r ∈ c+
i

r−
i − r

2A−
i

if r ∈ c−
i ,

(3.9)

where A±
i is the area of the triangle c±

i and r±
i is the position vector of the vertex

that does not belong to the common edge, as illustrated in Figure 3.2. The edge
length factor has been removed from the RWG functions so that the flux integral
through their defining edge equals one [5]. As a consequence, the expressions for
the Loop to RWG and Star to RWG transformation matrices, respectively denoted
as Λ and Σ, are also simplified.

Given the configuration displayed in Figure 3.2, the transformation matrices
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Figure 3.2: Notation used for the definition of RWG functions and Loop-Star trans-
formation matrices.

can be constructed from mesh connectivity information with the following rules

(Λ)ij =

⎧⎪⎪⎨⎪⎪⎩
1 if node j equals v+

i

−1 if node j equals v−
i

0 otherwise ,
(3.10)

(Σ)ij =

⎧⎪⎪⎨⎪⎪⎩
1 if cell j equals c+

i

−1 if cell j equals c−
i

0 otherwise .
(3.11)

The columns of these matrices are however not linearly independent. This can be
seen with Euler’s polyhedron formula that states, for a simply connected closed
geometry,

Nvertices +Ncells = Nedges + 2 . (3.12)
In other words, since each vertex, cell or edge supports a Loop, Star or RWG func-
tion, respectively, there is an excess of two functions to form linearly independent
bases. For this reason, the Loop-Star procedure requires that one arbitrary column
must be eliminated from each matrix. In the following, we always assume linear
independence of the columns for the matrices Λ and Σ.

Loop functions λi are defined on mesh vertices and form a counterclockwise flow
along the surrounding cells that share the base vertex, as illustrated in Figure 3.3a,
while Star functions σi, defined on mesh cells, flow outward from the center of
the cell to the adjacent cells, which can be seen in Figure 3.3b. Any matrix Z
discretized with RWG basis functions can then be decomposed by applying these
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(a)

(b)

Figure 3.3: (a) Loop and (b) Star functions defined on triangular elements.

transformation matrices following

ZLS =
(︂
Λ Σ

)︂T
Z
(︂
Λ Σ

)︂
= ATZA , (3.13)

where A is the Loop-Star decomposition matrix. The decomposed matrix can then
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be written in block form as

ZLS =
(︄

ZΛΛ ZΛΣ
ZΣΛ ZΣΣ

)︄
, (3.14)

where, for each block, the first index indicates the testing space and the second index
indicates the source space for the basis functions. This decomposition method can
be used to study and scale the blocks according to the problem at hand. To achieve
this, the Loop and Star transformation matrices are multiplied with adequately
selected scalar coefficients to remove any conditioning breakdown.

In the case of the EFIO, the vector and scalar potentials operators can be
rescaled separately through this decomposition. Consider first the classic discretiza-
tion of the operator T Φ,k with RWG basis functions for the source and rotated RWG
functions for the testing part. The element (m,n) of the operator matrix is written
explicitly as

(TΦ,k)mn =
∫︂∫︂

Γ
n̂ × fm(r) · n̂ × ∇

∫︂∫︂
Γ
Gk(r, r′) ∇′ · fn(r′) dr′dr (3.15)

=
∫︂∫︂

Γ
fm(r) · ∇

∫︂∫︂
Γ
Gk(r, r′) ∇′ · fn(r′) dr′dr (3.16)

= −
∫︂∫︂

Γ
∇ · fm(r)

∫︂∫︂
Γ
Gk(r, r′) ∇′ · fn(r′) dr′dr . (3.17)

The passage from (3.15) to (3.16) is done by considering

a = fm(r) , (3.18)

b = ∇
∫︂∫︂

Γ
Gk(r, r′) ∇′ · fn(r′) dr′ , (3.19)

and applying the vector relation

(n̂ × a) · (n̂ × b) = b · ((n̂ × a) × n̂)
= b · (−(n̂ · a) n̂ + (n̂ · n̂) a)
= −(n̂ · a)(n̂ · b) + b · a

= a · b , (3.20)

obtained by using scalar and vector triple products rules, as well as the fact that
a is tangential, i.e. has no normal component. Equation (3.17) then follows from
(3.16) by applying an integration by parts to move the gradient operator to the
testing function. This relation highlights the property that whenever solenoidal
Loop functions appear as testing or source functions, the corresponding matrix
element for the scalar potential operator cancels out, since for any i, ∇ · λi = 0 by
definition. This property can also be interpreted more simply in matrix form as

ΛTTΦ,k = TΦ,kΛ = 0 . (3.21)
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As a result, the Loop-Star decomposed EFIE matrix becomes

ZLS =
(︄

ΛTTA,kΛ ΛTTA,kΣ
ΣTTA,kΛ ΣT(TΦ,k + TA,k)Σ

)︄

=
(︄

O(k) O(k)
O(k) O(1/k)

)︄
. (3.22)

From this decomposition, a bound on the condition number at low frequency can
be obtained with the Gershgorin circle theorem [42], given below.

Theorem 1 (Gershgorin circle theorem). Let A ∈ CN×N be a matrix with elements
(A)mn = amn. For any i = 1, . . . , N , we define Ri = ∑︁

j /=i |aij|, and D(aii, Ri) the
closed disk of center aii and radius Ri. Then, for any λ eigenvalue of A, there exists
an index i such that λ ∈ D(aii, Ri).

Applying this theorem leads to the identification of two eigenvalue clusters: one
disk D(O(k),O(k)) whose center and radius approach zero following O(k), and an-
other disk D(O(1/k),O(k)) with a center going to infinity and a vanishing radius.
Although the condition number is calculated from the singular values of the matrix,
when the latter is Hermitian and positive definite, they coincide with the eigenval-
ues. This is notably the case in the low frequency limit. Additionally, the obtained
bounds corroborate the O(1/k2) behavior of the condition number observed from
the spectrum.

Based on this matrix study of the EFIO, the default asymptotic behavior of the
vector and scalar potentials can be adjusted in the diagonal blocks by scaling them
respectively with factors equal to 1/k and k. This can be achieved with the scaled
decomposition matrix

As =
(︂

1√
k

Λ
√
kΣ

)︂
, (3.23)

which is applied left and right of the system matrix as in (3.13), hence the square
roots 1/

√
k and

√
k. Thus the matrix equation Zx = b after preconditioning is

AT
s ZAsy = AT

s b , (3.24)

where y is the auxiliary solution with

x = Asy . (3.25)

The ensuing asymptotic scalings for the preconditioned matrix are

AT
s ZAs =

(︄
O(1) O(k)
O(k) O(1)

)︄
, (3.26)

for which the Gershgorin circle theorem now shows that the eigenvalues are clus-
tered around constant values with vanishing radii. The singular value spectrum for
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Figure 3.4: Singular value decomposition of the EFIO preconditioned using a Loop-
Star scheme at different frequencies for a sphere of radius 1 m.

the preconditioned matrix is displayed at different frequencies in Figure 3.4, for the
same sphere of radius 1 m simulated in the previous section. The conditioning of
the matrix now remains constant for any low frequency, with a value of 1.54 × 105.
The spectrum branches that were previously diverging with decreasing frequencies
are still visible but perfectly stable.

Although this strategy is effective in stabilizing the condition number, a couple
of limitations are present. The Loop and Star functions effectively span the RWG
space in the case of closed simply connected structures. However, geometries that
contain holes or handles, such as rings, cannot be supported with only these two sets
of functions and their treatment is detailed later in this chapter. Additionally, the
transformation matrices Λ and Σ are applied at the cost of introducing an increase
of the condition number linked to the level of discretization of the geometry [3, 1],
which becomes particularly disadvantageous when fine meshes must be used.

3.5 Loss of Accuracy at Very Low Frequency
The introduction of the Loop-Star decomposition enables the analysis of a sep-

arate issue appearing at very low frequencies. Given that the solenoidal and non-
solenoidal components of the solution may have different asymptotic behaviors as
the frequency decreases (e.g. O(1) for one and O(k) for the other), one component
would eventually dominate the other (e.g. O(1) ≫ O(k)). Due to the limitations
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of machine precision, this can result in a partial loss of the solution, which is an
additional aspect to consider when providing a cure to the low frequency problem,
as solely addressing the matrix breakdown is not necessarily sufficient to obtain
an accurate solution. Moreover, this may also result in strong inaccuracies when
computing derived quantities such as the electric far field [97, 24].

To provide a clearer understanding, we will examine the asymptotic scalings of
the solution for the EFIE with a plane wave as the excitation. First, we need to
determine the behavior of the right hand side, defined as

− n̂ × Ei(r) = −n̂ × E0 e−jkk̂·r , (3.27)

where k̂ is a unit vector indicating the direction of propagation and E0 = E0 p̂,
with E0 representing the peak amplitude and p̂ the polarization of the electric field.
The mth element of the discretized right hand side is then written as

(b)m = −
∫︂∫︂

Γ
n̂ × fm(r) · n̂ × E0 e−jkk̂·r dr

= −
∫︂∫︂

Γ
fm(r) · E0 e−jkk̂·r dr . (3.28)

To ascertain the low frequency scalings, we expand the exponential using the
Maclaurin series with k as the variable

(b)m = −
∫︂∫︂

Γ
fm(r) · E0

∞∑︂
n=0

(−jkk̂ · r)n

n! dr

≈ −
∫︂∫︂

Γ
fm(r) · E0

(︂
1 − jkk̂ · r + O(k2)

)︂
dr . (3.29)

When k → 0, the first term of the expansion is dominant as O(1). However, a
particular case occurs when a Loop function is used for testing. For any Loop
function λi, there exists a scalar function Pi on Γ such that [87]

λi(r) = n̂(r) × ∇Pi(r) . (3.30)

Then, applying Stokes’ theorem, we have∫︂∫︂
Γ

λi(r) dr =
∫︂∫︂

Γ
n̂(r) × ∇Pi(r) dr =

∮︂
r∈∂Γ

Pi(r) dl = 0 . (3.31)

Therefore, the second term in O(k) dominates and the Loop-Star decomposed right
hand side reads

ATb =
(︄

O(k)
O(1)

)︄
. (3.32)

Next, the inverse of the decomposed EFIE matrix (3.22) can be derived with a
block matrix inversion using the Schur complement [49], which results in

(ATZA)−1 =
(︄

O(1/k) O(k)
O(k) O(k)

)︄
. (3.33)
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Figure 3.5: Norms of the Loop and Star components of the auxiliary solution of
the EFIO at different frequencies for a sphere of radius 1 m.

Finally, recalling the Loop-Star decomposed equation ATZAy = ATb, the auxiliary
solution is thus obtained as

y = (ATZA)−1ATb =
(︄

O(1)
O(k)

)︄
. (3.34)

The Loop component of the solution scales as O(1), dominating the Star component
which follows O(k), as illustrated in Figure 3.5. As a result, the Star part of
the solution is lost when the frequency becomes very small, illustrating the issue
delineated above.

By selecting appropriate rescaling coefficients, the balance can be restored be-
tween the components. For instance, the factors chosen previously for the Loop-Star
preconditioned EFIE result in the auxiliary solution

ys = (AT
s ZAs)−1AT

s b

=
(︄

O(1) O(k)
O(k) O(1)

)︄(︄
O(k1/2)
O(k1/2)

)︄

=
(︄

O(k1/2)
O(k1/2)

)︄
, (3.35)

where both components scale as O(k1/2). Therefore, the selection of rescaling
factors for the Loop-Star scheme must take into account the behavior of the desired
quantities of interest on top of the matrix preconditioning to guarantee a good
accuracy.
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Figure 3.6: Discretized torus containing one handle and two global loops: poloidal
(red) and toroidal (blue).

3.6 Global Loops and Harmonic Subspace
Geometries including handles are part of the family of multiply connected struc-

tures. These handles form global loops corresponding to the harmonic subspace
which is not covered by the original Loop-Star decomposition. When taking han-
dles into consideration, Euler’s formula becomes

2Nhandles +Nvertices +Ncells = Nedges + 2 , (3.36)

meaning that each handle generates two global loops, as illustrated in Figure 3.6
through the example of a torus with circular cross section. For these, the associated
transformation matrix, denoted as H and of size Nedges × 2Nhandles, needs to be
constructed independently. The complete quasi-Helmholtz decomposition matrix
then reads

A =
(︂
Λ H Σ

)︂
. (3.37)

Any global loop function h, like local loops, is solenoidal, that is,

∇ · h(r) = 0 . (3.38)

Manually building the harmonic subspace is however a computationally expen-
sive operation and is inadequate for inclusion into fast solvers [5]. Consequently,
the explicit construction will not be discussed here, and details on the construction
of this subspace can be found in [5, 32, 57, 92]. Alternative methods must prefer-
ably be used to account for the global loops without compromising the overall
computational cost.
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3.7 Quasi-Helmholtz Projectors
To bypass the expensive building of the global loops, as well as to avoid the

ill-conditioning linked to the matrices Λ and Σ, projectors based on the quasi-
Helmholtz decomposition have been introduced first for the EFIE [5]. They have
later been adapted to other formulations such as the Magnetic and Combined
Field Integral Equations (MFIE and CFIE) [62] as well as the Poggio-Miller-
Chang-Harrington-Wu-Tsai (PMCHWT) equation for dielectrics [13]. The quasi-
Helmholtz projectors are built from the matrix Σ following

PΣ = Σ
(︂
ΣTΣ

)︂+
ΣT , (3.39)

PΛH = I − PΣ , (3.40)

where + represents the Moore-Penrose pseudo inverse and I the identity matrix.
With this definition, the projector PΣ covers the entire non-solenoidal subspace.
Because of the full column rank property of the Loop to RWG and Star to RWG
matrices, together with the orthogonality between the Loop, harmonic and Star
subspaces [5], the second projector PΛH is obtained by subtracting PΣ from the
identity matrix, thus generating a projector which accounts for all solenoidal func-
tions, implicitly including the global loop functions. Any additional operation
related to the global loops can be entirely avoided through this strategy. Moreover,
it remains valid regardless of whether the geometry contains handles or not.

In practice, similarly to the Loop-Star method, each projector is scaled with an
adequate coefficient. Afterward, a complete rescaling projector is built by adding
them as

M = αPΛH + β PΣ , (3.41)
where α, β ∈ C are the scaling factors. Given that the projector PΛH applies to
both local and global loops, the associated coefficient takes effect on both the Loop
and harmonic subspaces. The matrix M is then multiplied left and right of the
system matrix as for the Loop-Star case. The projector used to precondition the
EFIO is thus

M = 1√
k

PΛH + j
√
kPΣ , (3.42)

where the imaginary number is added to prevent a loss of accuracy at low frequency
as detailed in [5]. Lastly, the complete preconditioned equation reads

MZMy = Mb , (3.43)

where y is the auxiliary solution with

x = My . (3.44)

The corresponding singular value spectrum at the previously simulated frequencies
and for the sphere of radius 1 m is displayed in Figure 3.7. The condition number
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Figure 3.7: Singular value decomposition of the EFIO preconditioned using quasi-
Helmholtz projectors at different frequencies for a sphere of radius 1 m.

obtained with the projector approach remains stable, with a value of 674, which
is much lower than the one achieved with the Loop-Star method. For comparison,
Figure 3.8 illustrates the spectra for the unpreconditioned EFIE, the Loop-Star pre-
conditioned EFIE and the projector preconditioned EFIE at frequency f = 102 Hz
on the sphere.

The illustrative case presented in this chapter demonstrates the significance of
preconditioning methods to create stable equations which can then be accelerated
with fast solvers. The subsequent chapters deal with intricate scenarios by going
through detailed analyses and devising strategies to obtain well-conditioned formu-
lations according to the specifics of the regimes of interest.
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Figure 3.8: Singular value decomposition of different versions of the EFIO for
f = 102 Hz on a sphere of radius 1 m.
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Chapter 4

Low Frequency Preconditioning
Strategy For Eddy Current
Modeling

This chapter introduces a well-conditioned full-wave method for the efficient
simulation of eddy currents, which are electric currents induced inside conductors
by time-varying magnetic fields. This particular type of electric current is a major
aspect of many real-life applications, which is why a reliable modeling strategy is
highly relevant. The majority of available methods to simulate eddy currents are
based on a quasi-static approximation of Maxwell’s equations. Consequently, these
models are limited to small frequencies. Full-wave equations such as the Poggio-
Miller-Chang-Harrington-Wu-Tsai (PMCHWT) formulation, however, are unstable
and inaccurate under eddy current conditions. The novel strategy presented in this
chapter extends the validity of the PMCHWT equation to support lossy conductors
at lower frequencies and incorporate eddy currents. This method therefore remains
valid at higher frequencies as well. This is achieved through the application of
quasi-Helmholtz projectors, which offer several additional benefits. Among these
are the implicit handling of multiply connected geometries with handles and the
compatibility with a quasi-linear computational complexity. Simulation results
are also presented to illustrate the effectiveness of the new formulation in different
scenarios. The majority of the work introduced in this chapter has been published in
the journal contribution [28], as well as initial findings in the conference publication
[27].

4.1 Introduction
Eddy currents are electric currents induced inside conductors in the vicinity

of a time-varying magnetic field. Efficient modeling of this phenomenon is highly
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pertinent in the context of industrial applications which are involved in various
ways [56]. From household purposes to manufacturing processes, eddy currents
are used for instance in induction heating or metal detection. Most non destructive
testing methods also rely on induced eddy currents to discern the presence of cracks
and air bubbles inside conductive parts [18, 41]. The simulation of such scenarios
is usually done with tailored solvers based on the quasi-static approximation of
Maxwell’s equations [78, 101]. Under this assumption, the displacement currents
are neglected and removed from the equations. However, this simplification restricts
the scope of these solvers to low frequencies [19, 36]. Moreover, existing methods
often require additional preprocessing for multiply connected geometries in order to
ensure the uniqueness of the solution. Such procedures include filling the holes with
a fictitious conductivity [37] as well as introducing cutting surfaces to artificially
remove them [76].

In contrast, the PMCHWT equation [71, 22, 94], which is often employed to
model lossy conductors at high and medium frequencies, is a full-wave formulation,
i.e. is based on the full Maxwell’s equations. Nonetheless, a serious breakdown
appears at low frequencies, thus affecting the simulation of eddy currents. This
failure is a separate issue from the low frequency breakdown described for Perfect
Electric Conductors (PEC) in Chapter 3, or for purely dielectric objects, for which
several strategies have been presented in literature [92, 72, 68]. In the case of
lossy conductors, the finite and non-negligible electrical conductivity of the material
simulated at low frequencies results in a strong ill-conditioning of the equation. As
explained in Chapter 3, the performance of iterative solvers typically used in fast
methods is therefore heavily impacted. Furthermore, at very low frequencies, a loss
of accuracy in the solution occurs similarly to the Electric Field Integral Equation
(EFIE). As a consequence, this potentially prevents the correct computation of
derived quantities of interest.

Remedies to the low frequency breakdown in lossy conductors have been pre-
sented in literature [102], frequently relying on Loop-Star or Loop-Tree decompo-
sitions [87, 88]. These techniques unfortunately exhibit a significant computation
overhead due to their conditioning and the necessary detection of global loops.
Additionally, the augmented EFIE [73] has also been applied to lossy conductors
[95], but this extension is done at the cost of additional matrices to be computed
and stored, thus increasing the overall computational cost. Amidst the various
approaches, the quasi-Helmholtz projectors [5, 13, 62] present many attractive fea-
tures compared with other techniques, including an implicit treatment of multiply
connected structures and a compatibility with fast solvers running in quasi-linear
computational complexity [30, 100]. Nonetheless, the projector-based approaches
introduced in [5, 62] are only applicable for PECs. Likewise, the formulation based
on the PMCHWT equation proposed in [13] has been obtained for purely dielec-
tric materials. Therefore that low frequency preconditioner is not valid for lossy
conductors since the presence of the finite conductivity significantly changes the
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behavior of the lower diagonal block of the PMCHWT matrix.
This chapter provides an extension of the PMCHWT equation to eddy current

applications through the use of quasi-Helmholtz projectors. The specific low fre-
quency behavior created by the complex permittivity of the material is investigated
via an ad hoc analysis to identify the source of the breakdown. A tailored strat-
egy is then designed to deal with the different asymptotic scalings of the upper
and lower diagonal blocks of the PMCHWT matrix. Standard and dual projec-
tors are defined to ensure that: (i) divergent elements are removed, (ii) the rest of
the matrix is not corrupted by a new source of breakdown, (iii) no null space is
introduced, and (iv) sufficient accuracy is achieved at very low frequencies. The
new full-wave approach can handle eddy current modeling by taking advantage
of a new regularization scheme using quasi-Helmholtz projectors. The obtained
formulation successfully fulfills conditions (i) to (iv). Precisely, the new method
is well-conditioned, remains accurate at very low frequencies, smoothly shifts be-
tween low and high frequencies, and can be used with both simply and multiply
connected geometries, while offering a low computational complexity. Note that the
dense discretization breakdown, occurring when the mesh element size decreases,
is not treated in this work.

The rest of the chapter is organized in the following manner. The specific back-
ground and notation are defined in Section 4.2. An eddy current model built with
the Boundary Element Method (BEM) is then presented in Section 4.3. An exten-
sive analysis of the PMCHWT equation behavior at low frequencies for conductors
is detailed in Section 4.4, and is followed in Section 4.5 by the description of the pro-
cedure to build the new full-wave formulation. Supplementary details are contained
in Section 4.6 regarding the numerical implementation. Finally, several numerical
experiments are presented in Section 4.7 to support the development, after which
Section 4.8 concludes the chapter.

4.2 Background and Notation
Let Ω1 ⊂ R3 be a closed lossy conductor with smooth boundary Γ = ∂Ω1 and

outward pointing normal n̂, residing in the outside medium Ω0 = R3\Ω1. Compared
with the case of dielectrics, the conductor is also defined with a finite conductivity
σ1. The exterior vacuum medium is considered non conductive, with σ0 = 0 S m−1.
Throughout this chapter, the indices {0,1} represent the exterior and interior me-
dia, respectively. The complete configuration is illustrated in Figure 4.1 with an
electromagnetic field (Ei,H i) illuminating the object.

The geometry can be either simply connected or include handles. The conductor
is characterized by its constant permeability µ1 = µ0µr, constant conductivity σ1,
and complex permittivity

ϵ1 = ϵ0ϵ
′
r − j σ1

ω
, (4.1)
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Figure 4.1: Conductive object Ω1 immersed in the air in the presence of an incident
electromagnetic field (Ei,H i).

where ϵ′
r is the real-valued relative permittivity and ω is the angular frequency. The

eddy current conditions are characterized by the following relations [51, 36]⎧⎨⎩ωϵ0 ≪ σ1

Lω
√
µ0ϵ0 ≪ 1 ,

(4.2)

where L is the characteristic size of the conductor. In these conditions, the interior
wave number is

k1 = ω
√
µ1ϵ1

≈
√

−jωσ1µ1

≈ 1 − j
δ

, (4.3)

where δ =
√︂

2/ (ωσ1µ1) represents the skin depth and determines the concentration
of current densities near the surface of the conductor (known as the skin effect) [36].

The electric and magnetic integral operators T k and Kk are defined on Γ as in
Chapter 2 (eqs. (2.58) and (2.61), respectively). We recall the PMCHWT integral
equation (2.77) under matrix form [71, 22, 94],(︄

η0T k0 + η1T k1 −(Kk0 + Kk1)
Kk0 + Kk1

1
η0

T k0 + 1
η1

T k1

)︄(︄
js

ms

)︄
=
(︄

−n̂ × Ei

−n̂ × H i

)︄
, (4.4)

where the unknowns are the surface electric and magnetic current densities

js = n̂ × H , (4.5)
ms = −n̂ × E , (4.6)
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and where η{0,1} =
√︂
µ{0,1}/ϵ{0,1} is the characteristic impedance of the exterior or

interior medium.
Following the BEM, the surface Γ is discretized with a mesh of planar tri-

angular elements. The unknown surface current densities are then discretized
with the divergence-conforming Rao-Wilton-Glisson (RWG) basis functions [75]
{fn, n = 1 . . . Ne} as

js ≈
Ne∑︂

n=1
jnfn , (4.7)

ms ≈
Ne∑︂

n=1
mnfn , (4.8)

where Ne is the number of edges in the mesh. Lastly, the system is tested with curl-
conforming rotated RWG functions {n̂ × fn, n = 1 . . . Ne} to produce the linear
matrix system

Zx = b ⇐⇒
(︄

Tupper −K
K Tlower

)︄(︄
j

m

)︄
=
(︄

e
h

)︄
, (4.9)

where the magnetic operator matrix appearing in the off-diagonal blocks is

K = Kk0 + Kk1 , (4.10)

and the diagonal electric operator blocks, which differ from each other due to the
impedance factor, are

Tupper = η0Tk0 + η1Tk1

= − jk0η0TA,k0 + η0

jk0
TΦ,k0

− jk1η1TA,k1 + η1

jk1
TΦ,k1 , (4.11)

Tlower = 1
η0

Tk0 + 1
η1

Tk1

= − jk0

η0
TA,k0 + 1

jk0η0
TΦ,k0

− jk1

η1
TA,k1 + 1

jk1η1
TΦ,k1 . (4.12)
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The matrices and vectors elements are obtained by calculating, for m,n = 1 . . . Ne,

(Kk)mn = ⟨n̂ × fm,Kk(fn)⟩ , (4.13)
(Tk)mn = ⟨n̂ × fm,T k(fn)⟩ , (4.14)

(TA,k)mn = ⟨n̂ × fm,T A,k(fn)⟩ , (4.15)
(TΦ,k)mn = ⟨n̂ × fm,T Φ,k(fn)⟩ , (4.16)

(e)m = ⟨n̂ × fm,−n̂ × Ei⟩ , (4.17)
(h)m = ⟨n̂ × fm,−n̂ × H i⟩ , (4.18)

where ⟨u,v⟩ =
∫︁∫︁

Γ u · v dΓ, and the unknown solution vector elements are

(j)n = jn , (4.19)
(m)n = mn . (4.20)

For the sake of analysis, we will also use the Loop-Star transformation matrices
that were introduced in Chapter 3. We recall the complete matrix for the change
of basis, including the global loops,

A =
(︂
Λ H Σ

)︂
, (4.21)

where Λ, H, and Σ are the transformation matrices from the Loop, harmonic,
and Star subspaces to the RWG space, respectively. Once linear independence of
the columns is guaranteed for the Loop and Star matrices, the quasi-Helmholtz
projectors are defined following eqs. (3.39) and (3.40). Additionally, we introduce
the following dual quasi-Helmholtz projectors, defined as [5]

PΛ = Λ
(︂
ΛTΛ

)︂+
ΛT , (4.22)

PΣH = I − PΛ . (4.23)

These projectors are the equivalents of the primal ones for the dual barycen-
tric mesh on which are defined the Buffa-Christiansen (BC) basis functions [20]
{gn, n = 1 . . . Ne}. On the dual mesh, the properties of the Loop and Star functions
are exchanged. Compared with the standard case, PΛ projects on the non-solenoidal
subspace of the dual mesh, so that by complementarity, the harmonic subspace is
implicitly included in PΣH, which projects on the entire solenoidal subspace. In
order to apply these dual projectors, which are designed for the dual mesh, a mixed
Gram matrix built from rotated RWG and BC functions is required. The Gram
matrix elements are thus defined as

(G)mn = ⟨n̂ × fm, gn⟩ . (4.24)

Multiplying the inverse of this Gram matrix before applying the dual projector
is necessary to link the operators discretized with primal RWG functions to the
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projectors acting on the dual BC functions. The construction of the BC functions
is normally more expensive than the RWG functions. Fortunately, the entire solving
process only requires the barycentric mesh refinement for this sole Gram matrix.
Additionally, this matrix is sparse and can be computed analytically [5], and thus
does not incur any excessive computational overhead.

4.3 Quasi-Static Eddy Current Model
The majority of existing BEM formulations for the simulation of eddy currents

rely on the quasi-static approximation of Maxwell’s equations [36, 78, 101]. Specif-
ically, the displacement currents are neglected due to the relation

ωϵ0 ≪ σ1 , (4.25)

which leads to low frequency-only models that are valid under eddy current con-
ditions. In this section, we briefly present the so-called JKHE formulation found
in [78], which we use as a reference in the numerical experiments. The problem
setting is the same as described in the previous section, and we define the surface
vectorial operators

(Skf)(r) =
∫︂∫︂

Γ
Gk(r, r′) f(r′) dr′ , (4.26)

(Dv,kf)(r) =
∫︂∫︂

Γ
∇Gk(r, r′) × f(r′) dr′ , (4.27)

(Dk g)(r) =
∫︂∫︂

Γ
∇′Gk(r, r′) g(r′) dr′ . (4.28)

The operator Dk acts on scalar functions and the primed gradient indicates that the
derivative applies to the primed variable r′. Additionally, we define the following
notations for any operator A ,

×
A = n̂ × A , (4.29)
Ȧ = n̂ · A . (4.30)

Given the quasi-static approximation, the electric and magnetic equations on
the surface Γ are written [78]

1
2E(r) = jωµ

∫︂∫︂
Γ
n̂′ × H(r′)Gk(r, r′) dr′

−
∫︂∫︂

Γ
n̂′ × E(r′) × ∇′Gk(r, r′) dr′ −

∫︂∫︂
Γ
n̂′ · E(r′) ∇′Gk(r, r′) dr′ , (4.31)

1
2H(r) = −σ

∫︂∫︂
Γ
n̂′ × E(r′)Gk(r, r′) dr′

−
∫︂∫︂

Γ
n̂′ × H(r′) × ∇′Gk(r, r′) dr′ −

∫︂∫︂
Γ
n̂′ · H(r′) ∇′Gk(r, r′) dr′ , (4.32)
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where n̂′ is the unit normal at position r′. From these two equations, several
variations can be obtained by considering them in the exterior or interior media,
but also by rotating or projecting the equations with the n̂× or n̂ · operations. In
the exterior medium, the incident fields Ei and H i must also be taken into account
on the right hand sides of (4.31) and (4.32), respectively.

As its name indicates, the JKHE formulation includes four unknown surface
quantities, two of which are vectorial (current densities) and the other two scalar
(normal component of fields), defined on Γ as

js = n̂ × H , (4.33)
ms = −n̂ × E , (4.34)
En = n̂ · E , (4.35)
Hn = µr n̂ · H . (4.36)

Therefore, we choose to discretize js and ms with RWG basis functions fn, while
En and Hn are decomposed with pulse basis functions gn, which results in

js ≈
Ne∑︂

n=1
jnfn , ms ≈

Ne∑︂
n=1

mnfn , (4.37)

En ≈
Nc∑︂

n=1
engn , Hn ≈

Nc∑︂
n=1

hngn , (4.38)

where Nc indicates the number of triangle cells on the mesh. Equations (4.31) and
(4.32) can then be rewritten as

1
2E(r) = jωµ (Sk js)(r) + (Dv,k ms)(r) − (Dk En)(r) , (4.39)
1
2H(r) = σ (Sk ms)(r) − (Dv,k js)(r) − 1

µr

(Dk Hn)(r) . (4.40)

Furthermore, a few details need to be considered to properly derive the complete
formulation:

• no incident fields are present inside the object;

• the conductivity of the vacuum is null;

• outside of the conductor, the normal n̂, pointing toward the exterior, must
be inverted (−n̂).

The full set of equations is then obtained by selecting n̂× (4.40) in the interior
medium, as well as n̂× (4.39), n̂ · (4.39) and n̂ · (4.40) in the air medium, resulting
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in the JKHE matrix equation⎛⎜⎜⎜⎜⎜⎜⎜⎝

I
2 +

×
Dv,k1 −σ1

×
Sk1 0 1

µr

×
Dk1

−jωµ0
×
Sk0

I
2 −

×
Dv,k0

×
Dk0 0

jωµ0 Ṡk0 Ḋv,k0
I
2 − Ḋk0 0

−Ḋv,k0 0 0 I
2 − Ḋk0

⎞⎟⎟⎟⎟⎟⎟⎟⎠

⎛⎜⎜⎜⎜⎜⎜⎝
js

ms

En

Hn

⎞⎟⎟⎟⎟⎟⎟⎠ =

⎛⎜⎜⎜⎜⎜⎜⎝
0

−n̂ × Ei

n̂ · Ei

n̂ · H i

⎞⎟⎟⎟⎟⎟⎟⎠ . (4.41)

The system is then tested according to the nature of the operators. The first two
equations are tested with RWG functions, while the last two equations are tested
using pulse functions [10].

Since this model stems from a quasi-static approximation, it cannot be used at
higher frequencies, although eddy currents still manifest inside conductors. This
creates a limitation of the method as it becomes more and more inaccurate as the
frequency increases, as demonstrated in [19].

4.4 Asymptotic Study of the PMCHWT Equa-
tion in the Eddy Current Regime

In this section, a comprehensive analysis of the asymptotic behavior of the
PMCHWT equation in the context of eddy current modeling is carried out at low
frequencies, as characterized by the conditions in (4.2). In particular, we consider
the regime where the conductivity of the object σ1 is fixed and ω → 0 (which is
equivalent to k → 0). A study for the case of constant skin depth and decreasing
frequency, i.e. when the product σω is fixed and ω → 0, has been proposed in [16],
albeit with a different method and objective. The third configuration, where the
frequency is constant and σ → ∞, is currently under study. The target regime
of our study was also selected due to its relevancy for practical applications in
which the material properties are unchanging. For instance, during manufacturing
processes, parts of a given conductivity are scanned via non destructive testing by
manipulating the skin depth through varying exciting frequencies.

For the purpose of analysis, we first apply a simple quasi-Helmholtz decomposi-
tion to the PMCHWT matrix equation using the Loop-Star transformation matrix
A, which is written as

ZLS =
(︄

AT 0
0 AT

)︄(︄
Tupper −K

K Tlower

)︄(︄
A 0
0 A

)︄
. (4.42)

Note that this approach only serves to facilitate the asymptotic study and must
not be used in practice due to the ill-conditioning related to the mesh discretization
introduced by the Loop and Star matrices [1]. With this technique, similarly to the
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case of the low frequency EFIE presented in Chapter 3, the Loop, harmonic and Star
components of each operator block of the PMCHWT system can be investigated one
by one to better understand the source of the instabilities in eddy current conditions
and to design an effective rescaling scheme. In the following, the Landau symbol
O for the asymptotic scalings implies ω → 0.

4.4.1 Magnetic Operator
We start by inspecting the magnetic operator matrix K (4.10) which is shared

by both off-diagonal blocks. In the discretization process, when solenoidal func-
tions simultaneously appear as testing and source functions, the static part of the
operator actually cancels out, with an exception if both are global loop functions,
in which case only partial cancellations occur [23, 15]. Using the transformation
matrices, this can be translated to the matrix relations

ΛTK0Λ = HTK0Λ = ΛTK0H = 0 , (4.43)

where K0 denotes the static part of K and is defined as

(K0)mn = ⟨n̂ × fm,K0(fn)⟩ , (4.44)

with

(K0f)(r) = n̂ ×
∫︂∫︂

Γ
∇G0(r, r′) × f(r′) dr′

= n̂ ×
∫︂∫︂

Γ
∇
(︃ 1

4πR

)︃
× f(r′) dr′ . (4.45)

The kernel of the operator is then analyzed to isolate its static component as well
as determine the asymptotic behavior of the dynamic part. Considering that ω →
0, the exponential e−jkR of the Green’s function (2.43) can be developed with a
Maclaurin expansion. Writing up to the first four terms, the series is approximated
as

Gk(r, r′) = 1
4π

∞∑︂
n=0

(−jkR)n

n!R

≈ 1
4π

(︄
1
R

− jk − k2R

2 + jk3R2

6 + O(k4)
)︄
. (4.46)

Since the second term is constant with respect to r, the series for the gradient of
the Green’s function becomes

∇Gk(r, r′) ≈ 1
4π∇

(︄
1
R

− jk − k2R

2 + jk3R2

6 + O(k4)
)︄

≈ 1
4π

(︄
∇
(︃ 1
R

)︃
− k2

2 ∇R + jk3

6 ∇(R2) + O(k4)
)︄
. (4.47)
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The first term of the series is independent of the frequency and corresponds to
the static part. This term therefore disappears when solenoidal functions are used
according to the combinations described in (4.43).

Contrary to the pure dielectric setting, the wave numbers of the exterior and
interior media have a different scaling in ω. Consequently, we write the kernels for
the interior and exterior wave numbers

∇Gk0(r, r′) ≈ 1
4π

(︄
∇
(︃ 1
R

)︃
− µ0ϵ0ω

2

2 ∇R + j (µ0ϵ0)3/2ω3

6 ∇(R2) + O(ω4)
)︄
,

(4.48)

∇Gk1(r, r′) ≈ 1
4π

(︄
∇
(︃ 1
R

)︃
+ j µ1σ1ω

2 ∇R + (1 − j)(µ1σ1ω)3/2

6
√

2
∇(R2) + O(ω2)

)︄
.

(4.49)
Lastly, given that K = Kk0 + Kk1 , the asymptotic scalings can be ascertained from
the above gradient expansions by selecting the dominant real and imaginary terms
in the sum, resulting in

ℜ(K) = O(1) , ℑ(K) = O(ω) , (4.50)
ℜ(Kd) = O(ω3/2) , ℑ(Kd) = O(ω) , (4.51)

where Kd denotes the dynamic part of K.

4.4.2 Electric Operator
In the case of the electric operator, the diagonal block matrices Tupper (4.11)

and Tlower (4.12) only differ because of the impedance factor. For this reason, we
rewrite the scalar factors using the definitions of k0, k1, η0 and η1 with respect to
ω to obtain

k0η0 = ωµ0 = O(ω) , (4.52)
k1η1 = ωµ1 = O(ω) , (4.53)
k0/η0 = ωϵ0 = O(ω) , (4.54)
k1/η1 = ωϵ1 = ωϵ0ϵ

′
r − jσ1 = O(1) . (4.55)

The frequency term in (4.55) is dominated by the constant conductivity term, which
constitutes a major difference from the PMCHWT equation for lossless dielectrics
[13] and creates an asymmetry between the upper and lower blocks.

Before examining the operator kernel, we also recall the following expression
valid for any element of the scalar potential matrix, derived in Chapter 3,

(TΦ,k)mn = −
∫︂∫︂

Γ
∇ · fm(r)

∫︂∫︂
Γ
Gk(r, r′) ∇′ · fn(r′) dr′dr . (4.56)
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This form is particularly useful to determine the asymptotic behavior for the quasi-
Helmholtz components of the electric operator matrix. First, as inferred in Chap-
ter 3, the scalar potential operator is canceled whenever a solenoidal function ap-
pears as the testing or source function. Since both Loop and global loop functions
are divergence-free, we have the following relations

ΛTTΦ,k = TΦ,kΛ = HTTΦ,k = TΦ,kH = 0 . (4.57)

These cancellations of the scalar potential thus imply that the operator only remains
in the Star-Star component of the decomposition, i.e. ΣTTΦ,kΣ /= 0.

Secondly, the vector and scalar potentials both share the same Green’s function
kernel, with the difference that the testing and source functions are either f for the
vector potential, or ∇ · f for the scalar potential. Writing out the expressions for
the vector and scalar potentials with the Green’s function as the kernel, we have

(TA,k)mn =
∫︂∫︂

Γ
fm(r) ·

∫︂∫︂
Γ
Gk(r, r′) fn(r′) dr′dr , (4.58)

(TΦ,k)mn = −
∫︂∫︂

Γ
∇ · fm(r)

∫︂∫︂
Γ
Gk(r, r′) ∇′ · fn(r′) dr′dr . (4.59)

Similarly to the magnetic operator, we develop the exponential of the Green’s
function with the Maclaurin series for the exterior and interior wave numbers

Gk0(r, r′) ≈ 1
4π

(︄
1
R

− jk0 − k2
0

2 R + jk3
0

6 R2 + O(k4
0)
)︄
, (4.60)

Gk1(r, r′) ≈ 1
4π

(︃ 1
R

− (1 + j)
√︃
µ1σ1ω

2 + jµ1σ1ω

2 R + O(ω3/2)
)︃
. (4.61)

In both series expansions, the second term is independent of R. Moreover, as
mentioned in Chapter 3, the integral of a Loop function on the surface considered
is null. This is also true for global loop functions, as demonstrated in Appendix A.
In other words, for a Loop or global loop function l, we have∫︂∫︂

Γ
l(r) dr = 0 . (4.62)

This rule therefore applies for (TA,k)mn when the source function fn is solenoidal.
In this case, the second term of the series above vanishes. Consequently, the real
and imaginary asymptotic scalings of both operators inside and outside are

ℜ((TA,k0)mn) = O(1) , ℑ((TA,k0)mn) =
{︄

O(ω3) if fn solenoidal
O(ω) otherwise ,

(4.63)

ℜ((TΦ,k0)mn) = O(1) , ℑ((TΦ,k0)mn) = O(ω) , (4.64)

ℜ((TA,k1)mn) = O(1) , ℑ((TA,k1)mn) =
⎧⎨⎩O(ω) if fn solenoidal

O(ω1/2) otherwise ,
(4.65)

ℜ((TΦ,k1)mn) = O(1) , ℑ((TΦ,k1)mn) = O(ω1/2) . (4.66)
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Then, given the composition of the diagonal blocks Tupper (4.11) and Tlower
(4.12), as well as the relations (4.52)–(4.55), the asymptotic scalings can be acquired
for each quasi-Helmholtz component. The vector and scalar potential matrices are
separated and considered for the upper and lower diagonal blocks as

TA,upper = − jωµ0TA,k0 − jωµ1TA,k1 , (4.67)

TΦ,upper ≈ 1
jωϵ0

TΦ,k0 + 1
σ1

TΦ,k1 , (4.68)

TA,lower ≈ − jωϵ0TA,k0 − σ1TA,k1 , (4.69)

TΦ,lower = 1
jωµ0

TΦ,k0 + 1
jωµ1

TΦ,k1 , (4.70)

where the approximations come from neglecting the non-dominant term of the
complex permittivity at low frequency. Lastly, the final scalings can be derived
from the above relations, resulting in

ℜ((TA,upper)mn) =
⎧⎨⎩O(ω2) if fn solenoidal

O(ω3/2) otherwise ,
(4.71)

ℜ((TΦ,upper)mn) = O(1) , (4.72)
ℜ((TA,lower)mn) = O(1) , (4.73)
ℜ((TΦ,lower)mn) = O(ω−1/2) , (4.74)

for the real parts and

ℑ((TA,upper)mn) = O(ω) , (4.75)
ℑ((TΦ,upper)mn) = O(ω−1) , (4.76)

ℑ((TA,lower)mn) =
⎧⎨⎩O(ω) if fn solenoidal

O(ω1/2) otherwise ,
(4.77)

ℑ((TΦ,lower)mn) = O(ω−1) , (4.78)

for the imaginary parts.

4.4.3 Quasi-Helmholtz Decomposition of the PMCHWT
Matrix

With the exhaustive analysis of the electric and magnetic operators, the asymp-
totic behavior of the entire matrix can now be summarized by writing the Loop-Star
decomposed PMCHWT matrix in block form. Each of the four main blocks is di-
vided as a submatrix of size 3 × 3. The Loop, harmonic and Star symbols on the
left of the matrix correspond to the testing space, while the ones written above the
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matrix indicate the source space. With this, the real and imaginary matrix scalings
are, respectively,

ℜ (ZLS) = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ ω2 ω2 ω3/2 ω3/2 ω3/2 1
H ω2 ω2 ω3/2 ω3/2 1 1
Σ ω2 ω2 1 1 1 1
Λ ω3/2 ω3/2 1 1 1 1
H ω3/2 1 1 1 1 1
Σ 1 1 1 1 1 ω−1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.79)

ℑ (ZLS) = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ ω ω ω ω ω ω

H ω ω ω ω ω ω

Σ ω ω ω−1 ω ω ω

Λ ω ω ω ω ω ω1/2

H ω ω ω ω ω ω1/2

Σ ω ω ω ω ω ω−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.80)

To identify the matrix breakdown, it is clearer and more convenient to write the
asymptotic scalings independently of the distinction between real and imaginary
parts, which results in

ZLS = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ ω ω ω ω ω 1
H ω ω ω ω 1 1
Σ ω ω ω−1 1 1 1
Λ ω ω 1 1 1 1
H ω 1 1 1 1 1
Σ 1 1 1 1 1 ω−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.81)

Similar to the decomposition of the EFIE for PECs seen in Chapter 3, the diagonal
Star-Star components grow unbounded and scale as O(ω−1) due to the presence
of the scalar potential term. Moreover, the poor behavior of the matrix is also
due to the reciprocal scalings in ω. More precisely, in the low frequency limit,
the application of the Gershgorin circle theorem reveals three groups of eigenvalue
clusters:
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• The third and sixth rows correspond to eigenvalues diverging to infinity;

• The first and second rows correspond to eigenvalues around zero;

• The fourth and fifth rows correspond to eigenvalues gathered inside constant
disks.

The first and second categories are similar to the ones observed on the EFIE for
PECs and dielectrics, although the eigenvalues for the second category remain
around zero without necessarily converging to the origin. Despite not contributing
to the matrix breakdown, the presence of the third category of eigenvalues invali-
dates the use of rescaling schemes proposed for pure dielectrics, hence the need to
find a strategy adapted to lossy conductors.

4.4.4 Loss of Accuracy at Very Low Frequency
As described in Chapter 3, the low frequency analysis needs to account for

potential partial losses in the solution as well, since eliminating the conditioning
breakdown of the PMCHWT matrix does not necessarily guarantee an accurate
solution. In particular, the computation of quantities of interest from the solution
such as scattered fields may become impossible. In this context, we consider three
types of frequently encountered excitations [73]:

• Plane wave excitation, e.g. fields radiated by a remote antenna;

• Inductive excitation, e.g. voltage feed within a circuit, with a global loop
going through the excitation port;

• Capacitive excitation, counterpart of the inductive excitation, without a global
loop passing through the excitation port.

In the case of plane waves, the current density solution is typically used to obtain
the scattered electric far field, whereas for circuit simulations with inductive and
capacitive excitations, the electric near field can be computed from the current
solution, after which the volumic current inside the conductor is derived. Therefore,
we need to identify which components of the solution are required to correctly obtain
the desired fields for each type of excitation. This can be done with the following
steps:

1. Obtain the asymptotic scalings of the right hand side b.

2. Derive the asymptotic scalings of the inverse PMCHWT matrix Z−1.

3. Deduce the asymptotic scalings of the current density solution x = Z−1b.

4. From the expressions of the far or near fields, determine their scalings based
on x. The solution components that produce dominant scalings are then
identified as the ones necessary for an accurate computation.
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Right hand side

We start by determining the scalings of the quasi-Helmholtz decomposition of
the right hand side excitations. For the plane wave, both electric and magnetic fields
behave identically [13]. Expanding the exponential with the Maclaurin series, each
right hand side element can be written as

(b)m = −
∫︂∫︂

Γ
n̂ × fm(r) · n̂ × A0 e−jk0k̂·r dr

= −
∫︂∫︂

Γ
fm(r) · A0 e−jk0k̂·r dr

≈ −
∫︂∫︂

Γ
fm(r) · A0

⎛⎝1 − jk0k̂ · r − k2
0(k̂ · r)2

2 + O(k3
0)
⎞⎠ dr , (4.82)

where A0 is a constant vector characterizing the peak amplitude and polarization
of the electric or magnetic field. Since the integral of solenoidal functions is null,
the first term of the expansion vanishes when fm is a Loop or global loop function.
The scalings can thus be readily obtained from the expression above and are listed
in the corresponding column in Table 4.1 for the electric and magnetic fields.

As for inductive and capacitive excitations, they are typically modeled with a
voltage delta gap [73] or a magnetic frill around the feed point [33]. For this study,
we examine the expressions of the fields created by a magnetic frill. The electric
and magnetic fields are written, respectively, [85]

Ei(r) = −
∫︂

frill
∇Gk0(r, r′) × m(r′) dr′ , (4.83)

H i(r) = 1
jωη2

0
∇
∫︂

frill
Gk0(r, r′) ∇′ · m(r′) dr′

+ k2
0

jωη2
0

∫︂
frill

Gk0(r, r′) m(r′) dr′ , (4.84)

where m is the given magnetic current forming the frill. With a closer inspection of
these expressions, we can recognize that Ei is defined with the magnetic operator
Kk0 (minus the cross product with the normal). Similarly, H i is defined from the
electric operator T k0 , albeit with different factors. The analysis based on the series
expansion of the kernel made previously can thus be reused, considering only the
case of the exterior wave number. Additionally, on a multiply connected structure
with handles, the source function m represents a poloidal loop surrounding the
feed point. As a consequence, if the structure contains a toroidal loop passing
through the frill, the problem is inductive and the static part of the Green’s function
in eq. (4.83) does not cancel out for the harmonic component. Otherwise, the
problem is considered capacitive and the static part is removed [73, 15]. Lastly, the
asymptotic scalings are summarized in Table 4.1 for each type of right hand side
based on the above observations.

50



4.4 – Asymptotic Study of the PMCHWT Equation in the Eddy Current Regime

Table 4.1: Scalings of the real and imaginary parts of the excitation when ω → 0.

Right hand side O(b)
Component Plane wave Inductive Capacitive
ℜ(Ei

Λ),ℑ(Ei
Λ) ω2, ω ω2, ω3 ω2, ω3

ℜ(Ei
H),ℑ(Ei

H) ω2, ω 1, ω3 ω2, ω3

ℜ(Ei
Σ),ℑ(Ei

Σ) 1, ω 1, ω3 1, ω3

ℜ(H i
Λ),ℑ(H i

Λ) ω2, ω ω4, ω ω4, ω

ℜ(H i
H),ℑ(H i

H) ω2, ω ω4, ω ω4, ω

ℜ(H i
Σ),ℑ(H i

Σ) 1, ω ω4, ω ω4, ω

Inverse matrix

Next, the asymptotic behavior of the inverse matrix is derived from the decom-
position of the forward matrix ZLS in eqs. (4.79) and (4.80). For example, with a
recursive application of the block matrix inversion [49] on the block decomposition
of ZLS, we obtain the real and imaginary scalings for the inverse,

ℜ
(︂
Z−1

LS

)︂
= O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ ω−1/2 1 ω3/2 1 1 1
H 1 1 ω2 1 1 ω3/2

Σ ω3/2 ω2 ω2 ω2 ω2 ω2

Λ 1 1 ω2 1 ω3/2 ω3/2

H 1 1 ω2 ω3/2 ω3/2 ω3/2

Σ 1 ω3/2 ω2 ω3/2 ω3/2 ω3/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.85)

ℑ
(︂
Z−1

LS

)︂
= O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ ω−1 ω1/2 ω ω1/2 ω1/2 ω1/2

H ω1/2 ω ω ω ω ω

Σ ω ω ω ω ω5/2 ω5/2

Λ ω1/2 ω ω ω ω ω

H ω1/2 ω ω5/2 ω ω ω

Σ ω1/2 ω ω5/2 ω ω ω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.86)
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Table 4.2: Scalings of the real and imaginary parts of the surface current densities
when ω → 0.

Surface current density O(x)
Component Plane wave Inductive Capacitive
ℜ(jΛ),ℑ(jΛ) 1, ω1/2 1, ω1/2 ω3/2, ω

ℜ(jH),ℑ(jH) ω3/2, ω 1, ω ω2, ω

ℜ(jΣ),ℑ(jΣ) ω2, ω ω2, ω ω2, ω

ℜ(mΛ),ℑ(mΛ) ω3/2, ω 1, ω ω2, ω

ℜ(mH),ℑ(mH) ω3/2, ω 1, ω ω2, ω5/2

ℜ(mΣ),ℑ(mΣ) ω3/2, ω ω3/2, ω ω2, ω5/2

Surface current density

Following the third step of the analysis, we can derive the scalings of the current
density x from the decomposition of the inverse matrix and the different right hand
sides. In particular, the decomposed solution is obtained with the operation xLS =
Z−1

LS bLS, where the subscript LS denotes the Loop-Star decomposition. To illustrate
the procedure, we detail the result, given a plane wave excitation, for the Loop
component of the electric current density jΛ, which corresponds to the first block
of the vector xLS. This is obtained by multiplying the first line of Z−1

LS (eqs. (4.85)
and (4.86)) with the plane wave right hand side (first column of Table 4.1),

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω−1/2 + jω−1

1 + jω1/2

ω3/2 + jω
1 + jω1/2

1 + jω1/2

1 + jω1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠

T

·

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω2 + jω
ω2 + jω
1 + jω
ω2 + jω
ω2 + jω
1 + jω

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
= O(1) + j O(ω1/2) , (4.87)

where the resulting real and imaginary asymptotic scalings are determined by the
dominant terms of the product. This operation is repeated for all components of
each type of excitation, which are compiled in Table 4.2. The dominant components
are highlighted in red, with the electric and magnetic current densities evaluated
separately.

Electric fields

For the last step, we examine the electric far and near fields computed from the
electric and magnetic surface current densities. First, the far field approximation
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is applied for the expression of the scattered field far from the object, expressed as
[9]

E(r) ≈ − jωµ0

4π
e−jk0r

r

∫︂∫︂
Γ

ejk0r′·r̂js(r′) dr′

+ r̂ × η0

(︄
jωϵ0

4π
e−jk0r

r

∫︂∫︂
Γ

ejk0r′·r̂ms(r′) dr′
)︄
, (4.88)

where r = ∥r∥ and r̂ = r/∥r∥. Similarly to the asymptotic evaluations made until
now, the exponential functions inside the integrals are expanded with the Maclaurin
series as

E(r) ≈ − jωµ0

4πr

∫︂∫︂
Γ

(︄
1 + jk0r

′ · r̂ − (k0r
′ · r̂)2

2 + O(k3
0)
)︄

js(r′) dr′

+ r̂ × jk0

4πr

∫︂∫︂
Γ

(︄
1 + jk0r

′ · r̂ − (k0r
′ · r̂)2

2 + O(k3
0)
)︄

ms(r′) dr′ , (4.89)

where the exponential functions outside of the integrals have been approximated
with the first term of their series. When a solenoidal component of either of the
current densities acts as the source, the first term of the corresponding integral
disappears due to being constant with respect to r′. The scalings of the current
densities in the case of the plane wave are then inserted component by component to
identify their individual contributions to the far field. As an example, we examine
the asymptotic behavior of the field produced by the real and imaginary parts of
jΛ, which can be written, respectively,

− jωµ0

4πr

∫︂∫︂
Γ

(︄
jk0r

′ · r̂ − (k0r
′ · r̂)2

2 + O(k3
0)
)︄

O(1) dr′ = O(ω2) + j O(ω3) , (4.90)

− jωµ0

4πr

∫︂∫︂
Γ

(︄
jk0r

′ · r̂ − (k0r
′ · r̂)2

2 + O(k3
0)
)︄

O(jω1/2) dr′ = O(ω7/2) + j O(ω5/2) .

(4.91)

Each far field contribution obtained in this manner is gathered in Table 4.3 for the
plane wave, where the notation has been reduced for clarity. More precisely, we
write (ℜ,ℑ) E(ℜ(jΛ)) = ℜ(E(ℜ(jΛ))), ℑ(E(ℜ(jΛ))). The dominant scalings are
highlighted in red to indicate the current density components that are required to
correctly compute the field. For instance, ℜ(jΛ), ℑ(jΣ), and ℑ(mΣ) are necessary
for a plane wave excitation.

For the inductive and capacitive cases, the electric near field inside the conductor
is calculated from the complete expression of the electric field in free space (2.47),
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written with the interior material quantities as

E(r) ≈ 1
σ1

∇
∫︂∫︂

Γ
Gk1(r, r′) ∇′ · js(r′) dr′

− jωµ1

∫︂∫︂
Γ
Gk1(r, r′) js(r′) dr′

−
∫︂∫︂

Γ
∇Gk1(r, r′) × ms(r′) dr′ . (4.92)

The kernels are expanded once more for the purpose of extracting the dominant
terms after the current density components are inserted. The series expansion is
given by

E(r) ≈ 1
4πσ1

∫︂∫︂
Γ

(︃
∇
(︃ 1
R

)︃
+ jµ1σ1ω

2 ∇R + O(ω3/2)
)︃

∇′ · js(r′) dr′

− jωµ1

4π

∫︂∫︂
Γ

(︃ 1
R

− (1 + j)
√︃
µ1σ1ω

2 + jµ1σ1ω

2 R + O(ω3/2)
)︃

js(r′) dr′

− 1
4π

∫︂∫︂
Γ

(︃
∇
(︃ 1
R

)︃
+ jµ1σ1ω

2 ∇R + O(ω3/2)
)︃

× ms(r′) dr′ . (4.93)

The resulting asymptotic scalings are found in Table 4.3, where the dominant ele-
ments have been highlighted in each column as for the plane wave.

Since the necessary current components for the computation of the electric field
have been identified, we can now confirm whether or not there are critical losses
for each excitation. By comparing the highlighted elements of Table 4.3 to the
ones of Table 4.2, we can determine whether the low frequency current densities
are sufficient on their own. On one hand, the near fields for both the inductive
and capacitive right hand sides can be recovered with the default behavior of the
current densities. As a result, these scenarios only require a cure for the matrix
breakdown. Evidently, the preconditioning for the matrix must guarantee that
the necessary components are still retrieved afterward. On the other hand, the
far field for a plane wave excitation requires three components: ℜ(jΛ), ℑ(jΣ) and
ℑ(mΣ). However, Table 4.2 reveals that the second one, ℑ(jΣ), is dominated
and lost at low frequencies, which means that the far field cannot be computed
accurately. Therefore, a good preconditioning strategy must not only produce a
well-conditioned matrix, but also ensure that the solution retains the elements
needed to derive the respective quantities of interest.

4.5 Stabilization Scheme with Quasi-Helmholtz
Projectors

Now that the low frequency instabilities of the PMCHWT equation have been
identified, a suitable approach must be proposed to both precondition the matrix
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Table 4.3: Scalings of the real and imaginary parts of the electric far/near fields
when ω → 0.

Far field (FF) or near field (NF) O(E)
Component Plane wave (FF) Inductive (NF) Capacitive (NF)
(ℜ,ℑ) E(ℜ(jΛ)) ω2, ω3 ω2, ω ω7/2, ω5/2

(ℜ,ℑ) E(ℑ(jΛ)) ω7/2, ω5/2 ω3/2, ω5/2 ω2, ω3

(ℜ,ℑ) E(ℜ(jH)) ω7/2, ω9/2 ω2, ω ω4, ω3

(ℜ,ℑ) E(ℑ(jH)) ω4, ω3 ω2, ω3 ω2, ω3

(ℜ,ℑ) E(ℜ(jΣ)) ω4, ω3 ω2, ω3 ω2, ω3

(ℜ,ℑ) E(ℑ(jΣ)) ω2, ω3 ω2, ω ω2, ω

(ℜ,ℑ) E(ℜ(mΛ)) ω7/2, ω9/2 1, ω ω2, ω3

(ℜ,ℑ) E(ℑ(mΛ)) ω4, ω3 ω2, ω ω2, ω

(ℜ,ℑ) E(ℜ(mH)) ω7/2, ω9/2 1, ω ω2, ω3

(ℜ,ℑ) E(ℑ(mH)) ω4, ω3 ω2, ω ω7/2, ω5/2

(ℜ,ℑ) E(ℜ(mΣ)) ω7/2, ω5/2 ω3/2, ω5/2 ω2, ω3

(ℜ,ℑ) E(ℑ(mΣ)) ω2, ω3 ω2, ω ω7/2, ω5/2

and secure a correct solution. To this end, we define the following diagonal matrices,

L = diag
(︂
aL bL cL dL eL fL

)︂
, (4.94)

R = diag
(︂
aR bR cR dR eR fR

)︂
, (4.95)

that contain scalar rescaling coefficients to be selected according to the analysis of
the previous section. The rescaling matrices are then multiplied on the left and
right of the system matrix as follows

LZLSR = O

⎛⎜⎜⎜⎜⎜⎝
aLaR ω aLbR ω . . . aLfR

bLaR ω
. . . ...

... . . . ...
fLaR . . . . . . fLfR ω

−1

⎞⎟⎟⎟⎟⎟⎠ . (4.96)

A naive and straightforward approach is to apply a simple diagonal preconditioning,
similar to the EFIE for PECs, using

L = R = diag
(︂
ω−1/2 ω−1/2 ω1/2 1 1 ω1/2

)︂
, (4.97)
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to obtain constant scalings on the diagonal, which results in the decomposed matrix

LZLSR = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ 1 1 ω ω1/2 ω1/2 1
H 1 1 ω ω1/2 ω−1/2 1
Σ ω ω 1 ω1/2 ω1/2 ω

Λ ω1/2 ω1/2 ω1/2 1 1 ω1/2

H ω1/2 ω−1/2 ω1/2 1 1 ω1/2

Σ 1 1 ω ω1/2 ω1/2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.98)

However, as highlighted in the matrix, two elements of the off-diagonal blocks
become unbounded at low frequency, therefore invalidating the use of a basic diag-
onal preconditioner. Instead, the rescaling coefficients must be chosen one by one
to comply with the low frequency requirements.

In addition, to optimize the condition number, the decomposed matrix scal-
ings in (4.81) are written with the corresponding scalar factors from the dominant
operators as

ZLS = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ ωµ0 ωµ0 ωµ0 ω ω 1
H ωµ0 ωµ0 ωµ0 ω 1 1
Σ ωµ0 ωµ0 (ωϵ0)−1 1 1 1
Λ ω ω 1 σ1 σ1 σ1

H ω 1 1 σ1 σ1 σ1

Σ 1 1 1 σ1 σ1 (ωµ0)−1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.99)

We start by rewriting the Loop-Star decomposed equation along with the rescaling
matrices as

LZLSRy = L
(︄

AT 0
0 AT

)︄
b , (4.100)

where y is the auxiliary solution such that

x =
(︄

A 0
0 A

)︄
Ry . (4.101)

From this relation, we can directly derive the asymptotic scalings for the auxiliary
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solution obtained from the preconditioned equation as

y = R−1
(︄

A−1 0
0 A−1

)︄
x = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

a−1
R jΛ
b−1

R jH
c−1

R jΣ
d−1

R mΛ
e−1

R mH
f−1

R mΣ

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.102)

which will be used to determine whether the necessary current density components
for each type of excitation are preserved or not. Regarding the removal of the
matrix breakdown, the coefficients must be selected so as to eliminate the presence
of unbounded elements without introducing null spaces caused by vanishing rows
or columns. In summary, the rescaling coefficients will be chosen to simultaneously
cure the matrix breakdown as well as recover the essential elements of the solution.

Referring to the original matrix (4.99), we first adjust the unbounded Star-Star
blocks on the diagonal which scale as O(ω−1) by fixing

cL = cR = (ωϵ0)1/2 , (4.103)
fL = fR = (ωµ0)1/2 . (4.104)

Then, rewriting the decomposed matrix, we obtain

LZLSR = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ ω ω ω3/2 ω ω ω1/2

H ω ω ω3/2 ω 1 ω1/2

Σ ω3/2 ω3/2 1 ω1/2 ω1/2 ω

Λ ω ω ω1/2 1 1 ω1/2

H ω 1 ω1/2 1 1 ω1/2

Σ ω1/2 ω1/2 ω ω1/2 ω1/2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.105)

where the factors µ0, ϵ0, and σ1 have been omitted for readability. Although the
unbounded elements have been corrected, the first row and first column induce a null
space. Nevertheless, note that this operation also has the positive consequence of
allowing the retrieval of ℑ(jΣ) for the plane wave excitation, which was previously
lost at low frequencies. To delete the newly generated null space, we select the
coefficients

aL = aR = (ωµ0)−1/2 , (4.106)
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thus resulting in the matrix scalings

LZLSR = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ 1 ω1/2 ω ω1/2 ω1/2 1
H ω1/2 ω ω3/2 ω 1 ω1/2

Σ ω ω3/2 1 ω1/2 ω1/2 ω

Λ ω1/2 ω ω1/2 1 1 ω1/2

H ω1/2 1 ω1/2 1 1 ω1/2

Σ 1 ω1/2 ω ω1/2 ω1/2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.107)

Next, we select the second coefficients left and right in order to optimize the second
row and column,

bL = bR = (ωµ0)−1/2 , (4.108)
which now gives

LZLSR = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ 1 1 ω ω1/2 ω1/2 1
H 1 1 ω ω1/2 ω−1/2 1
Σ ω ω 1 ω1/2 ω1/2 ω

Λ ω1/2 ω1/2 ω1/2 1 1 ω1/2

H ω1/2 ω−1/2 ω1/2 1 1 ω1/2

Σ 1 1 ω ω1/2 ω1/2 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.109)

To compensate for the introduced unbounded elements, we then define

eL = (ωµ0)1/2 , (4.110)
eR = (ω/σ1)1/2 , (4.111)

where the choice of the factor for eL is linked to the quasi-Helmholtz projectors and
will be clarified afterward. The matrix scalings are then written as

LZLSR = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ 1 1 ω ω1/2 ω 1
H 1 1 ω ω1/2 1 1
Σ ω ω 1 ω1/2 ω ω

Λ ω1/2 ω1/2 ω1/2 1 ω1/2 ω1/2

H ω 1 ω ω1/2 ω ω

Σ 1 1 ω ω1/2 ω 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.112)
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Although the matrix appears stable, the auxiliary solution for the inductive exci-
tation now scales as

y = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

ω1/2 + jω
ω1/2 + jω3/2

ω3/2 + jω1/2

1 + jω
ω−1/2 + jω1/2

ω + jω1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.113)

thus indicating that the component ℜ(mΛ), required for the computation of the
near field, is dominated and lost. As a consequence, we select the remaining two
coefficients accordingly,

dL = (ωσ1)−1/2 , (4.114)
dR = (ω/σ1)1/2 , (4.115)

with dL chosen so as to maintain the fourth diagonal block independent from the
frequency. Summarizing, the final set of left and right coefficients is defined as⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

aL

bL

cL

dL

eL

fL

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ωµ0)−1/2

(ωµ0)−1/2

(ωϵ0)1/2

(ωσ1)−1/2

(ωµ0)1/2

(ωµ0)1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
,

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

aR

bR

cR

dR

eR

fR

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
=

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎝

(ωµ0)−1/2

(ωµ0)−1/2

(ωϵ0)1/2

(ω/σ1)1/2

(ω/σ1)1/2

(ωµ0)1/2

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎠
. (4.116)

The associated preconditioned matrix is thus

LZLSR = O

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

Λ H Σ Λ H Σ

Λ 1 1 ω ω ω 1
H 1 1 ω ω 1 1
Σ ω ω 1 ω ω ω

Λ 1 1 1 1 1 1
H ω 1 ω ω ω ω

Σ 1 1 ω ω ω 1

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
, (4.117)

which is now free of conditioning breakdown. Furthermore, the asymptotic behavior
of the auxiliary solution for all excitations is detailed in Table 4.4. The components
that are effectively recovered at low frequencies are highlighted and include the
necessary elements for the derivation of the far or near fields according to each
type of right hand side.
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Table 4.4: Scalings of the real and imaginary parts of the auxiliary solution when
ω → 0.

Auxiliary solution O(y)
Component Plane wave Inductive Capacitive
ℜ(jΛ),ℑ(jΛ) ω1/2, ω ω1/2, ω ω2, ω3/2

ℜ(jH),ℑ(jH) ω2, ω3/2 ω1/2, ω3/2 ω5/2, ω3/2

ℜ(jΣ),ℑ(jΣ) ω3/2, ω1/2 ω3/2, ω1/2 ω3/2, ω1/2

ℜ(mΛ),ℑ(mΛ) ω, ω1/2 ω−1/2, ω1/2 ω3/2, ω1/2

ℜ(mH),ℑ(mH) ω, ω1/2 ω−1/2, ω1/2 ω3/2, ω2

ℜ(mΣ),ℑ(mΣ) ω, ω1/2 ω, ω1/2 ω3/2, ω2

The selected coefficients in (4.116) must now be applied through the quasi-
Helmholtz projectors. The four available projectors, PΛH, PΣ, PΛ, and PΣH, are
defined such that the harmonic subspace is always paired with either the Loop
or Star subspace. To comply with this property, the coefficients are associated
accordingly, given

aL = bL

aR = bR

dR = eR

⎫⎪⎪⎬⎪⎪⎭ ⇒ PΛH , (4.118)

eL = fL } ⇒ PΣH . (4.119)

Consequently, the complete projectors are defined on the left side, as

M1 = (ωµ0)−1/2 PΛH + (ωϵ0)1/2 PΣ , (4.120)
M2 = (ωσ1)−1/2 PΛ + (ωµ0)1/2 PΣH , (4.121)

and on the right side, as

M3 = (ωµ0)−1/2 PΛH + (ωϵ0)1/2 PΣ , (4.122)
M4 = (ω/σ1)1/2 PΛH + (ωµ0)1/2 PΣ . (4.123)

As explained in Section 4.2, the application of the dual projector M2 requires the
use of the inverse of the mixed Gram matrix. Therefore, the full preconditioned
formulation is finally expressed as [28](︄

M1 0
0 M2G−1

)︄
Z
(︄

M3 0
0 M4

)︄
y =

(︄
M1 0
0 M2G−1

)︄
b , (4.124)
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where y is the auxiliary solution, from which we derive the current density solution

x =
(︄

M3 0
0 M4

)︄
y . (4.125)

4.6 Implementation Details
In this section, we specify several important details related to the implementa-

tion of the proposed formulation. Specifically, these remarks must be taken into
account to ensure the accuracy and reliability of the scheme. First, when applying
the quasi-Helmholtz projectors, the Loop-Star cancellations described in Section 4.4
must be enforced explicitly. Due to the limited machine precision, the terms that
should disappear, such as the scalar potential with solenoidal functions, leave resid-
ual errors that can be amplified by the rescaling coefficients.

Specifically, in the case of the electric operator, we have the cancellations [5]

PΛHTΦ,k = TΦ,kPΛH = PΛG−1TΦ,k = 0 , (4.126)

which lead to the following formulas for the diagonal blocks,

M1TupperM3 = M1TA,upperM3

+ ωϵ0 PΣTΦ,upperPΣ , (4.127)
M2TlowerM4 = M2TA,lowerM4

+ ωµ0 PΣHG−1TΦ,lowerPΣ . (4.128)

As for the magnetic operator, we have the cancellation relation for the static com-
ponent of Kk [13],

PΛG−1K0PΛH = 0 . (4.129)
This nullification applies to the lower left off-diagonal block, which must be com-
puted explicitly as

M2KM3 = M2KdM3

+ (ϵ0/σ1)1/2 PΛG−1K0PΣ

+ ω(µ0ϵ0)1/2 PΣHG−1K0PΣ

+ PΣHG−1K0PΛH . (4.130)

Additionally, the dynamic part of the operator, Kd, should be calculated by specif-
ically excluding the static term of the kernel (4.47), rather than computing the
difference Kk − K0, to prevent numerical errors. For the upper right off-diagonal
block, however, the use of primal projectors on both the left and right sides does
not produce any particular cancellation. This is due to the fact that HTK0H may
be different from zero, which means that PΛHK0PΛH /= 0.
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Similarly, the static term for the plane wave right hand side must also be ex-
tracted from the exponential inside the integral when applying the projectors PΛH

and PΛG−1 [5]. In other words, the first term of the expansion in (4.82) is delib-
erately omitted during the computation in those cases [99]. As a result, the right
hand side is written as(︄

M1e
M2G−1h

)︄
=
(︄

(ωµ0)−1/2 PΛH 0
0 (ωσ1)−1/2 PΛG−1

)︄(︄
eext
hext

)︄

+
(︄

(ωϵ0)1/2 PΣ 0
0 (ωµ0)1/2 PΣHG−1

)︄(︄
e
h

)︄
, (4.131)

where the subscript ext refers to the extracted right hand side.
The next detail involves the Green’s function defined for lossy media. More

precisely, the complex wave number k1 generates a complex and a real exponential.
From the definition of k1 in (4.3), we have

Gk1(r, r′) = e−jk1R

4πR
= 1

4πR e−j (1−j)R/δ

= 1
4πR e−j R/δ e−R/δ . (4.132)

The second exponential has a real negative exponent, and therefore decays more
and more rapidly as the skin depth δ decreases, or equivalently, the exponential
becomes smaller when the frequency and/or conductivity increase. Consequently,
standard methods such as the Gaussian integration, which are frequently used to
compute integral operators in the absence of singularities, are unable to capture
the fast variation of the Green’s function. Instead, specialized approaches for lossy
media should be employed, such as those found in [74, 70, 95]. For elements cal-
culated analytically, singularity extraction techniques [93, 44, 40] were used for the
computation of the discretized matrix and right hand side, although alternative
methods such as singularity cancellation [45, 89] may be employed.

While the presented preconditioned integral equation has been devised to be
functional at low frequencies, the formulation is still entirely compatible with simu-
lations at higher frequencies. In that case, the quasi-Helmholtz decomposition and
rescaling procedure are not necessary. From the perspective of implementation, the
rescaling coefficients can therefore simply be set to 1 [62], which is equivalent to
using the original PMCHWT equation.

Furthermore, regarding time and memory performance, the proposed formu-
lation can be accelerated with the use of fast solvers [30, 100], as described in
Chapter 3, to attain a quasi-linear complexity as O(N logN). This is made possi-
ble since the preconditioning approach built on the quasi-Helmholtz projectors can
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Figure 4.2: Sphere of radius 1 m with 1048 elements and σ1 = 103 S m−1: Condition
number as a function of the frequency.

be applied in quasi-linear complexity with the help of multigrid preconditioners [65,
59]. As for the computational overhead introduced by the preparation and applica-
tion of the preconditioner, it is effectively counterbalanced by the smaller number
of iterations needed for the iterative solver to converge. As the frequency becomes
lower and lower, the original PMCHWT formulation converges much more slowly,
until it is ultimately unable to obtain a correct solution, whereas the proposed
equation remains stable.

4.7 Numerical Results
A variety of experiments are presented to demonstrate the stability and accuracy

of the proposed strategy. For each experiment, we have fixed the relative real
permittivity and permeability as ϵ′

r = 1 and µr = 1. The results are obtained with
plane wave excitations while the inductive and capacitive cases are currently under
study.

4.7.1 Sphere
For the first configuration, we simulated a simply connected sphere of radius

1 m and conductivity σ1 = 103 S m−1. The structure was discretized with 1048
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triangular elements, which result in 3144 unknowns. First, the condition numbers
were computed for the standard PMCHWT equation, the Loop-Star method and
the new formulation at different frequencies, illustrated in Figure 4.2. The original
PMCHWT matrix clearly displays a fast degeneration of its condition number,
whereas both the Loop-Star method and the new formulation remain stable until
very low frequencies. However, the condition number achieved with the proposed
formulation is significantly lower than that of the Loop-Star scheme, given that the
quasi-Helmholtz projectors are well-conditioned.

Next, we compared the amplitude of the electric and magnetic current densities
against those obtained with the eddy current specific formulation [78] introduced in
Section 4.3, in the case of a plane wave excitation. The current densities have been
computed at the centroids of a subset of elements located at a constant longitude,
shown in Figure 4.3. For the magnetic current density, an analytical solution is also
available for comparison [14, 64]. The Loop-Star method and the new formulation
are in good agreement with both the analytical and eddy current solutions, whereas
the PMCHWT equation completely fails to return correct results. This shows the
capacity of the new strategy to maintain a satisfying accuracy until arbitrarily low
frequencies.

The scattered far field for a plane wave excitation was then verified against a
Mie solution, illustrated in Figure 4.4. As predicted by the theory, the PMCHWT
method delivers a wrong result while the Loop-Star and new methods both match
very well with the Mie solution.

Lastly, to confirm the validity of the new formulation at higher frequencies, we
have simulated an exciting plane wave at 10 MHz. We have also selected a con-
ductivity σ1 = 1 mS m−1 to further invalidate the eddy current conditions. The
standard PMCHWT equation and the eddy current formulation have been tested
along with the new method, using as reference an analytical solution based on
vector spherical harmonics. The electric and magnetic current densities have been
obtained and are illustrated in Figure 4.5. The results show that the original PM-
CHWT equation and the new method are in good agreement with the reference
solution. The eddy current solution, however, is entirely erroneous due to the inva-
lidity of the quasi-static approximation, thus demonstrating the capability of the
new solver to maintain accuracy at higher frequencies where eddy current models
cannot.

4.7.2 Torus
To verify the applicability of the new method to structures including handles,

we simulated a torus with circular cross section, of major radius 1.5 m, minor ra-
dius 0.5 m and conductivity σ1 = 103 S m−1. The geometry was discretized with
1620 triangular elements, which leads to 4860 unknowns. The harmonic subspace
contains two global loops. The condition numbers are first computed for the same
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Figure 4.3: Sphere of radius 1 m with 1048 elements and σ1 = 103 S m−1: (a) Electric
and (b) magnetic current density amplitude on elements of constant longitude given
an exciting plane wave of frequency f = 10−40 Hz propagating along −x̂, polarized
in the −ŷ direction and with B0 = 1 T.
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Figure 4.4: Sphere of radius 1 m with 1048 elements and σ1 = 103 S m−1: Radar
cross section given an exciting plane wave of frequency f = 10−40 Hz propagating
along −ẑ, polarized in the x̂ direction and with E0 = 1 V m−1.

formulations as in the case of the sphere, and are illustrated in Figure 4.6. Similar
results are observed for the torus, namely, that the conditioning of the PMCHWT
equation rapidly saturates, while the Loop-Star and the new methods preserve a
constant condition number, which is lower for the latter. Therefore, the presence
of global loops is well supported by the new formulation in terms of conditioning.

The electric and magnetic current densities were next validated with an exciting
plane wave, with the eddy current solver as a reference. The current densities were
calculated around the handle of the torus, displayed in Figure 4.7. The graphs
demonstrate matching results between the new method, the Loop-Star strategy
and the eddy current formulation, while the original PMCHWT gives erroneous
results.

The scattered far field was computed as well for a plane wave excitation. The
radar cross section is plotted in Figure 4.8, showing that the new formulation
agrees well with the Loop-Star method, and that the PMCHWT equation remains
completely inaccurate.

We then simulated an inductive scenario using a circular ring of major radius
1.0 m, minor radius 0.2 m and conductivity σ1 = 103 S m−1. A plane wave corre-
sponding to an injected voltage of 1 mV at 50 Hz is used as the excitation. The
object was discretized with 1750 triangular elements, for 5250 unknowns. From
circuit theory, we first obtain a resistance of R = 0.05 Ω from the conductivity and
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Figure 4.5: Sphere of radius 1 m with 1048 elements and σ1 = 1 mS m−1: (a) Electric
and (b) magnetic current density amplitude on elements of constant longitude given
an exciting plane wave of frequency f = 10 MHz propagating along −ẑ, polarized
in the x̂ direction and with E0 = 1 V m−1.
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Figure 4.6: Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements and
σ1 = 103 S m−1: Condition number as a function of the frequency.

dimensions of the conductor, which gives a predicted current of I = V/R = 20 mA
after applying Ohm’s law. This corresponds to an average eddy current density of
I/A = 0.159 A m−2, where A is the area of the cross section. The eddy currents
obtained with the new formulation are constant along the axis of the ring (z-axis)
and vary linearly on the cross section, as shown in Figure 4.9, with an average am-
plitude matching the above value. The eddy currents were also computed slightly
below the surface and plotted in Figure 4.10, where they can be seen to flow around
the ring.

4.7.3 Time Performance
The conditioning effect of the different formulations is directly reflected in the

convergence rate of the solution obtained via iterative solvers, thus impacting the
overall time performance. Figure 4.11 illustrates the decaying speed of the residual
error from the Generalized Minimal Residual (GMRES) iterative method, using a
plane wave excitation in the case of a torus. Our formulation successfully converged
to the correct solution in 255 iterations. However, the Loop-Star method required
3410 iterations, whereas the original PMCHWT equation converged to an incorrect
solution.

To further illustrate that the computational overhead introduced by the pre-
conditioning process is compensated by the significantly lower number of iterations
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Figure 4.7: Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements
and σ1 = 103 S m−1: (a) Electric and (b) magnetic current density amplitude on
elements around the handle given an exciting plane wave of frequency f = 10−5 Hz
propagating along −x̂, polarized in the −ŷ direction and with B0 = 1 T.
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Figure 4.8: Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements
and σ1 = 103 S m−1: Radar cross section given an exciting plane wave of frequency
f = 10−40 Hz propagating along −ẑ, polarized in the x̂ direction and with E0 =
1 V m−1.

required for the new formulation, we have performed a comparative runtime ex-
periment against the standard PMCHWT equation. The simulation was made for
a sphere of radius 1 m, of conductivity σ1 = 1 mS m−1, and discretized with 2792
triangles, corresponding to 8376 unknowns. A plane wave oscillating at 5 MHz
illuminates the object. The setup time (including preconditioning), overall compu-
tation time, and number of iterations for the GMRES method are given in Table 4.5.
Note that the indicated timings have been obtained without a fast matrix vector
product algorithm. As predicted, the difference in terms of total time is substan-
tial compared to the additional time required to apply the preconditioning scheme,
justifying the benefit of using the new formulation. Moreover, given that the setup
time and condition number are independent from the type of excitation, similar

Table 4.5: Setup and computation time comparison between the PMCHWT equa-
tion and the new formulation.

Formulation Setup time (s) Nb. of iterations Total time (s)
PMCHWT 59 1062 150
This work 68 276 98
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Figure 4.9: Torus of major and minor radii 1.0 m and 0.2 m with 1750 elements
and σ1 = 103 S m−1: Eddy current inside the torus along the x-axis given a voltage
excitation of value V = 1 mV at frequency f = 50 Hz (the torus is symmetrical
about the z-axis).

Figure 4.10: Torus of major and minor radii 1.0 m and 0.2 m with 1750 elements and
σ1 = 103 S m−1: Eddy current density given a voltage excitation of value V = 1 mV
at frequency f = 50 Hz.
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Figure 4.11: Torus of major and minor radii 1.5 m and 0.5 m with 1620 elements
and σ1 = 103 S m−1: Convergence of the residual error for the Generalized Minimal
Residual algorithm with relative tolerance 10−4 given an exciting plane wave of
frequency f = 10−40 Hz propagating along −ẑ, polarized in the x̂ direction and
with E0 = 1 V m−1.

results are expected for the inductive and capacitive cases.

4.7.4 Jet Engine Shell
In the last experiment, we simulated a plane wave illuminating the outer shell of

a jet engine with an average aluminum conductivity σ1 = 2 × 107 S m−1 to confirm
the applicability of our scheme to a non canonical example. The mesh was made of
9196 elements, corresponding to 27 588 unknowns. The electric current density was
computed on the surface of the object, illustrated in Figure 4.12. Using the GMRES
iterative solver, the Loop-Star PMCHWT method and the new formulation both
reached the same solution, in 18 317 and 3241 iterations, respectively, confirming
again the improved performance of our scheme.

4.8 Conclusion
In this chapter, a new boundary element method employing primal and dual

quasi-Helmholtz projectors for the simulation of eddy current scenarios has been
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Figure 4.12: Jet engine outer shell of length 0.9 m with 9196 elements and
σ1 = 2 × 107 S m−1: Electric current density norm given an exciting plane wave
of frequency f = 10−40 Hz propagating along −ẑ, polarized in the x̂ direction and
with E0 = 1 V m−1.

presented. The formulation was designed to offer several beneficial and attractive
features:

• No conditioning breakdown: The new integral equation is free of condition
number breakdown and all components of the solution that are necessary to
derive relevant quantities are also assured for very low frequencies.

• Full-wave formulation: Unlike eddy current models limited to low frequen-
cies and the original PMCHWT equation unadapted for them, the proposed
strategy can transition between high and low frequencies with ease.

• Quasi-linear complexity: The construction and application cost of the quasi-
Helmholtz projectors is well suited for use in conjunction with fast solvers.

• Support for multiply connected structures: Geometries containing handles
are automatically supported without additional computational overhead.

The reliability and accuracy of the results obtained with the proposed method have
been confirmed through different canonical and realistic examples.

While this chapter focuses on low frequencies where the breakdown occurs, the
new method proves particularly advantageous in the mid frequency range where
neither the quasi-static approximation nor standard equations are usable. The
proposed formulation could be integrated into existing simulation software for the
computer-aided design of various devices, such as antennas, circuits, and so on, op-
erating in wide frequency ranges. Further possible improvements, including ongoing
efforts, are suggested in Chapter 6.
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Chapter 5

High Frequency Preconditioning
Strategy Based on Spectral
Analysis

In this chapter, we introduce a well-conditioned and resonance-free formula-
tion for high frequency simulations. The electric operator suffers from a growing
condition number when the frequency increases, and internal resonances are also
present for both electric and magnetic equations when the structure is closed. We
investigate the properties of these integral equations to determine the nature of the
breakdown and other specific issues encountered at high frequencies. A spectral
study of the operators is presented in two dimensions for the case of the infinite
cylinder. A new resonance-free and stable formulation for high frequencies is then
proposed as a result of that analysis. Part of this chapter has been published in
the conference publication [26].

5.1 Introduction
The high frequency regime is characterized by a small wavelength compared to

the size of the object under study. Typical high frequency scenarios include for
example antenna radiation and waveguide propagation, which are greatly relevant
and widespread applications. In practice, for simulations, the regime is defined by
the product kh being constant while k → ∞, where k is the wave number and
h is the average edge length of the mesh discretization. In other words, the level
of discretization is maintained in terms of wavelengths, which is imposed by the
Nyquist-Shannon sampling theorem.

At very high frequencies, specific methods such as physical or geometrical optics
[55, 69] can be applied due to the behavior of electromagnetic waves in those condi-
tions. Nonetheless, these approaches present some limitations, such as the inability
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to properly take into account the effect of sharp edges. On the other hand, full-wave
integral equations such as the EFIE for Perfect Electric Conductors (PEC) are also
valid at high frequencies, but unfortunately experience conditioning issues [91]. In
addition, for closed structures, internal resonances may also appear and can pro-
duce non physical solutions. A few solutions to the high frequency ill-conditioning
have been proposed in literature [2, 17, 34].

In this chapter, we propose an alternative new integral equation formulation
that is well-conditioned in the high frequency, but also dense discretization regimes,
and suppresses internal resonances. An analysis based on the study of the singular
value spectrum of various operators for the infinite cylinder is detailed to highlight
the different issues encountered at high frequencies.

The layout of this chapter is as follows. The integral operators originally pre-
sented in Chapter 2 are first reintroduced in Section 5.2 for the 2D case, along
with the associated discretization strategy. Next, the operators are examined in-
dividually in Section 5.3 through a spectral analysis to uncover the sources of ill-
conditioning specific to each of them. Section 5.4 then presents a few combination
strategies to remove some of the causes for the bad conditioning. The observa-
tions made from those different approaches thus lead to the proposition of the new
formulation built with the Helmholtz operator in Section 5.5. Lastly, concluding
remarks are given in Section 5.6.

5.2 Integral Operators in Two Dimensions

5.2.1 Integral Equations
Consider a PEC scatterer Ω1 that is translationally invariant along the z-axis,

and surrounded by the air medium Ω0 in the presence of an electromagnetic field
(Ei,H i). Given the invariant property, the problem can be reduced to two dimen-
sions in the xy-plane, where the boundary of the cross section is denoted as Γ, and
n̂, t̂ are the outward unit normal and unit tangent to the boundary, respectively,
as illustrated in Figure 5.1.

In this context, the integral operators defined in Chapter 2 need to be written
on the line boundary Γ. The 2D Green’s function, which is the solution to the
Helmholtz equation in free space with the Sommerfeld radiation condition (2.42),
is now expressed as [52, 90]

Gk(r, r′) = − j
4H

(2)
0 (k ∥r − r′∥) , (5.1)

where H(2)
0 is the Hankel function of zeroth order and second kind, defined as

H
(2)
0 (z) = J0(z) − jY0(z) , (5.2)
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PEC

Figure 5.1: Cross section in the xy-plane of a z-invariant perfect electric conductor
Ω1 immersed in the air in the presence of an incident electromagnetic field (Ei,H i).

with J0 and Y0 the Bessel functions of the first and second kind, respectively, and
of the zeroth order. The integral operators appearing in the EFIE and MFIE are
defined on the boundary Γ as [90]

(Skf)(r) = kη

4

∫︂
Γ
H

(2)
0 (k ∥r − r′∥) f(r′) dr′ , (5.3)

(Nkf)(r) = kη

4 t̂ ·
∫︂

Γ
H

(2)
0 (k ∥r − r′∥) f(r′) t̂′ dr′

+ η

4k t̂ · ∇
∫︂

Γ
H

(2)
0 (k ∥r − r′∥)∇′ · (f(r′) t̂′) dr′ , (5.4)

(Dkf)(r) = jk
4

∫︂
Γ

cosψ′ H
(2)
1 (k ∥r − r′∥) f(r′) dr′ , (5.5)

(D∗
kf)(r) = jk

4

∫︂
Γ

cosψH(2)
1 (k ∥r − r′∥) f(r′) dr′ , (5.6)

where H(2)
1 is the Hankel function of the second kind and first order, and ψ, ψ′ are,

respectively, the angles between r − r′ and the surface normal vectors at positions
r and r′.

In two dimensions, any translationally invariant problem can be separated into
the Transverse Magnetic (TM) and Tranverse Electric (TE) polarizations using the
principle of superposition [48, 90]. In the case of TM polarization, the electric field
is in the invariant z-direction, while the magnetic field is included in the plane.
Since the electric surface current density is defined as

js = n̂ × H , (5.7)

it only has a component along the z-axis. Conversely, in the TE case, the electric
field and electric current density are inside the plane. In particular, js is tangential
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to the boundary Γ. By taking advantage of this decomposition, the EFIE and
MFIE can be rewritten as scalar equations. For the TM polarization, the EFIE
becomes

Sk(jz) = Ei
z , (5.8)

where jz and Ei
z are the components along the z-axis of the current density and the

incident electric field, respectively. In the TE case, the EFIE reads

Nk(jt) = Ei
t , (5.9)

where jt and Ei
t are the tangential components of the current density and the

incident electric field, respectively. As for the MFIE, it is written in TM and TE
polarizations, respectively, as

1
2 jz + D∗

k(jz) = H i
t , (5.10)

1
2 jt + Dk(jt) = H i

z . (5.11)

Lastly, we introduce the scalar Helmholtz operator

Hk(f) =
(︂
k2 + ∆Γ

)︂
(f) , (5.12)

where ∆Γ is the Laplace-Beltrami operator.

5.2.2 Discretization Strategy
To apply the boundary element method, the surface Γ is meshed with linear

segments of average length h. At high frequencies, the edge length is typically
chosen to be (smaller than) a tenth of the wavelength, i.e h ≤ λ/10. Given that the
unknown is a scalar quantity, we use either the pulse or hat basis functions [43].
The pulse functions are piecewise constant and defined for each segment ei as

pi(r) =
{︄

1 if r ∈ ei

0 if r /∈ ei .
(5.13)

The hat basis functions are instead defined on each vertex vi where they have a
value of 1 and decrease linearly to 0 on the adjacent vertices. They are expressed
as

hi(r) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
∥r − vi−1∥

l−i
if r ∈ e−

i

∥vi+1 − r∥
l+i

if r ∈ e+
i ,

(5.14)

where l±i represents the length of edge e±
i . Both types of basis functions are illus-

trated in Figure 5.2.
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(a) (b)

Figure 5.2: (a) Pulse and (b) hat basis functions.

5.3 Spectral Analysis
In order to study the high frequency behavior of the integral operators, we

consider an infinite cylinder with a circular cross section of radius a. We call
spectrum elements of the continuous operator the equivalent of the eigenvalues for
the discrete operator, which can be obtained analytically for this specific canonical
geometry. On the circle, all operators share the same eigenvectors of the form [90]

vq = e−jqϕ , q ∈ Z , (5.15)

which correspond to the Fourier modes. For any operator A defined on the circle,
we denote its spectrum elements as λq(A), q ∈ Z, such that

Avq = λq(A) vq , (5.16)

where q is called the spectral index.
The fundamental case of the circle presents several benefits that facilitate the

spectral analysis. First of all, given that all operators share the same eigenvectors,
their spectrum elements can be added and multiplied one to one when adding and
multiplying operators. For instance, given two operators A and B, we have the
properties, for any index q,

λq(A + B) = λq(A) + λq(B) , (5.17)
λq(AB) = λq(A)λq(B) . (5.18)

This is particularly useful when designing multiplicative preconditioning strategies
and combined equations. Additionally, since we are working with normal opera-
tors due to being on the circle [90], the singular values can be obtained simply by
taking the absolute value of the spectrum elements. As will be shown afterward,
the singular value spectrum can also be plotted against the spectral index rather
than in decreasing order as conventionally done numerically. Consequently, condi-
tioning tendencies and other phenomena such as resonances can be observed and
understood more easily.
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Moreover, by discretizing the circle with segments of the same length, the ob-
tained boundary element matrices have the convenient property of being circulant.
Due to this characteristic, the matrices can be reduced to one row only since the
other rows are simply obtained by rotation. In this case, the discrete Fourier
transform can be applied to perform matrix-matrix and matrix-vector products in
quasi-linear complexity, as well as to get a fast singular value decomposition and a
fast direct inverse. In the following, the spectra of different operators will be inves-
tigated to identify the high frequency asymptotic behavior and other specificities
such as internal resonances.

5.3.1 TM EFIE
We start with the analysis of the EFIE in TM polarization (5.8). To find the

spectrum elements λq(Sk) of the TM Electric Field Integral Operator (TM EFIO),
we write

Sk e−jqϕ = λq(Sk) e−jqϕ . (5.19)
Then, the Hankel function can be expressed in cylindrical coordinates as [90]

H
(2)
0 (k ∥ρ − ρ′∥) =

∞∑︂
q=−∞

Jq(ka)H(2)
q (ka) e−jq(ϕ−ϕ′) . (5.20)

From the definition of the operator Sk (5.3), the spectrum elements are thus ex-
pressed as [90, 52]

λq(Sk) = 1
2 kηπa Jq(ka)H(2)

q (ka) , (5.21)

which are plotted in Figure 5.3 in the complex plane, for 0 ≤ q ≤ 149. From this
representation, a couple of issues can be observed. First, the spectrum elements
pass by the origin multiple times, which corresponds to the resonance phenomenon
and results in an unbounded condition number. Second, they appear to converge
toward zero for large spectral indices. For a clearer inspection, we take the absolute
value of the spectrum elements, from which the singular values are directly derived.
The spectrum obtained in this way is displayed in Figure 5.4 at 2, 4, and 6 GHz to
illustrate the effect of the increase in frequency.

The concerns mentioned above from the complex representation can now be
interpreted more easily from these graphs. The spectrum is divided into different
portions with respect to the spectral index. The left section contains oscillations
and represents the hyperbolic regime, characterized by q < ka. The zeros appearing
in that part correspond to internal resonances and are linked to the existence of
non physical solutions inside the closed cylinder [2, 90].

The right end of the spectrum represents the elliptic regime corresponding to
q > ka. The effect of a denser discretization can be observed in that part, since on
the circle, the spectrum of an operator matrix is an approximation of the analytical
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Figure 5.3: Eigenvalues of the TM EFIO at f = 4 GHz for a circle of radius 1.

Figure 5.4: Singular value spectrum of the TM EFIO at different frequencies for a
circle of radius 1.
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spectrum. More precisely, if the discretized operator matrix is of size N ×N , then
its spectrum corresponds to the analytical one for spectral indices in the range
0 ≤ q ≤ N − 1, only differing due to discretization error [90]. In the case of the
TM EFIO, as observed in the complex plane, the singular values approach zero
for higher spectral indices. This can also be confirmed through the asymptotic
expressions of the Bessel and Hankel functions for large orders [67],

Jq(z) ∼
q→+∞

1√
2πq

(︄
ez

2q

)︄q

, (5.22)

H(2)
q (z) ∼

q→+∞
j
√︄

2
πq

(︄
ez

2q

)︄−q

. (5.23)

Substituting these into eq. (5.21), the spectrum elements of the TM EFIE operator
asymptotically behave following

λq(Sk) ∼
q→+∞

jkηa
2q , (5.24)

which clearly converges to zero when q → ∞. This type of elliptic behavior with
q−n, n > 0, is characteristic of the smoothing nature of this operator [90].

Lastly, the transitioning values around q ≈ ka constitute the major cause of the
high frequency breakdown, which is due to the highest peak located between the
hyperbolic and elliptic parts of the spectrum. This peak is connected to a surface
resonance phenomenon and its value increases with the frequency, thus resulting in
a conditioning breakdown [2].

5.3.2 TE EFIE
The spectrum elements of the TE EFIO (5.9) are defined so that

Nk e−jqϕ = λq(Nk) e−jqϕ . (5.25)

and are expressed as [90]

λq(Nk) = 1
2 kηπa J

′
q(ka)H ′ (2)

q (ka) , (5.26)

where the ′ symbol indicates the derivative. The values are illustrated in the com-
plex plane as before in Figure 5.5. Similarly to the TM counterpart, the resonance
phenomenon is observed due to spectrum elements passing through zero. For large
spectral indices instead, the values diverge to infinity along the negative imaginary
axis. The singular value spectrum is displayed in Figure 5.6 to identify these prop-
erties. The graph effectively exhibits internal resonances that increase in number
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Figure 5.5: Eigenvalues of the TE EFIO at f = 4 GHz for a circle of radius 1.

Figure 5.6: Singular value spectrum of the TE EFIO at different frequencies for a
circle of radius 1.
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with higher frequencies in the oscillating section. In the elliptic part of the spec-
trum, the values grow unboundedly, which is also seen in the expression of the
spectrum elements for large orders [90],

λq(Nk) ∼
q→+∞

− jqη
2ka . (5.27)

The spectrum elements asymptotically follow qn, n > 0, and indicate the differ-
entiating power of the scalar potential operator [90]. Finally, in the intermediate
section of the spectrum, rather than a growing peak, a small decreasing bump can
be observed right after the last oscillating peak, located around index q ≈ ka.

5.3.3 TM and TE MFIE
The MFIOs defined for the TM and TE polarizations on the circle in eqs. (5.10)

and (5.11) share the same spectrum elements [52, 90]. We use the notation for the
TM MFIO but the results are valid for both polarizations. Therefore, we have

(I/2 + D∗
k) e−jqϕ = λq(I/2 + D∗

k) e−jqϕ . (5.28)
As a result, the spectrum elements for the MFIO are defined as

λq(I/2 + D∗
k) = −1

2 jkπa J ′
q(ka)H(2)

q (ka) . (5.29)

An examination of the complex representation in Figure 5.7 reveals both similar
and distinct features from the EFIO. On one hand, the spectrum elements form a
circle passing through the origin, meaning that resonances are also present for the
MFIE operator. On the other hand, the values converge to the real value 0.5, thus
indicating stability in the dense discretization regime. This is a consequence of the
MFIO being a second-kind operator, here composed of the sum of an identity and
a compact operator [90]. For the frequency dependent behavior, the singular value
spectrum is illustrated in Figure 5.8. The increase of frequency simply adds more
oscillations and resonances, but the maximum amplitude remains fixed. Moreover,
the convergence for large spectral indices clearly appears, so that the only issue for
this operator is the presence of the internal resonances, which are usually removed
by building a Combined Field Integral Equation (CFIE).

5.3.4 Helmholtz
The derivation of the spectrum for the Helmholtz operator Hk is more straight-

forward given its relatively simpler expression. For any index q ∈ Z, applying the
operator to the eigenvector e−jqϕ gives

Hk(e−jqϕ) =
(︂
k2 + ∆Γ

)︂
e−jqϕ (5.30)

=
(︄
k2 −

(︃
q

a

)︃2
)︄

e−jqϕ , (5.31)
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Figure 5.7: Eigenvalues of the MFIO at f = 4 GHz for a circle of radius 1.

Figure 5.8: Singular value spectrum of the MFIO at different frequencies for a circle
of radius 1.
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Figure 5.9: Eigenvalues of the Helmholtz operator at f = 4 GHz for a circle of
radius 1.

from which we deduce the spectrum elements expressed as

λq(Hk) = k2 −
(︃
q

a

)︃2
. (5.32)

This corresponds to a quadratic function with an offset equal to k2. In particular,
the function has a zero when q = ka, matching the spectral position between the
hyperbolic and elliptic regimes. All values are real, as can be seen from the complex
representation in Figure 5.9. The singular value spectrum is plotted in Figure 5.10
and clearly shows the zero located at q = ka. As implied by the Laplacian operator
and the asymptotic expression of the spectrum elements for large orders (−(q/a)2),
the Helmholtz operator has a stronger differentiating power compared with the
TE EFIO. This property will become useful afterward for the design of the new
formulation.

5.4 Conditioning Treatments
To summarize the observations made for the above operators, the possible spec-

tral issues that affect the conditioning are:
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Figure 5.10: Singular value spectrum of the Helmholtz operator at different fre-
quencies for a circle of radius 1.

• Internal resonances: the presence of zeros in the oscillating part of the spec-
trum corresponds to the existence of non physical solutions due to the closed
cylinder and evidently results in an unbounded condition number. This issue
involves both electric and magnetic equations.

• High frequency breakdown: the increase of frequency causes a growth of the
surface resonance peak of the TM EFIO spectrum and thus an increase of the
condition number.

• Dense discretization breakdown: at a given frequency, a finer discretization
of the mesh increases the number of unknowns and the largest spectral in-
dex. Both EFIOs experience a breakdown in this case, where the TM EFIO
spectrum converges to zero while the TE EFIO spectrum diverges to infinity.
Although the focus of the chapter is on the high frequency breakdown, the
two types of ill-conditioning are closely related in this scenario due to the
requirement for the level of discretization with respect to the wavelength.

In the following, we aim to propose a formulation for the TM polarization which is
well-conditioned with regards to each of these aspects.

5.4.1 Combined Field Integral Equation
We start by examining the standard CFIE, which is usually employed to treat

resonances. The formulation is built by adding together the EFIE (5.8) and MFIE
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Figure 5.11: Eigenvalues of the CFIO at f = 4 GHz for a circle of radius 1.

(5.10) [61], written as

α
1
η

Sk(jz) + (1 − α)
(︃I

2 + D∗
k

)︃
(jz) = α

1
η
Ei

z + (1 − α)H i
t , (5.33)

where α is used to balance the contribution of each term, and taken as 0.5 for
the rest of the chapter to obtain an equal contribution from both equations [54].
Moreover, the EFIE has been multiplied by 1/η to normalize the operator with
respect to the MFIE. As mentioned previously, the derivation of the spectrum for
combined equations is fairly simple on the circle. For any spectral index q, the
spectrum elements of the CFIO can be written as

α
1
η
λq(Sk) + (1 − α)λq(I/2 + D∗

k) . (5.34)

These values are plotted at 4 GHz in the complex plane in Figure 5.11 and the
singular value spectrum is illustrated in Figure 5.12 for increasing frequencies on a
circle of radius 1.

From both graphs, we can observe that internal resonances have been entirely
eliminated. More precisely, the combination of the EFIE and MFIE prevents the
apparition of a resonant nullspace for real frequencies [24]. Furthermore, the op-
erator is also stable in the elliptic part, which can be seen with the large order
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Figure 5.12: Singular value spectrum of the standard CFIO at different frequencies
for a circle of radius 1.

approximation [90]

α
1
η
λq(Sk) + (1 − α)λq(I/2 + D∗

k) ∼
q→+∞

jka
4q + 1

4 + (ka)2

8|q|3

∼
q→+∞

1
4 . (5.35)

Unfortunately, the CFIE still suffers from the high frequency breakdown, inherited
from the EFIE, as shown by the growing surface resonance peak. Consequently,
although the CFIE is able to remove resonances and preserve the second-kind prop-
erty of the MFIO, it still needs to be improved to include a cure for the high
frequency ill-conditioning.

5.4.2 Calderón EFIE and CFIE
The high frequency breakdown caused by the peak growth can be fixed with a

multiplication by another adequate operator. In particular, we refer to the following
Calderón identity [66],

Nk Sk = I
4 − D∗2

k . (5.36)

This relation shows that we can obtain a second-kind operator when multiplying
both EFIE operators. This identity is therefore generally used to fix the dense
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Figure 5.13: Singular value spectrum of the Calderón EFIO at different frequencies
for a circle of radius 1.

discretization breakdown of the EFIE [4, 29]. Here we consider the 2D equation
4
η2 Nk Sk(jz) = 4

η2 Nk E
i
z , (5.37)

where the normalization is made to obtain an exact identity. The associated spec-
trum elements are thus

4
η2 λq(Nk)λq(Sk) , (5.38)

and the associated singular value spectrum is plotted in Figure 5.13 at different
frequencies. As predicted by the Calderón identity, the end of the spectrum ef-
fectively converges toward a constant value for large spectral indices [90]. More
interestingly, the peak increase of the TM EFIO has been compensated by the TE
EFIO so that the maximum amplitude of the oscillations remains constant with the
frequency. The remaining operation is thus the removal of the internal resonances.

Based on the results obtained for the CFIE in the previous subsection, we
consider adding the MFIE to the Calderón EFIE, which gives the following Calderón
CFIE

4α
η2 Nk Sk(jz) + 2 (1 − α)

(︃I
2 + D∗

k

)︃
(jz) = 4α

η2 Nk E
i
z + 2 (1 − α)H i

t , (5.39)

and the corresponding spectrum elements
4α
η2 λq(Nk)λq(Sk) + 2 (1 − α)λq(I/2 + D∗

k) . (5.40)
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Figure 5.14: Singular value spectrum of the Calderón CFIO at different frequencies
for a circle of radius 1.

The resulting singular value spectrum is illustrated in Figure 5.14, where only part
of the zeros have been actually eliminated.

5.4.3 Complex Calderón CFIE
In order to remove the remaining resonances while maintaining the high fre-

quency and dense discretization properties obtained thus far, the use of a suitable
complex wave number was suggested in [2, 31]. The modified wave number, de-
noted as km, is used in the TE EFIE operator, as well as in a second MFIE operator
added for symmetry. The complex Calderón CFIE operator is thus written

4 km

kη2 αNkm Sk + 4 (1 − α)
(︃I

2 − D∗
km

)︃ (︃I
2 + D∗

k

)︃
, (5.41)

where the additional factors have been included for appropriate asymptotic nor-
malization. The requirements for the complex wave number are that ℜ(km) ∝ k
and ℑ(km) ∝ k1/3. We have chosen the value proposed in [35, 7, 34, 6] and derived
from an optimization problem,

km = k − j0.4k1/3a−2/3 . (5.42)

The spectrum elements for this operator are thus
4 km

kη2 αλq(Nkm)λq(Sk) + 4 (1 − α)λq(I/2 − D∗
km

)λq(I/2 + D∗
k) , (5.43)
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Figure 5.15: Singular value spectrum of the complex Calderón CFIO at different
frequencies for a circle of radius 1.

where
λq(I/2 − D∗

km
) = 1 + 1

2 jkπa J ′
q(ka)H(2)

q (ka) . (5.44)

The choice of normalization factors has been made from the large order expansion
of the spectrum elements. More precisely, the asymptotic expressions for the EFIO
and MFIO [67, 90] are

λq(Sk) ∼
q→+∞

jkηa
2q , (5.45)

λq(Nk) ∼
q→+∞

− jqη
2ka , (5.46)

λq(D∗
k) ∼

q→+∞

1
2 . (5.47)

From these expansions, the normalization factor of the MFIE term is straightfor-
ward. As for the EFIE term, multiplying the expressions for the TM EFIO and the
TE EFIO gives

λq(Nkm)λq(Sk) ∼
q→+∞

kη2

4km

, (5.48)

hence the factor used in (5.43).
The singular values are then plotted in Figure 5.15 for several frequencies. We

can observe from the graph that the formulation obtained does not contain zeros,
and therefore seems free of internal resonances. Additionally, the spectrum appears
stable in the high frequency and dense discretization regimes. The complex plane
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Figure 5.16: Eigenvalues of the complex Calderón CFIO at f = 4 GHz for a circle
of radius 1.

representation is also given in Figure 5.16, where the values are cleanly grouped
around 1. From numerical evidence, this integral equation effectively treats the
target issues highlighted at the beginning of this section by exploiting the Calderón
identity. In the following section, we propose an alternative integral equation that
does not rely on this identity.

5.5 Helmholtz Operator-Based High Frequency
Stable Formulation

We now design a new combined formulation by taking advantage of the prop-
erties of the Helmholtz operator introduced previously rather than the Calderón
identity. Compared with the complex Calderón CFIE, the TE EFIE operator is
replaced by an operator with the same differentiating power while the MFIE term
is left untouched. More precisely, the square root of the Helmholtz operator has
the same differentiating power as the TE EFIO, characterized by an expression for
their spectrum elements containing q (power +1) for large orders. By inserting
the complex wave number (5.42) defined previously, the real zero of the Helmholtz
operator is also removed, as seen in Figure 5.17, so that its spectrum presents a
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Figure 5.17: Singular value spectrum of the Helmholtz operator with complex wave
number km at different frequencies for a circle of radius 1.

minimum which can counteract the growing peak of the TM EFIO.
However, finding the square root of a matrix is an expensive operation. There-

fore, rather than directly replacing the TE EFIO by the square root of the Helmholtz
operator, the latter is first applied as a whole. Since it has a differentiating power
+2, whereas the TM EFIO is characterized by an smoothing power −1, a second
TM EFIO including the complex wave number km is used to obtain a constant
asymptotic value. As a result, we define the new Helmholtz preconditioned CFIE

4α
kkmη2a2 Skm Hkm Sk + 4 (1 − α)

(︃I
2 − D∗

km

)︃ (︃I
2 + D∗

k

)︃
= 4α
kkmη2a2 Skm Hkm E

i
z + 4 (1 − α)

(︃I
2 − D∗

km

)︃
H i

t , (5.49)

where the normalization factors are again selected to get a large order asymptotic
value of 1 for the spectrum, given that

λq(Hk) ∼
q→+∞

−
(︃
q

a

)︃2
, (5.50)
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Figure 5.18: Singular value spectrum of the Helmholtz preconditioned CFIO at
different frequencies for a circle of radius 1.

from which we obtain the expression for the EFIE term,

λq(Skm)λq(Hkm)λq(Sk) ∼
q→+∞

kkmη
2a2

4 . (5.51)

Therefore, the spectrum elements associated to the proposed integral equation are

4α
kkmη2a2 λq(Skm)λq(Hkm)λq(Sk) + 4 (1 − α)λq(I/2 − D∗

km
)λq(I/2 + D∗

k) . (5.52)

The singular value spectrum is given in Figure 5.18 and appears similar to the
spectrum of the complex Calderón CFIO, i.e. a finite and constant condition number
(which is also slightly better) can be observed since the spectrum does not present
any zeros and there are neither high frequency nor dense discretization breakdowns.
The complex plane representation in Figure 5.19 also shows the spectrum elements
clearly clustered around and converging to 1.

5.6 Conclusion
We have presented in this chapter a novel boundary integral equation to model

PECs at high frequencies. The formulation was derived as the outcome of a spectral
analysis in two dimensions on the infinite cylinder by taking advantage of the fact
that the eigenvectors are shared by all operators on this canonical geometry. The
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Figure 5.19: Eigenvalues of the Helmholtz preconditioned CFIO at f = 4 GHz for
a circle of radius 1.

proposed equation appears well-conditioned from several viewpoints and presents
additional strong points compared with existing methods:

• High frequency stability: By taking advantage of the Helmholtz operator
and incorporating a specific complex wave number, the high frequency ill-
conditioning of the EFIE caused by the surface resonance can be effectively
cured.

• Constant conditioning for finer discretizations: The dense discretization break-
down originally present for the EFIE is also removed with the proposed
scheme. This issue holds as much importance as the high frequency break-
down in the regime of study given that larger frequencies also require a finer
mesh.

• No internal resonances: The resonances that appear in the oscillating part of
both EFIO and MFIO spectra are completely eliminated by combining the
operators and inserting a complex wave number.

• Better complexity and performance: The adopted approach only involves the
computation of two integral operators (TM EFIO and MFIO), considering
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that the Helmholtz operator is purely derivative. As a result, the formulation
is simpler to construct while preserving excellent conditioning properties.

This preliminary approach revolves around the canonical cylinder and specifi-
cally aims to provide more insight into the use of boundary integral equations for
high frequencies. Current considerations and future prospects are given in the next
closing chapter.
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Chapter 6

Conclusion and Future Research

The work described in this thesis was centered around the notion of integral
equation preconditioning, which constitutes one of the major aspects of computa-
tional electromagnetics. In particular, we successfully presented two original con-
tributions of great interest for practical applications. We first introduced a well-
conditioned equation for the simulation of eddy currents, which employs a quasi-
Helmholtz decomposition with projectors on the Poggio-Miller-Chang-Harrington-
Wu-Tsai (PMCHWT) equation for lossy conductors. Secondly, we proposed a stable
2D formulation designed for high frequencies on the infinite cylinder, taking advan-
tage of the Helmholtz operator to offer a simpler and more efficient strategy. While
both equations effectively fulfill their roles, further research avenues are available
to improve their performance and attractiveness. On the topic of eddy current
modeling, potential leads include:

• Enhancement of the solver: Additional features can be integrated to improve
the solver, notably regarding the acceleration of the simulations with a fast
solver to fully leverage the proposed scheme. Thorough implementation of
other test cases could also be added, starting with scenarios based on voltage
excitations.

• Adaptive full-wave solver: Currently, the passage from low to high frequency
is done manually by setting to 1 the rescaling coefficients, or, equivalently, by
simply using the original PMCHWT equation. Ideally, the solver should be
able to automatically determine whether the projector-based preconditioning
is needed depending on the size of the geometry and the simulation frequency.

• Dense discretization preconditioning: The increase of the condition number
with finer discretizations is left untouched by the use of quasi-Helmholtz pro-
jectors. Therefore, an adapted preconditioning method such as a Calderón
scheme could be incorporated to completely remove this type of breakdown,
such as done in [13].

99



Conclusion and Future Research

• Layered structures: For complex objects involving different types of mate-
rials, the preconditioned equation could be extended to create a multi-layer
PMCHWT formulation that takes into account the changes of parameters
between layers.

As for the subject of high frequency preconditioning, the work described in this
thesis constitutes a foundation opening the path to several prospects for further
contributions. A variety of interesting research ideas can be investigated, among
which are:

• Complete solver implementation: Starting with the implementation of the
proposed formulation, the setup of a numerical simulation environment for
high frequencies along with an adequate fast solver would form a solid basis
for future improvements including those mentioned below.

• Extension to arbitrary 2D structures: The proposed formulation is valid for
the particular case of the infinite cylinder and serves as groundwork for a
generalization to arbitrary shapes. The choice of the complex wave number
should play an important role in this endeavor.

• Adaptation for 3D geometries: The transition to scenarios in three dimensions
is undoubtedly quite intricate as it introduces further challenges. Similar
to the infinite cylinder in 2D, a study on the canonical sphere could serve
to establish a reliable starting point to evaluate the characteristics of 3D
operators at high frequencies.

• Estimation of the impact of the spectral error: The application of the bound-
ary element method to obtain matrix equations represents an approximation
of the spectrum elements for each operator, and thus of the spectrum. As
detailed in [90], a spectral error is introduced by the discretization process,
which could be examined to evaluate whether it has detrimental consequences
or not.

• Spectrum dispersion of the Helmholtz operator: Another issue related to the
discretization shifts the eigenvalues of the Helmholtz operator so that its peak
progressively diverges as the frequency increases. As a result, the operator
cannot properly act as a preconditioner for the EFIE at very high frequencies.
While this phenomenon might be linked to the spectral error, the insertion
of a frequency offset inside the complex wave number could be one solution
to this issue.
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Appendix A

Cancellation of the Integral of a
Global Loop Function

Consider a global loop function h defined on the smooth boundary Γ of a closed
object Ω ∈ R3. The objective is to demonstrate that∫︂∫︂

Γ
h(r) dr = 0 . (A.1)

Proof. Let C ∈ R3 be a constant vector field. Then, using a vector identity for the
divergence operator, we can write

⟨h,C⟩ =
∫︂∫︂

Γ
h(r) · C dr (A.2)

=
∫︂∫︂

Γ
h(r) · ∇ (r · C) dr (A.3)

= −
∫︂∫︂

Γ
∇ · h(r) (r · C) dr (A.4)

= 0 , (A.5)

since a global loop function is divergence-free. From here, we denote the x, y and
z components of any vectorial quantity with the indices {x, y, z} respectively.

Next, we consider C = Cxx̂, with Cx ∈ R a non-zero constant. Therefore, given
eq. (A.5), we have

⟨h,C⟩ =
∫︂∫︂

Γ
hx(r)Cx + hy(r)Cy + hz(r)Cz dr (A.6)

=
∫︂∫︂

Γ
hx(r)Cx dr (A.7)

= 0 . (A.8)

Since Cx is constant, this results in∫︂∫︂
Γ
hx(r) dr = 0 . (A.9)
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Cancellation of the Integral of a Global Loop Function

The same result can be obtained with the y and z components. Thus we finally
obtain ∫︂∫︂

Γ
h(r) dr =

∫︂∫︂
Γ
hx(r) x̂ + hy(r) ŷ + hz(r) ẑ dr (A.10)

= x̂
∫︂∫︂

Γ
hx(r) dr + ŷ

∫︂∫︂
Γ
hy(r) dr + ẑ

∫︂∫︂
Γ
hz(r) dr (A.11)

= 0 . (A.12)
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List of Symbols

Abbreviations

BC Buffa-Christiansen

BEM Boundary Element Method

CFIE/CFIO Combined Field Integral Equation/Operator

EFIE/EFIO Electric Field Integral Equation/Operator

FEM Finite Element Method

GMRES Generalized Minimal Residual

MFIE/MFIO Magnetic Field Integral Equation/Operator

PEC Perfect Electric Conductor

PMCHWT Poggio-Miller-Chang-Harrington-Wu-Tsai

RWG Rao-Wilton-Glisson

Functions

Gk Green’s function

H(2)
q Hankel function of the second kind and order q

Jq Bessel function of the first kind and order q

Yq Bessel function of the second kind and order q

Matrices

I Identity matrix

Λ Loop to RWG matrix

Σ Star to RWG matrix
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List of Symbols

H Global loop to RWG matrix

PΛH Loop-Global loop projector

PΣ Star projector

PΛ Dual Loop projector

PΣH Dual Star-Global loop projector

Notations

a, b Scalar in C

a,b Vector in Cm

A,B Matrix in Cm×n

A,B Scalar operator

A,B Vectorial operator

(A)mn Element (m,n) of A

AT,bT Transpose of A, b

A−1 Matrix inverse of A

A+ Moore-Penrose pseudo inverse of A

ℜ, ℑ Real, imaginary part

∥ · ∥ Euclidean norm or matrix spectral norm

∇ × A Curl of A

∇ · A Divergence of A

∇Φ Gradient of Φ

∇2, ∆ Laplace operator

∆Γ Laplace-Beltrami operator

O Big-O Landau symbol

Operators

Hk Helmholtz operator
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List of Symbols

Kk Magnetic operator

T k Electric operator

T Φ,k Scalar potential operator

T A,k Vector potential operator

Physical Quantities

E Electric field (V/m)

H Magnetic field (A/m)

D Electric flux density (C/m2)

B Magnetic flux density (T, Wb/m2)

j Electric current density (A/m2)

m Magnetic current density (V/m2)

js Surface electric current density (A/m)

ms Surface magnetic current density (V/m)

ρe Electric charge density (C/m3)

ρm Magnetic charge density (Wb/m3)

ϵ, ϵ0, ϵr Electric permittivity, of the vacuum (F/m), relative

µ, µ0, µr Magnetic permeability, of the vacuum (H/m), relative

η Impedance (Ω)

σ Conductivity (S/m)

f Frequency (Hz)

ω Angular frequency (rad/s)

λ Wavelength (m)

k Wave number (m−1)

δ Skin depth (m)

c Speed of light (m/s)
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List of Symbols

Other Quantities

n̂ Unit normal vector

t̂ Unit tangent vector

h Average mesh element edge length (m)

κ(A) Condition number of A

σ(A) Singular value of A

λA
q Eigenvalue of A with spectral index q
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