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Abstract 12 

The COVID-19 pandemic, as a worldwide threat to public health, has led many governments 13 

to impose mobility restrictions and adopt partial or full lockdown strategies in many regions to 14 

control the disease outbreak. Although these lockdowns are imposed to save public health by 15 

reducing the transmission of the virus, rather significant improvements of the air quality in this 16 

period have been reported in different areas, mainly as a result of the reduction in vehicular trips. 17 

In this research, the city of Turin in the northern part of Italy has been considered as the study area, 18 

because of its special meteorology and geographic location in one of the most polluted regions in 19 
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Europe, and also its high density of vehicular emissions. A Lagrangian approach is applied to 20 

illustrate and analyze the effect of imposing full lockdown restrictions on the reduction of traffic-21 

induced air pollution in the city. To do this, the real-time traffic flow during the lockdown period 22 

is recorded, and by utilizing CALPUFF version 7, the dispersion of PM2.5, Total Suspended 23 

Particulate (TSP), Benzo(a)pyrene (BaP), NOx, and Black Carbon (BC) emitted from all 24 

circulating vehicles during and before the lockdown period are compared. Results indicate that the 25 

concentration of pollutants generated by road traffic sources (including passenger cars, busses, 26 

heavy-duty vehicles, light-duty vehicles, mopeds, and motorcycles) reduced at least 70% (for 27 

PM2.5) up to 88.1% (for BaP) during the studied period. Concentration maps show that the 28 

concentration reduction varied in different areas of the town, mainly due to the characteristics and 29 

strength of the emission sources and the geophysical features of the area. 30 

Keywords: Air quality, Dispersion Modeling, Emission, Pandemic, Transportation, Urban 31 

planning. 32 

1. Introduction 33 

The novel coronavirus-caused infectious disease 2019 (COVID-19), which was announced as 34 

a pandemic by the World Health Organization (WHO) on March 11, 2020 (WHO, 2020) has made 35 

a shock to the world and is turning into the largest threat to the public health worldwide in the 21st 36 

century (Chakraborty and Maity, 2020). To control the disease outbreak and flattening the 37 

epidemic curve, many regions have been imposing a partial or full lockdown in the highly infected 38 

areas. Although the lockdown restrictions were established to save public health by reducing the 39 

transmission of the virus, changes in the air and water quality in some areas (Ambade et al., 2021; 40 
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Muhammad et al., 2020; Saadat et al., 2020; Sharifi and Khavarian-Garmsir, 2020) have attracted 41 

the attention towards the environmental impacts of the pandemic lockdowns globally. In this 42 

regard, numerous research has been conducted on the changes in the air quality during the 43 

lockdown period in different countries across the globe, from China in the East (Griffith et al., 44 

2020; Huang et al., 2020) to the United States in the West (Naeger and Murphy, 2020; Zangari et 45 

al., 2020), and some large areas such as western Europe (Menut et al., 2020). Besides, several 46 

pieces of research studied the potential link between the improvements in the air quality as a result 47 

of mitigating COVID-19 measures and the health benefits. These studies mainly concluded lower 48 

air pollution-related mortality due to less exposure to air pollution during this period (Gupta et al., 49 

2020; Liu et al., 2021; Son et al., 2020). All these studies highlight the importance of air pollution 50 

control strategies to protect human health whether air pollutants increase the infection rate of 51 

COVID-19 or not (Cazzolla Gatti et al., 2020; Collivignarelli et al., 2021a; Dettori et al., 2020). 52 

Air pollution, with its impacts both at the local and global scales, has caused many challenges 53 

and problems all around the world over the years (Izquierdo et al., 2020; Sivarethinamohan et al., 54 

2020) such that concerns about this issue have been reflected in the 2030 Agenda for Sustainable 55 

Development adopted by the United Nations General Assembly (UN, 2015). The WHO has labeled 56 

air pollution as the major environmental threat to health (WHO, 2016) and has estimated that 57 

around 90% of the world population do not breathe the air complying with its Air Quality 58 

Guideline (WHO, 2005). Exposure to air pollutants leads to three million deaths per year (WHO, 59 

2016), out of which 600,000 deaths happen among children less than five years of age (WHO, 60 

2017). Such negative health impacts impose substantial economic costs to the societies (Chen and 61 

Chen, 2021; Stewart et al., 2017) and affect both humans and ecosystems (Panepinto et al., 2014). 62 

Therefore, in order to take steps towards clean air transitions, air quality action plans have been 63 
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considered as blueprints to achieve certain air quality objectives (Gross et al., 2019) by many 64 

countries all around the world, such as Spain (Izquierdo et al., 2020), China (Cai et al., 2017), the 65 

United Kingdom and the United States (Gross et al., 2019). 66 

Air quality analysis and modeling in urban areas involve an inherent complexity (Pinto et al., 67 

2020) due to the existence of a high number of air pollutant emission sources, the meteorological 68 

conditions of the region affecting the dispersion of the pollutants (Shen et al., 2021) and the 69 

chemical transformations of pollutants into secondary aerosols (EPA, 2015). However, air 70 

pollution dispersion models provide useful means to support decision-making in air quality control 71 

(Holnicki et al., 2016; Ravina et al., 2019) through estimating the concentration of pollutants in 72 

the atmosphere (Khan and Hassan, 2020). These deterministic mathematical models mostly follow 73 

Gaussian, Eulerian, or Lagrangian approaches (Liu et al., 2019), the Gaussian being a steady-state 74 

model and the two others being time-dependent (Khan and Hassan, 2020). 75 

Dispersion models have been widely used for modeling the concentration of air pollutants in 76 

various case studies. In research conducted by Kesarkar et al. (2007), AERMOD, which is a 77 

steady-state Gaussian model, was utilized to model the dispersion of PM10 in Pune, India. 78 

Modeling the dispersion of PM10 was also conducted by Brusca et al. (2016) for the city of Turin, 79 

Italy, which is also the case study in the present research, by applying a 3D Computational Fluid 80 

Dynamics (CFD), coupling Eulerian and Lagrangian approaches. Omidi Khaniabadi et al. (2018) 81 

used the Gaussian SCREEN3 model and a Gaussian plume model to investigate the dispersion of 82 

fine particles including PM10, PM2.5, and PM1.0  related to a cement plant in Iran. Abdul-Wahab et 83 

al. (2017) considered a cement plant in Oman and used CALPUFF, as an advanced non-steady-84 

state Lagrangian puff model, to model the dispersion of CO2 emission. Moreover, Ravina et al. 85 
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(2018) used CALPUFF as a part of an integrated dispersion and externalities model to estimate 86 

the delta-concentration maps for NOx, PM2.5, and PM10 and calculate the health damage costs for 87 

the district heating system in the city of Turin. Selection among CALPUFF, SPRAY (which is a 88 

Lagrangian particle model), and AERMOD for modeling the pollutant dispersion is possible in the 89 

extended version of this integrated model (Ravina et al., 2020b). 90 

Air pollution in urban areas is mainly linked with vehicular trips (Guttikunda et al., 2019; Pinto 91 

et al., 2020; Xiang et al., 2020). Therefore, the travel of various types of vehicles with different 92 

ages and fuel types on urban roads and streets adds more complication to the inherent complexity 93 

of the air quality modeling. However, air pollution dispersion models have also been used in the 94 

literature with a focus on traffic-induced air pollution. For instance, in the Tehran Metropolitan in 95 

Iran, which is struggling with air pollution as a major problem, Shahbazi et al. (2017) studied the 96 

impact of the traffic emission reduction plans on the concentration of CO and NOx in the city by 97 

using Comprehensive Air Quality Model with Extensions (CAMx) that is an Eulerian 98 

photochemical model. Also, Shahbazi and Hosseini (2020) used CAMx to investigate the 99 

concentration of CO, NO2, O3, PM2.5, SO2, and Black Carbon (BC) in Tehran in a highly polluted 100 

period in December 2017. Furthermore, considering the high level of traffic-related pollution in 101 

the metropolitan area of Madrid, Spain, and the Air Quality and Climate Change Plan launched by 102 

the city council to tackle air pollution issues, Izquierdo et al. (2020) used an Eulerian chemical-103 

transport model called Community Multiscale Air Quality (CMAQ) to evaluate the outcome of 104 

implementing this plan regarding the concentration levels of PM2.5, NO2 and O3 in the city. In 105 

another research, Borge et al. (2018) also used CMAQ to assess the traffic-related NO2 emissions 106 

based on a short-term action plan in the city of Madrid. Applying CALPUFF, Abdul-Wahab and 107 
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Fadlallah (2014) and Charabi et al. (2018) studied the concentration of CO, NOx, and CO2 108 

resulting from traffic in two different areas in Oman. 109 

The lockdowns imposed by the governments to control the spread of COVID-19 highly 110 

impacted the transportation sector in all countries (Gualtieri et al., 2020; Ranjbari et al., 2021), and 111 

therefore, rather significant improvements in the air quality in this period have been reported in 112 

many areas (Chen et al., 2021; Gautam, 2020; Wang et al., 2020; Xiang et al., 2020). However, Le 113 

et al. (2020) highlighted the unexpected air pollution in northern China during the COVID-19 114 

lockdown period, which happened despite up to 90% reduction of certain emissions from various 115 

sources in this period. Improvements in the air quality have also been observed in Italy (Deserti et 116 

al., 2020a, 2020b), with an average of 48-60% reduction in road traffic leading to a significant 117 

reduction in NO2 levels (Gualtieri et al., 2020). Collivignarelli et al. (2021b) studied the impact of 118 

the pandemic on the concentration of NO2 in three megacities of London, Milan, and Paris, 119 

highlighting the role of traffic restrictions on the reduction of NO2 concentration in these cities. 120 

Although Xiang et al. (2020) showed that considering meteorological conditions plays a 121 

significant role in concluding the impacts of the pandemic on the traffic-induced air pollution 122 

levels within the cities,  to the best of the authors’ knowledge, no study has utilized air pollution 123 

dispersion models to study the changes in the concentration of air pollutants during the COVID-124 

19 pandemic lockdown mainly focusing on the changes in urban transportation activities, yet. This 125 

is while some pieces of research are available on the analysis of the impact of COVID-19 126 

restrictions on the changes in the traffic-related air pollution considering meteorological conditions 127 

from the lens of statistical analysis (Chen et al., 2021; Rossi et al., 2020; Xiang et al., 2020). 128 

Furthermore, as stated by Gualtieri et al. (2020), most of the studies focusing on the implications 129 
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of COVID-19 lockdowns for the urban air quality lack quantification of the changes in road mobile 130 

sources during the lockdown restrictions. 131 

Therefore, to fill the existing gap, the present research aims at applying a Lagrangian approach 132 

to illustrate and analyze the role of traffic in the city of Turin, Italy, on the air quality of the city 133 

during the lockdown period. This is done by comparing the emission of NO2, Benzo(a)pyrene 134 

(BaP), PM2.5, Total Suspended Particulate (TSP), and BC from all traffic mobile sources in the 135 

city during normal days and the COVID-19 country lockdown period based on the real-time traffic 136 

flow data recorded in this period. Since the first pandemic lockdown and mobility restrictions in 137 

Italy led to 42% fewer daily trips (Cartenì et al., 2020), modeling the dispersion of traffic-induced 138 

pollutants before and during the lockdown period can provide useful insight into the role of mostly 139 

unnecessary traffic in polluting the atmosphere in this city. 140 

The remainder of the paper is structured as follows. Section 2 introduces the study area and 141 

provides an overview of the research method applied, and the data gathered. Sections 3 presents 142 

the results and section 4 provides a discussion and analysis on the maps illustrating the 143 

concentration of pollutants before and during the lockdown period. Finally, section 5 concludes 144 

the key findings of the paper on the changes in the concentration of air pollutants during the 145 

COVID-19 pandemic lockdown, which are attributed to the changes in vehicular transportation 146 

activities. 147 

  148 
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2. Materials and Method 149 

2.1. Description of the study area 150 

This research considers the city of Turin as the study area for two main reasons: (1) its special 151 

meteorological and geographic condition in Po Valley, which is one of the most polluted regions 152 

in Europe both in summer and winter (Deserti et al., 2020a); and (2) its high density of vehicular 153 

emissions, which is among the highest in Europe (Padoan et al., 2018). 154 

Turin, the capital of the Piedmont region, is a highly industrialized city and densely populated 155 

metropolitan area, enjoying a humid subtropical climate. Being known as one of the most 156 

technological industrial centers in Europe, this city is located in the western end of the Po Valley, 157 

one of the most polluted areas in Europe in the northern part of Italy (Bono et al., 2016; Deserti et 158 

al., 2020a). The city suffers from the low dispersion of pollutants, since it is surrounded by the 159 

Alps and hills in the North, West, and East, and the wind speed in this area is low. Therefore, the 160 

air quality standards are not met in this city (Padoan et al., 2018), and the air quality of Turin is 161 

put among the worst in Europe (Sicard et al., 2020). 162 

Research shows that the individual particles of atmospheric PM in Turin are small enough to 163 

enter the deep zones of the resident’s lungs and cause serious health problems for them 164 

(Malandrino et al., 2016). Road traffic is one of the most important sources of pollutant emissions 165 

in Turin, owning the following share of the total concentration in the city: 40% of the PM10, 30% 166 

of the PM2.5, and 75 - 77% of NO2 (Padoan et al., 2018; Piedmont Region, 2018). The motorization 167 

rate in Turin is around 615 per 1000 inhabitants (Kyoto-Club, 2019), leading to a high car density 168 

in this city. Therefore, studying the role of traffic in the emission of air pollutants is of high 169 

importance in this region. 170 
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 171 

2.2. Data 172 

2.2.1. Traffic flow 173 

The traffic flow data considered in the current research refers to two time periods before and 174 

during the first COVID-19 lockdown in the city of Turin. The pre-lockdown flow data were taken 175 

from the standard hourly mean flows for the year 2018 provided by 5T S.r.l., a company working 176 

in the areas related to traffic management in Turin. For the full lockdown period, the real-time 177 

traffic flow reported continuously by the real-time traffic monitoring of the 5T website 178 

(http://opendata.5t.torino.it/get_fdt) was recorded from March 9th to May 18th, 2020, representing 179 

the lockdown period. The recording was conducted with a frequency of 10 minutes and then, mean 180 

hourly flow was calculated and used for the analysis. The real-time traffic monitoring network in 181 

Turin is based on 31 traffic sensors, however, not all these sensors are properly transmitting data. 182 

Therefore, in this study, the analysis is restricted to 15 monitoring points, which effectively report 183 

data. Although this traffic monitoring network reports average vehicle speed in every road branch, 184 

speed data were not employed in the present study, due to low accuracy. For both the pre-lockdown 185 

and full lockdown periods, the available data reported total traffic flow, which was subsequently 186 

disaggregated based on circulating vehicle categories. 187 

 188 

2.2.2. Vehicle type share 189 

44 categories of circulating motor vehicles were identified for Turin, considering the class of 190 

vehicles in the city and the type of fuel they consume. These categories include busses (consuming 191 
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diesel, CNG, or electricity), heavy-duty and light-duty vehicles (consuming conventional or Euro 192 

1-6 standard petrol), mopeds and motorcycles (consuming conventional or Euro 1- 3+ standard 193 

petrol), and passenger cars (consuming electricity, or any conventional or Euro 1-6 standard diesel, 194 

LPG or petrol). 195 

The shares of vehicles before the lockdown were estimated based on the total number of 196 

registered vehicles in each category in the city extracted from Automobile Club d’Italia 197 

(http://www.aci.it/), and the hourly flow extracted from a report by 5T S.r.l. on vehicular mobility 198 

in the Piedmont region (5T and Regione_Piemonte, 2019). For the lockdown period, the share of 199 

each category in the hourly traffic flow in both working and non-working days was considered in 200 

the simulation. Since no data on the share of each of the 44 specified categories in the hourly traffic 201 

flow of Turin was available, and this type of data could not be extracted from the recorded traffic 202 

flow, an estimation for the share of these vehicles in the traffic flow was made. The data regarding 203 

the circulating vehicles was estimated based on the average number of kilometers traveled, and the 204 

data regarding the registered vehicles were considered in order to verify the consistency of the 205 

disaggregation into categories. 206 

 207 

2.2.3. Emission factors 208 

Traffic-induced emissions of NOx, BaP, PM2.5, TSP, and BC were considered in this research. 209 

The emission factors of these pollutants, except for BC, for each of the specified 44 categories of 210 

vehicles were extracted from the EMEP/EEA air pollutant emission inventory guidebook 2019 211 

(http://efdb.apps.eea.europa.eu/). The emission factors for BC were extracted from Krecl et al. 212 
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(2017) for HDVs, from Ježek et al. (2015) for LDVs and motorbikes, and from Zavala et al. (2017) 213 

for buses. Emission factors for electricity consumption were considered zero. These factors are 214 

reported in Table A1 in Appendix A with a description of the vehicle categories and the average 215 

share of total traffic flow in Turin. 216 

Total daily pollutant emission was calculated considering the average hourly share of vehicle 217 

flow for each of the 44 categories. For each hour and each road source, daily pollutant emission 218 

flow of a generic pollutant 𝑃 was calculated based on Equation (1), 219 

𝑃 = ∑ ∑ ∑ 𝐹𝑖,𝑗,ℎ 𝐿𝑖 𝐸𝐹𝑃,𝑗

ℎ𝑗𝑖

 (1) 

 

where 𝐹𝑖,𝑗,ℎ is the traffic flow in road 𝑖 for vehicle category 𝑗 at hour ℎ (vehicles ℎ−1);  𝐿𝑖 is the 220 

length of the road (𝑚), and 𝐸𝐹𝑃,𝑗 is the average emission factor of the vehicle category 𝑗 in terms 221 

of the pollutant 𝑃 ( 𝑔 𝑘𝑚−1 𝑣𝑒ℎ𝑖𝑐𝑙𝑒−1). 222 

 223 

2.2.4. Meteorology  224 

Meteorological data were collected from three different meteorological stations in Turin, 225 

which are managed by the Local Environmental Protection Agency (ARPA) of the regional air 226 

pollution service of Piedmont Region (Figure 1). Hourly observations at the ground level of air 227 

humidity, precipitation, solar radiation, temperature, atmospheric pressure, wind speed, and wind 228 

direction were collected for this research. The radiosoundings from the WMO station of Milano 229 

Linate Airport, which is located approximately 150 km east of Turin, were considered for the 230 

collection of the required upper-air data (http://weather.uwyo.edu/). Although this station is rather 231 
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far from Turin, it is the only source of data in this regard and its soundings can be used considering 232 

the relative morphological homogeneity of the western part of the Po Valley (Calori et al., 2006) 233 

in which Turin is located. Weather observations were first processed with the CALMET model 234 

and then were fed into CALPUFF to conduct the dispersion modeling. 235 

 236 

2.3. Dispersion modeling 237 

In this study, the dispersion of pollutants was simulated using the CALPUFF modeling system. 238 

CALPUFF is a Lagrangian multi-layer, multi-species, non-steady-state puff dispersion model that 239 

simulates the effects of time- and space-varying meteorological conditions on pollution transport, 240 

transformation, and removal (US EPA, 2011). This model simulates puffs of the materials emitted 241 

from the modeled sources, reproducing dispersion and transformation processes along the way. 242 

Temporal and spatial variations in the meteorological fields are explicitly incorporated in the 243 

resulting distribution of puffs throughout a simulation period.  244 

With the release of CALPUFF version 7, the linear sources have been replaced with road 245 

sources. A new module for representing roadway emissions in dispersion model simulations has 246 

been implemented. The new approach simulates line sources such as roadways using the concept 247 

of rod-like puffs. Emitting rods follow the same rules as emitting horizontally symmetric Gaussian 248 

puffs, but far fewer rods aligned with road segments are needed to emulate the uniform distribution 249 

of emissions along a road segment. Near-field “hot spots” can be resolved as well as the drift of 250 

pollutants to sensitive areas further away. . For more technical details on the CALPUFF model 251 

structure, see the user’s guide (Exponent, 2019; US EPA, 2011). 252 
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Simulations were conducted on a domain of 16.6 𝑘𝑚 × 14.6 𝑘𝑚, with 10 vertical layers and a 253 

100 𝑚 grid step. A total number of 2,484 road sources was considered in the simulation. Figure 1 254 

illustrates the modeling domain, the road sources, and the measuring points of traffic flow in the 255 

city. A height of 1.5 𝑚 was assigned to the emission sources, which are the circulating vehicles 256 

categorized in each of the 44 specified classes. The detailed setting of simulation parameters is 257 

reported in Table A4 of Appendix A. Due to the high number of emission sources, the 258 

computational time required for the detailed simulation was high and therefore, the period of the 259 

simulation was restricted to one week, i.e. from April 12nd to April 19th, 2020, with hourly time 260 

resolution. No chemical transformation scheme was adopted in the simulations. 261 

 262 
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Figure 1. The modeling domain, the road graph, and the location of the monitoring stations. 263 

The output concentrations were averaged over the observation period with the CALPOST 264 

processor and represented in the form of maps. Concentration maps of normal days and the 265 

COVID-19 country lockdown period were compared, and the reduction of pollutant concentration 266 

was calculated. NOx to NO2 conversion was modeled in CALPUFF using the MESOPUFF II 267 

scheme (Scire et al., 1984). Hourly ozone background concentrations recorded at the Turin 268 

Lingotto monitoring station were provided as input to the model. 269 

 270 

3. Results 271 

3.1. Traffic flow 272 

Average real-time traffic flow in each hour of the day during the lockdown is compared with 273 

the average flow in a normal period, and the flow reduction during the working and non-working 274 

days are reported in Tables 2A and 3A in Appendix A, respectively. The same tables also report 275 

the average and standard deviation of the traffic flow reduction in each point and each hour of the 276 

day. During the working days, 69-88% reduction has been observed in the traffic monitoring points 277 

considered. If different hours of the day are examined, traffic flow reduction ranges from 66% to 278 

96% during the day. Furthermore, during the non-working days, 74-92% reduction has been 279 

perceived in the studied monitoring points. If considering different hours of the day, a range of 49-280 

99% is recognized for the reduction in traffic flow. 281 

 282 
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3.2. Pollutants emission and dispersion 283 

The average traffic flow 𝐹 in each road source during the COVID-19 lockdown days was 284 

calculated by scaling the flow in normal days for the average hourly flow reduction observed in 285 

the 15 monitoring points reported in Tables A2 and A3 in Appendix A. The results are reported in 286 

Table 1 and show an emission reduction between 71.4% (PM2.5, working days) and 85.5% (BaP, 287 

non-working days). 288 

 289 

Table 1. Daily pollutant emissions of Turin road traffic in normal days and during the COVID-19 lockdown.  290 

Pollutant Daily emission in 

normal working 

days (𝑘𝑔/𝑑) 

Daily emission during 

the lockdown working 

days (𝑘𝑔/𝑑) 

Emission Reduction 

(working days) (%) 

Daily emission in 

normal non-

working days 

(𝑘𝑔/𝑑) 

Daily emission during 

the lockdown non-

working days (𝑘𝑔/𝑑) 

Emission Reduction 

(non-working days) 

(%) 

NOx 4,501 1,259 72.0 2,404 383 84.0 

BaP 6E-03 1.6E-03 73.3 3.8E-03 5.5E-04 85.5 

PM2.5 114 32.5 71.4 65 11.1 82.9 

TSP 621 174 72.0 337 54.3 83.9 

BC 45.4 12.2 73.1 23.7 3.45 85.4 

 291 

During the simulation period, there was no rainfall in Turin, except on April 19th, when a total 292 

amount of 1.6 𝑚𝑚 of rain was recorded. The temperature and solar radiation, and wind distribution 293 

during this period are also presented in Figure 2. The wind rose in this figure shows two prevailing 294 

wind typologies, which are typical of the area and the period considered. One of them includes 295 

moderate winds (2 – 5 𝑚/𝑠) typically occurring during daytime with prevailing direction NE, and 296 

the other includes low winds (0 – 2 𝑚/𝑠) typically occurring during nighttime with prevailing 297 

direction SE. 298 
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Figure 2. Temperature and solar radiation (left) and wind distribution (right) in Turin during April 12-19, 2020 299 

 300 

Figure 3 displays the distribution of the atmospheric stability class, and the height of the mixed 301 

layer, and Monin-Obukhov length (𝐿𝑚𝑜) during the simulated period. According to this figure, 302 

stable (class F with a share of 33% and E with 12%) and unstable (class B with 32%) conditions 303 

were prevailing, while neutral conditions (class C with 12% and D with 5%) were less frequent. 304 

This trend is consistent with the general conditions observed during this period. Positive 𝐿𝑚𝑜 and 305 

limited height of the mixed layer on April 14th, 15th, and 17th indicate that stable atmospheric 306 

conditions were prevailing on these days, while negative 𝐿𝑚𝑜values observed on the other days 307 

show the prevalence of unstable conditions, in particular during the daytime. 308 

 309 
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Figure 3. Distribution of the atmospheric stability class (left) and height of the mixed layer and Monin-Obukhov 310 

length (𝐿𝑚𝑜) (right) in Turin during April 12-19, 2020. 311 

 312 

Considering the average traffic flow before and during the lockdown, the share of each type of 313 

vehicle from the flow, and the meteorological conditions during the studied period, the average 314 

pollutant concentration maps are reported in Figure 4 to Figure 8. In these maps, pollutant 315 

concentrations generated by urban road traffic on normal days are compared with those generated 316 

during one week of the COVID-19 lockdown (April 12nd to April 19th, 2020) based on the same 317 

meteorological conditions. The average concentration reduction is reported in Table 2 and finally, 318 

presented in Figure 9. 319 

 320 
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 321 

Figure 4. Maps of NO2 concentration in the Turin area generated by road traffic sources during normal days (left) 322 

and COVID-19 days (right). 323 

 324 

Figure 5. Maps of BaP concentration in the Turin area generated by road traffic sources during normal days (left) 325 

and COVID-19 days (right). 326 

 327 
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  328 

Figure 6. Maps of PM2.5 concentration in the Turin area generated by road traffic sources during normal days (left) 329 

and COVID-19 days (right). 330 

  331 

Figure 7. Maps of TSP concentration in the Turin area generated by road traffic sources during normal days (left) 332 

and COVID-19 days (right). 333 

 334 
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  335 

Figure 8. Maps of BC concentration in the Turin area generated by road traffic sources during normal days (left) 336 

and COVID-19 days (right). 337 

 338 

Table 2. Pollutant concentration reduction attributed to traffic in the Turin area during COVID-19 days concerning 339 

normal days. 340 

Pollutant Traffic concentration reduction (%) 

min mean max 

NOx 70.7 82.2 87.0 

BaP 73.5 83.7 88.1 

PM2.5 70.0 81.9 86.8 

TSP 70.6 82.2 86.9 

BC 72.1 83.0 87.9 

 341 

 342 
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Figure 9. Maps of pollutants concentration reduction during COVID-19 days concerning normal days. 343 
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 344 

4. Discussion 345 

The real-time traffic monitoring in Turin during the whole country lockdown period from 346 

March 9th to May 18th, 2020, indicated a significant traffic flow reduction in this metropolitan area. 347 

Several companies have published periodic mobility reports based on the location data collected 348 

through their services, including Google LLC (2020) and TomTom International BV (2020), or 349 

have shared their data through analytical platforms, such as Apple Inc. (2020). The data reported 350 

in these reports are consistent with the results obtained in our study, all indicating a flow reduction 351 

of around 80%. Tables A2 and A3 presented in the Appendix show that traffic flow had a varying 352 

reduction depending on the road and hour of the day. Spatial variations are mainly attributed to 353 

the road typology. In general, larger roads (e.g. points 15 and 105), which serve as connections 354 

between different areas of the city showed lower reductions, while inner roads serving residential 355 

areas (e.g. points 39 and 42) showed larger reductions. 356 

The decrease in road mobility resulted in a significant reduction in the emission of the 357 

considered pollutants during the studied period in Turin, similar to many other cities in Italy 358 

(Gualtieri et al., 2020) and other countries (Chen et al., 2021; Collivignarelli et al., 2021b) 359 

reporting significant reductions in the traffic-induced emissions during the lockdown restrictions. 360 

Comparing the daily emissions of NO2, BaP, PM2.5, TSP, and BC resulting from the road traffic 361 

on normal days and during the COVID-19 lockdown shows that the city experienced more 362 

reduction in the emission of air pollutants during non-working days than working days. This 363 

difference is mainly due to the activities of some occupations that could not be postponed, 364 

canceled, or done from home during the lockdown. Moreover, among the five studied pollutants, 365 
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BaP had the highest percentage of reduction, while PM2.5 showed the lowest percentage of 366 

decrease. Different reduction rates may be associated with the difference of emission factors 367 

among vehicle typologies. The reduction of traffic flow observed involved mainly a decrease of 368 

passenger cars, as this is the most used vehicle typology (81%). For the pollutants whose emission 369 

factors for passenger cars have the same order of magnitude as LDVs and HDVs (e.g. BaP, BC), 370 

the emission reduction was higher. Conversely, for the pollutants whose emission factors for LDVs 371 

and HDVs are higher than those of passenger cars (e.g. NOx, PM2.5), the emission reduction was 372 

lower. Although this aspect should be deepened in future studies on traffic flow analysis, the results 373 

confirm that the limitation of mobility with private means is of primary importance for 374 

administrations (Shams Esfandabadi et al., 2020). These findings are in line with the results of the 375 

research conducted by Collivignarelli et al. (2021b), which reports a significant reduction in the 376 

concentration of NO2 during the lockdown period in London, Milan, and Paris and highlight the 377 

importance of rethinking vehicles and urban vehicular traffic.   378 

As illustrated in the maps of the pollutants concentration reduction in Figure 9 and reported in 379 

Table 2, BaP and PM2.5 also represent the maximum and minimum percentage of reduction, 380 

respectively, in terms of concentration. These results show similar trends for all pollutants, with 381 

some minor differences. Regarding PM2.5, making a comparison between the results obtained and 382 

the existing studies on the COVID-19 lockdown period is difficult. This is because only primary 383 

PM2.5 emissions were considered in this study. Most of the other studies published recently 384 

considered aggregated (primary and secondary) aerosol emissions, highlighting the complexity of 385 

the interpretation of PM2.5 behavior (Le et al., 2020; Rossi et al., 2020). In general, however, traffic 386 

flow reduction was highly reflected in nitrous oxides concentration reduction. 387 
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Figure 4 to Figure 8 show the spatial distribution of pollutants concentration. The impact is 388 

more visible in the proximity of roads, where emissions are generated, but the effects are extended 389 

to the whole area. The limited height of sources and the limited dispersion close to the ground are 390 

the main factors contributing to the observed trend. These maps also show an uneven distribution 391 

of concentration in the area, such that concentrations are higher in the south-eastern part of the 392 

town. The presence of a river and reliefs in the eastern part of the city (Figure A1 in Appendix A) 393 

contributes to this effect, for two reasons: (1) pollutant dispersion eastwards is limited by the river 394 

and reliefs (Ravina et al., 2020a), and (2) traffic is more congested in this area, as the town can 395 

only be accessed from north and south. Concentration maps referring to the lockdown period show 396 

that the impact, in addition to being reduced, is more limited only to the proximity of the roads. 397 

This is an important aspect since consequently, for these pollutants representing a hazard for 398 

human health, exposure of the population is limited. Figure 9 shows that the concentration 399 

reduction is higher in the north-eastern part of the town. The main reason is that the traffic flow in 400 

this area (monitoring points 97, 105, and 107, Table A2 and A3) was less reduced, as mobility in 401 

this area is more connected to commercial rather than residential activities.  402 

The simulation results for the pollutant NO2 were compared with the average yearly 403 

concentration recorded in four pollutant monitoring stations located in Turin (Rebaudengo, 404 

Lingotto, Rubino, and Via Consolata), during the period 2015-2019 and the COVID-19 lockdown 405 

period. These monitoring stations record the total ambient concentration of pollutants, which is 406 

the result of multiple sources present in the area, as well as the interactions between chemical 407 

species and the atmosphere. The comparison is reported in Figure 10. At the Rebaudengo station, 408 

the average observed concentration is 65.5 µ𝑔/𝑚3 and the simulation model shows a concentration 409 

of 41.8 µ𝑔/𝑚3. The average observed concentration in the Via Consolata station is 45.3 µ𝑔/𝑚3, 410 
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while the model reports a value of 29.7 µ𝑔/𝑚3 for this station. Finally, the Lingotto and the Rubino 411 

stations have recorded the average observed concentration of 33.0 µ𝑔/𝑚3 and 31.8 µ𝑔/𝑚3, 412 

respectively, while the simulated model shows 25.6 µ𝑔/𝑚3 and 15.4 µ𝑔/𝑚3 for the two stations, 413 

respectively. 414 

These results are also comparable with the source apportionment data reported in Piedmont 415 

Regional Plan for Air Quality (Piedmont Region, 2018). Source apportionment methodology 416 

adopted in this document is based on an integration of modeling and analytical techniques. For the 417 

modeling source contribution, the methodology adopted is the 3D sensitivity runs / Brute Force 418 

Method - BFM. This method involves the creation of a reference simulation (base case) and a 419 

suitable number of sensitivity simulations, one for each emission category to be analyzed. The 420 

contribution of each category is calculated by analyzing the differences between the results of the 421 

sensitivity simulations and those of the base case. Table 3 shows the source apportionment of NO2 422 

concentrations measured on an annual basis at each of the monitoring stations considered.  423 

Table 3. Source apportionment of NO2 concentrations measured on an annual basis at each of the monitoring 424 

stations (Piedmont Region, 2018) 425 

Torino Rebaudengo  Torino Consolata  Torino Lingotto  Torino Rubino 

Emission category Share  Emission category Share  Emission category Share  Emission category Share 

Industry 11.2%  Industry 9.1%  Industry 10.8%  Industry 10.7% 

Residential heating 9.0%  Residential heating 9.8%  Residential heating 8.8%  Residential heating 8.7% 

Road traffic 74.9%  Road traffic 76.5%  Road traffic 76.2%  Road traffic 76.4% 

Agriculture 0.6%  Agriculture 0.7%  Agriculture 0.7%  Agriculture 0.7% 

Other 4.3%  Other 3.9%  Other 3.5%  Other 3.5% 

 426 
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In this table, the share of traffic sources from the total NO2 concentration is reported as 74.9% 427 

for Rebaudengo station, 76.5% for Via Consolata station, 76.2% for Lingotto station, and 76.4% 428 

for Rubino station. In the simulated concentrations, a share of 63.8% is found at the Rebaudengo 429 

station (-11.1% with respect to the inventory data), a share of 65.5% is found at Via della Consolata 430 

station (-11.0%), a share of 77.8% is found at the Lingotto station (+1.6%), and a share of 48.4% 431 

is found at the Rubino station (-28.0%). Therefore, simulated concentrations of road traffic sources 432 

show a similar share with respect to the measured total concentration. The difference does not 433 

exceed 11.1% for three over four monitoring stations. The only exception is the Rubino station, 434 

where concentrations are underestimated, probably because of the influence of the nearby ring 435 

road, which was not included in the study. 436 

During the lockdown period, the estimated contribution of traffic emission to the total recorded 437 

concentration fell considerably. A share of 22% was found at the Lingotto station, 23% at Via 438 

della Consolata station, 31% at Rebaudengo station, and 23% at Rubino station. This reduced share 439 

with respect to the normal period, besides the reduced mobility, may also be attributed to the 440 

increase of emissions from the residential sector that was confirmed by other studies (Deserti et 441 

al., 2020b). Nevertheless, it must be pointed out that the results reported in Figure 10 mainly serve 442 

as a piece of indicative information on the validity of the present analysis, which was strictly based 443 

on the comparison of primary pollutant emissions, thus does not consider complex aspects of air 444 

quality analysis, such as the interaction of multiple emission sources and secondary pollutant 445 

transformations. 446 
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Figure 10. Comparison of the model output for NO2 with the average yearly concentration recorded in four 448 

pollutant monitoring stations in Turin (Rebaudengo, Lingotto, Rubino, and Via Consolata) in normal days (above) 449 

and during the COVID-19 lockdown (below). 450 

 451 

5. Conclusion 452 

The COVID-19 lockdown period, in its tragic nature, was a unique experience to analyze and 453 

confirm the role of traffic emissions in urban areas. However, studies applying real quantification 454 

of traffic flows during the pandemic lockdown period are scarce and the literature lacks the 455 

application of Lagrangian dispersion models to simulate the dispersion of traffic-induced air 456 

pollution during the COVID-19 lockdown. 457 

In this research, the effect of the full lockdown period on the reduction of NO2, BaP, PM2.5, 458 

TSP, and BC emitted from the road mobile sources, including various types of passenger cars, 459 

busses, heavy-duty vehicles, light-duty vehicles, mopeds, and motorcycles in Turin, one of the 460 

most polluted cities in Italy, was investigated. To do so, the real-time traffic flow of the city during 461 

the first lockdown period of the country was recorded and fed into a Lagrangian dispersion model. 462 

In the case study analyzed, it was clear that the reduction in vehicular traffic in Turin significantly 463 

contributed to the improvement of air quality during the lockdown days. Studying the emission of 464 

pollutants in the city during a one-week period in the full lockdown condition indicated a reduction 465 

between 71.4% (referring to PM2.5 during the working days) and 85.5% (referring to BaP during 466 

non-working days). Furthermore, the reduction in the concentration of pollutants in this period 467 

varied between 70% (for PM2.5) and 88.1% (for BaP). 468 
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In the concluding remarks, it is necessary to report some important considerations regarding 469 

the limitations related to the methodology adopted in the present study. The first is that the present 470 

study is based only on the dispersion analysis of primary pollutants and does not consider the 471 

totality of the sources present in the area under examination and the chemical transformations 472 

occurring between the various species. When considering pollutants that do not tend to undergo 473 

secondary transformations, the results reported are fully in line with already published studies 474 

(Collivignarelli et al., 2020; Xiang et al., 2020). For PM, it should be noted that the reduction 475 

obtained refers only to the primary component. As shown in several other studies (Adams, 2020; 476 

Huang et al., 2020; Le et al., 2020; Sreekanth et al., 2021), the overall PM trend, also considering 477 

the secondary component, has different results due to multiple factors, which are outside the scope 478 

of this study. The second limitation of the method is the application of bulk emission factors, due 479 

to the lack of sufficiently accurate data of vehicle speed during the COVID-19 lockdown period. 480 

It is not possible to quantify to what extent the change in travel speed resulting from the reduction 481 

in traffic flow may have affected vehicle emissions. Considering the method applied, it is clear 482 

that in the scenarios examined, the reduction in emissions depended mainly on the reduction in 483 

traffic flow on the various sections of the road network and the change in the type of vehicles on 484 

the road. The results showed that the reduction of emissions, in addition to the renewal of the 485 

vehicle fleet, must be mainly linked to the reduction of movements with private means of transport, 486 

given that cars are by far the most present type of vehicles on the road. This consideration is 487 

particularly important regarding minor pollutants, such as BaP, and BC, which are majorly 488 

dangerous for human health.  489 

The subsequent phase of analyzing the spatial distribution of concentrations provided 490 

important insights. This research was the first to use a Lagrangian dispersion modeling approach 491 
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to simulate the dispersion of traffic-induced air pollution during the COVID-19 pandemic. Results 492 

showed that in conditions of high vehicular flow, these impacts can extend beyond the proximity 493 

of traffic routes and affect pertinential residential areas or parks. On the other hand, a marked 494 

reduction in vehicular traffic tends to limit the spatial extension of the impacts. Given the 495 

complexity of the subject, these results are recommended to be compared and discussed in future 496 

analyses. Confirmation or refutation of these results would bring important implications for air 497 

quality and mobility planning in urban areas. Such future studies will bring further knowledge if 498 

more detailed and accurate datasets on vehicle flow typology and speed are collected and provided 499 

by administrations and stakeholders. Similarly, analyzing different urban areas around the world, 500 

in various periods, as well as applying different modeling tools will undoubtedly help increase 501 

current knowledge of the topic. 502 

 503 
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Appendix A. Supplementary data 

 

Table A1. Vehicle categories, the share of total vehicle flow in Turin, and related average emission factors 

Category Technology Fuel Abatement 

Share from 

the total 

vehicle flow 

(%) 

Emission factors (𝒈/𝒌𝒎) 

NOx BaP PM2.5 TSP  BC 

1 Buses Diesel Urban Buses Standard - Euro V - 2008 0.29% 3.09 9.0E-07 0.046 0.498 0.001 

2 Buses CNG Urban CNG Buses - EEV 0.04% 2.5 0 0.005 0.163 0 

3 Heavy-duty vehicles Diesel Diesel 7.5 - 16 t - Conventional 0.46% 8.92 9.0E-07 0.334 0.379 0.205 

4 Heavy-duty vehicles Diesel Diesel 7.5 - 16 t - Euro I - 91/542/EEC I 0.18% 5.31 9.0E-07 0.201 0.379 0.199 

5 Heavy-duty vehicles Diesel 

Diesel 7.5 - 16 t - Euro II - 91/542/EEC 

II 0.37% 5.5 9.0E-07 

0.104 

0.379 0.100 

6 Heavy-duty vehicles Diesel Diesel 7.5 - 16 t - Euro III - 2000 0.55% 4.3 9.0E-07 0.088 0.379 0.090 

7 Heavy-duty vehicles Diesel Diesel 7.5 - 16 t - Euro IV - 2005 0.67% 2.65 9.0E-07 0.016 0.379 0.016 

8 Heavy-duty vehicles Diesel Diesel 7.5 - 16 t - Euro V - 2008 0.59% 1.51 9.0E-07 0.016 0.379 0.016 

9 Heavy-duty vehicles Diesel Diesel 7.5 - 16 t - Euro VI 0.81% 0.291 9.0E-07 0.001 0.379 0.016 

10 

Light commercial 

vehicles 

Petrol Diesel - Conventional 

0.46% 1.66 2.9E-06 

0.179 

0.179 0.003 

11 

Light commercial 

vehicles 

Petrol Diesel - Euro 1 - 93/59/EEC 

0.18% 1.22 6.3E-07 

0.117 

0.179 0.002 

12 

Light commercial 

vehicles 

Petrol Diesel - Euro 2 - 96/69/EEC 

0.37% 1.22 6.3E-07 

0.117 

0.179 0.001 

13 

Light commercial 

vehicles 

Petrol Diesel - Euro 3 - 98/69/EC I 

0.55% 1.03 6.3E-07 

0.078 

0.179 0.001 

14 

Light commercial 

vehicles 

Petrol Diesel - Euro 4 - 98/69/EC II 

0.67% 0.831 6.3E-07 

0.041 

0.179 0.001 

15 

Light commercial 

vehicles 

Petrol Diesel - Euro 5 – EC 715/2007 

0.59% 1.15 6.3E-07 

0.001 

0.179 0.001 

16 

Light commercial 

vehicles 

Petrol Diesel - Euro 6 up to 2017 

0.81% 0.96 6.3E-07 

0.001 

0.179 0.001 

17 

Mopeds and 

motorcycles 

Petrol 2-stroke - Mop - Higher than Euro 3 

0.96% 0.25 2.3E-06 

0.018 

0.091 0.004 

18 

Mopeds and 

motorcycles 

Petrol 2-stroke - Mop - Euro 3 

3.60% 0.25 2.3E-06 

0.018 

0.091 0.004 

19 

Mopeds and 

motorcycles 

Petrol 2-stroke - Mop - Euro 2 

1.54% 0.25 2.3E-06 

0.026 

0.091 0.004 
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20 

Mopeds and 

motorcycles 

Petrol 2-stroke - Mop - Euro 1 

1.69% 0.25 2.3E-06 

0.045 

0.091 0.004 

21 

Mopeds and 

motorcycles 

Petrol 2-stroke - Conventional 

3.25% 0.25 2.3E-06 

0.091 

0.091 0.004 

22 Passenger Cars Diesel Diesel Medium - Conventional 1.03% 0.546 1.7E-06 0.099 0.099 0.099 

23 Passenger Cars Diesel Diesel Medium - Euro 1 - 91/441/EEC 0.22% 0.69 1.7E-06 0.084 0.099 0.008 

24 Passenger Cars Diesel Diesel Medium - Euro 2 - 94/12/EEC 0.84% 0.716 1.7E-06 0.055 0.099 0.042 

25 Passenger Cars Diesel Diesel Medium - Euro 3 - 98/69/EC I 2.98% 0.773 1.7E-06 0.039 0.099 0.039 

26 Passenger Cars Diesel Diesel Medium - Euro 4 - 98/69/EC II 6.01% 0.58 1.7E-06 0.031 0.099 0.012 

27 Passenger Cars Diesel Diesel Medium - Euro 5 – EC 715/2007 6.14% 0.55 1.7E-06 0.002 0.099 0.011 

28 Passenger Cars Diesel Diesel Medium - Euro 6 up to 2016 11.09% 0.45 1.7E-06 0.002 0.099 0.000 

29 Passenger Cars LPG LPG - Conventional 0.39% 2.36 1.0E-08 0.002 0.033 0.001 

30 Passenger Cars LPG LPG - Euro 1 - 91/441/EEC 0.11% 0.414 1.0E-08 0.002 0.033 0 

31 Passenger Cars LPG LPG - Euro 2 - 94/12/EEC 0.35% 0.18 1.0E-08 0.002 0.033 0 

32 Passenger Cars LPG LPG - Euro 3 - 98/69/EC I 0.32% 0.09 1.0E-08 0.001 0.033 0 

33 Passenger Cars LPG LPG - Euro 4 - 98/69/EC II 3.27% 0.056 1.0E-08 0.001 0.033 0 

34 Passenger Cars LPG LPG - Euro 5 – EC 715/2007 1.85% 0.056 1.0E-08 0.001 0.033 0 

35 Passenger Cars LPG LPG - Euro 6 – EC 715/2007 3.82% 0.056 1.0E-08 0.001 0.033 0 

36 Passenger Cars Petrol Petrol Medium - ECE 15/04 5.67% 2.66 4.8E-07 0.002 0.035 0.002 

37 Passenger Cars Petrol Petrol Medium - Euro 1 - 91/441/EEC 1.11% 0.485 3.2E-07 0.002 0.035 0.002 

38 Passenger Cars Petrol Petrol Medium - Euro 2 - 94/12/EEC 4.03% 0.255 3.2E-07 0.002 0.035 0.002 

39 Passenger Cars Petrol Petrol Medium - Euro 3 - 98/69/EC I 4.79% 0.097 3.2E-07 0.001 0.035 0.001 

40 Passenger Cars Petrol Petrol Medium - Euro 4 - 98/69/EC II 10.02% 0.061 3.2E-07 0.001 0.035 0.001 

41 Passenger Cars Petrol Petrol Medium - Euro 5 – EC 715/2007 4.86% 0.061 3.2E-07 0.001 0.035 0.001 

42 Passenger Cars Petrol Petrol Medium - Euro 6 up to 2016 11.33% 0.061 3.2E-07 0.001 0.035 0.001 

43 Buses Electricity  0.01% 0 0.0E+00 0.000 0.154 0 

44 Passenger Cars Electricity  1.15% 0 0.0E+00 0.000 0.033 0 
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Table A2. Traffic flow reduction in the traffic monitoring points (working days). 

Hour of the 

day 

Point 

ID 

15 19 22 26 35 39 42 44 49 56 66 86 97 105 107 

Mean 

Std. 

dev. 

C
o
o
r
d
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4
5
.1

0
4
5
, 

7
.7

0
1
5

 

4
5
.1

0
9
0
, 

7
.7

0
4
9

 

00:00 – 00:59  92% 90% 100% 95% 93% 100% 100% 100% 95% 100% 100% 100% 93% 89% 90% 96% 4% 

1:00 – 01:59  100% 90% 100% 90% 85% 100% 100% 100% 100% 100% 100% 100% 85% 92% 91% 96% 6% 

2:00 – 02:59  100% 89% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 72% 87% 86% 96% 8% 

3:00 – 03:59  100% 79% 100% 82% 100% 100% 100% 100% 100% 100% 100% 100% 100% 80% 82% 95% 9% 

4:00 – 04:59  64% 80% 100% 76% 84% 100% 100% 71% 100% 100% 100% 100% 73% 67% 78% 86% 14% 

5:00 – 05:59  44% 60% 86% 71% 72% 67% 75% 71% 86% 70% 72% 76% 71% 60% 76% 70% 10% 

6:00 – 06:59  48% 60% 76% 68% 59% 67% 76% 72% 76% 68% 65% 68% 64% 60% 63% 66% 7% 

7:00 – 07:59  34% 75% 85% 81% 77% 76% 79% 83% 84% 80% 76% 75% 77% 73% 73% 75% 12% 

8:00 – 08:59  55% 74% 78% 80% 75% 78% 78% 74% 83% 74% 77% 73% 74% 73% 76% 75% 6% 

9:00 – 09:59  60% 77% 80% 79% 71% 80% 78% 77% 81% 77% 80% 79% 77% 72% 77% 76% 5% 

10:00 – 10:59  57% 73% 82% 77% 66% 79% 77% 77% 79% 77% 77% 78% 75% 71% 71% 74% 6% 

11:00 – 11:59  61% 74% 84% 76% 65% 77% 77% 77% 75% 75% 76% 78% 73% 69% 70% 74% 5% 

12:00 – 12:59  55% 73% 84% 75% 66% 77% 73% 77% 72% 77% 75% 77% 70% 69% 69% 73% 6% 

13:00 – 13:59  51% 72% 81% 74% 66% 77% 75% 75% 71% 74% 77% 75% 70% 68% 68% 72% 7% 

14:00 – 14:59  57% 76% 81% 74% 68% 79% 78% 81% 79% 79% 77% 79% 74% 72% 70% 75% 6% 

15:00 – 15:59  60% 77% 83% 77% 71% 80% 79% 82% 80% 80% 80% 80% 76% 73% 73% 77% 6% 

16:00 – 16:59  65% 76% 86% 79% 74% 84% 83% 83% 78% 82% 82% 82% 76% 73% 76% 79% 5% 

17:00 – 17:59  71% 77% 85% 78% 74% 84% 82% 84% 77% 83% 79% 80% 76% 74% 78% 79% 4% 

18:00 – 18:59  77% 80% 87% 82% 78% 83% 84% 85% 76% 83% 82% 81% 77% 77% 81% 81% 3% 

19:00 – 19:59  74% 84% 87% 85% 82% 87% 83% 89% 81% 85% 84% 86% 79% 81% 84% 83% 4% 

20:00 – 20:59  76% 86% 92% 85% 81% 88% 86% 89% 87% 86% 85% 90% 82% 85% 82% 85% 4% 

21:00 – 21:59  76% 85% 92% 86% 80% 85% 86% 85% 85% 84% 90% 89% 82% 82% 81% 84% 4% 

22:00 – 22:59  79% 89% 92% 85% 82% 91% 90% 94% 87% 91% 89% 91% 84% 83% 79% 87% 5% 

23:00 – 00:59  90% 90% 96% 92% 89% 96% 96% 93% 94% 95% 94% 95% 91% 85% 91% 92% 3% 

Average  69% 78% 88% 81% 77% 85% 85% 84% 84% 84% 84% 85% 78% 76% 78% 81% 5% 

Std. dev.  18% 8% 8% 8% 11% 10% 9% 10% 9% 10% 10% 10% 8% 9% 8%   
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Table A3. Traffic flow reduction in the traffic monitoring points (non-working days). 

Hour of the 

day 

Point 

ID 

15 19 22 26 35 39 42 44 49 56 66 86 97 105 107 

Mean 

Std. 

dev. 

C
o
o
r
d

. 

(N
,W

) 

4
5
.0

3
2
6
, 

7
.6

4
6
6

 

4
5
.0

3
6
4
, 

7
.6

2
6
6

 

4
5
.0

4
1
3
, 

7
.6

4
7
7

 

4
5
.0

4
6
3
, 

7
.6

3
4
3

 

4
5
.0

5
2
7
, 

7
.6

3
4
7

 

4
5
.0

5
5
0
, 

7
.6

7
1
7

 

4
5
.0

5
5
3
, 

7
.6

7
1
1

 

4
5
.0

5
5
5
, 

7
.6

7
2
0

 

4
5
.0

5
9
3
, 

7
.6

6
3
1

 

4
5
.0

6
4
5
, 

7
.6

4
9
8

 

4
5
.0

7
0
2
, 

7
.6

9
4
0

 

4
5
.0

7
8
0
, 

7
.6

7
9
7

 

4
5
.0

8
8
7
, 

7
.6

8
8
5

 

4
5
.1

0
4
5
, 

7
.7

0
1
5

 

4
5
.1

0
9
0
, 

7
.7

0
4
9

 

00:00 – 00:59  94% 96% 100% 97% 97% 100% 100% 100% 100% 100% 100% 98% 96% 93% 97% 98% 2% 

1:00 – 01:59  100% 97% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 95% 97% 97% 99% 2% 

2:00 – 02:59  100% 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 95% 96% 99% 2% 

3:00 – 03:59  100% 94% 100% 96% 100% 100% 100% 100% 100% 100% 100% 100% 100% 94% 94% 99% 2% 

4:00 – 04:59  100% 91% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 100% 82% 100% 98% 5% 

5:00 – 05:59  48% 61% 93% 59% 50% 84% 100% 71% 83% 80% 79% 84% 78% 72% 72% 74% 14% 

6:00 – 06:59  0% 35% 71% 45% 15% 49% 80% 71% 71% 55% 45% 47% 55% 41% 56% 49% 21% 

7:00 – 07:59  35% 51% 80% 63% 51% 72% 47% 77% 55% 61% 65% 45% 68% 51% 49% 58% 12% 

8:00 – 08:59  58% 68% 82% 75% 69% 74% 76% 82% 72% 68% 67% 73% 76% 67% 71% 72% 6% 

9:00 – 09:59  64% 78% 93% 85% 78% 79% 78% 77% 82% 80% 80% 84% 84% 80% 80% 80% 6% 

10:00 – 10:59  75% 80% 93% 85% 79% 84% 78% 88% 85% 86% 86% 87% 85% 82% 85% 84% 4% 

11:00 – 11:59  78% 85% 91% 85% 79% 81% 78% 85% 82% 80% 81% 86% 81% 85% 84% 83% 3% 

12:00 – 12:59  76% 86% 91% 84% 81% 82% 82% 86% 81% 81% 85% 86% 81% 85% 82% 83% 3% 

13:00 – 13:59  61% 82% 88% 78% 70% 79% 77% 82% 72% 78% 76% 81% 71% 80% 72% 77% 6% 

14:00 – 14:59  54% 77% 90% 79% 71% 79% 80% 88% 80% 80% 81% 85% 75% 80% 79% 79% 8% 

15:00 – 15:59  80% 84% 92% 88% 77% 87% 84% 88% 88% 86% 89% 91% 83% 88% 85% 86% 4% 

16:00 – 16:59  85% 90% 92% 87% 82% 88% 90% 89% 91% 87% 90% 93% 85% 87% 88% 88% 3% 

17:00 – 17:59  87% 90% 92% 86% 78% 87% 88% 92% 90% 87% 89% 93% 85% 88% 89% 88% 4% 

18:00 – 18:59  86% 90% 93% 87% 81% 87% 88% 91% 91% 87% 88% 92% 84% 89% 89% 88% 3% 

19:00 – 19:59  85% 91% 94% 85% 81% 87% 88% 90% 87% 87% 87% 92% 84% 90% 88% 88% 3% 

20:00 – 20:59  81% 89% 94% 85% 80% 87% 85% 88% 86% 82% 84% 91% 82% 90% 85% 86% 4% 

21:00 – 21:59  78% 87% 91% 85% 79% 81% 85% 89% 83% 81% 88% 90% 83% 89% 81% 85% 4% 

22:00 – 22:59  75% 89% 93% 86% 84% 84% 90% 94% 89% 89% 94% 91% 82% 87% 85% 87% 5% 

23:00 – 00:59  87% 92% 98% 94% 87% 94% 95% 92% 93% 94% 93% 94% 90% 91% 90% 92% 3% 

Average  74% 82% 92% 84% 78% 85% 86% 88% 86% 85% 85% 87% 83% 83% 83% 84% 4% 

Std. dev.  23% 15% 7% 13% 19% 11% 12% 9% 11% 12% 13% 14% 11% 13% 12%   
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Table A4. Setting of dispersion simulation parameters. 

Parameter Description Setting 

MGAUSS Vertical distribution used in the near field Gaussian 

MCTADJ Terrain adjustment method Partial plume path adjustment 

MSPLIT Puff splitting allowed 

MCHEM Chemical mechanism 

Transformation rates computed internally 

(MESOPUFF II scheme) 

MDRY Dry deposition modeled Not modelled 

MDISP 

Method used to compute dispersion 

coefficients 

Dispersion coefficients from internally 

calculated sigma v, sigma w using 

micrometeorological variables (u*, w*, L, 

etc.) 

MTAULY 

Method used for Lagrangian timescale for 

Sigma-y 

Draxler default 617.284 (s) 

MCTURB 

Method used to compute turbulence sigma-v 

& sigma-w using micrometeorological 

variables 

Standard CALPUFF subroutines 

MBCON Boundary conditions (concentration) Not modelled 
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Figure A1. Topography of the modelling domain. 
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