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Snap2CAD: 3D indoor environment reconstruction for
AR/VR applications using a smartphone device

Alessandro Manni, Damiano Oriti, Andrea Sanna, Francesco De Pace, Federico Manuri

Politecnico di Torino, Corso Duca degli Abruzzi 24, Torino, 10129, Italy

Abstract

Indoor environment reconstruction is a challenging task in Computer Vision and Computer Graphics, es-
pecially when Extended Reality (XR) technologies are considered. Current solutions that employ dedicated
depth sensors require scanning of the environment and tend to suffer from low resolution and noise, whereas
solutions that rely on a single photo of a scene cannot predict the actual position and scale of objects due to
scale ambiguity. The proposed system addresses these limitations by allowing the user to capture single views
of objects using an Android smartphone equipped with a single RGB camera and supported by Google ARCore.
The system includes 1) an Android app tracking the smartphone’s position relative to the world, capturing a
single RGB image for each object and estimating depth information of the scene, 2) a program running on a
server that classifies the framed objects, retrieves the corresponding 3D models from a database and estimates
their position, vertical rotation, and scale factor without deforming the shape. The system has been assessed
measuring the translational, rotational and scaling errors of the considered objects with respect to the physical
ones acting as a ground truth. The main outcomes show that the proposed solution obtains a maximum error
of 18% for the scaling factor, less than nine centimeters for the position and less than 18◦ for the rotation.
These results suggest that the proposed system can be employed for XR applications, thus bridging the gap
between the real and virtual worlds.

1 Introduction

Indoor environment reconstruction is a fundamental
problem in computer graphics and computer vision.
Conventional computer methods for generating the
digital counterpart of a scene can be based on merging
a large number of depth images [41, 43, 61] or using
photogrammetry [26, 38], which again requires a large
number of photos from different points of view. A pop-
ular smartphone app was Autodesk 123D Catch [1],
which required 26 photos from different angles to re-
construct an object.

Scanning solutions based on LiDAR or Time-of-
Flight (ToF) sensors such as Kinect tend to suffer from
low resolution, noise [17] and missing parts. Follow-
ing the success of deep learning (DL) methods in im-
age classification and generation tasks [45], researchers
have been trying to apply these techniques to sev-
eral 3D tasks [14, 21]. DL methods add semantics
and can solve some of the limitations of the conven-
tional solutions: they can reconstruct a scene from a
single RGB image by predicting room layout, object
location, pose and shape [24, 42], they can add miss-
ing parts of an incomplete scan [12], they can retrieve
and align 3D models of objects to the scan to overcome
low resolution [3].

However, when thinking about fast scene reconstruc-
tion for Virtual Reality (VR) and Augmented Reality
(AR) applications using a common smartphone, a full
scan of the environment, which takes time and requires
depth sensors that are only available on a few recent
high-end devices, should be avoided. Furthermore, po-
sition and scale of the objects are crucial, and therefore
DL methods that use a single RGB image for scene re-
construction are not suitable, since they do not solve
the global scale ambiguity that arises when inferring
depth from a 2D image. In fact, it is an ill-posed prob-
lem and an open challenge. In addition, reconstructing
the entire scene from a single RGB image would prob-
ably result in heavily occluded objects whose shapes
and poses would be hard to predict.

In many disciplines, from education to entertain-
ment, from healthcare to industry, VR and AR are
some of the most promising emerging technologies. In
VR, users are immersed in virtual worlds, whereas AR
allows users to see an augmented version of the real
world; in both cases, being able to generate a virtual
version of a real object can be extremely useful. For
instance, for VR users having a virtual representation
of the physical space is important for safety concerns.

On the other hand, an AR user might want to share
the physical environment with a remote VR user so
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Figure 1: The proposed system. An Android smart-
phone is used to capture a single RGB picture for each
object, which is augmented with the depth information
provided by Google ARCore. Then, a server processes
these data in order to classify the object in the picture
and retrieve the most similar synthetic 3D object from
a database; position, vertical orientation and scale fac-
tor are estimated and applied to the model. Finally,
an AR app and a desktop app can be used to visualize
the reconstructed scene.

that both can move and interact in a common space.
In this case, scene understanding can be fundamental
for a better experience, as it can provide both users
with spatial and semantic information about the ob-
jects.

Building on these considerations, a novel semi-
automatic system allowing users to reconstruct the
digital version of a real indoor scene using a smart-
phone is presented in this paper. A smartphone is
used to capture images of those objects for which a 3D
representation is to be retrieved from a database. The
images, along with depth information, are then sent to
a server for processing. The system is semi-automatic,
as the user still has to perform some tasks manually: 1)
capturing one picture for every object and 2) specify-
ing a point belonging to the framed object. All the
other steps related to the process are automatically ex-
ecuted by the server. Specifically, the first step is the
object segmentation and classification, which assigns

a semantic label to each pixel and allows the system
to distinguish among different objects in the frame.
Then, after isolating the target object, the server finds
the most similar 3D CAD model available in a model
database. Finally, the object pose and scale factor is
estimated, computing the object rotation and position
in the world reference system defined by the smart-
phone. The object is scaled according to the com-
puted scale factor without performing any other mesh
deformation. An overview of the system is shown in
Figure 1.

To the best of the authors’ knowledge, this work
is the first system capable of estimating the 7-DoF
pose (3-DoF position, 3-DoF scale and 1-DoF rotation
around the vertical axis) of objects from a single view
using a smartphone with a single RGB camera to re-
construct an indoor environment.

The most relevant works related to the scene recon-
struction problem are discussed in Section 2. Section 3
presents the proposed system, whereas the conducted
experiments and related results are presented and dis-
cussed in Section 4 and in Section 5, respectively. Fi-
nally, the future developments are discussed in Sec-
tion 6.

2 Related work

During the last two decades, the researchers have con-
ducted extensive work on the reconstruction of 3D ob-
jects or of entire scenes from single and multiple images
or RGB-D scans.

Following the success of deep learning in image-
related tasks, many large-scale datasets of 3D mod-
els such as ShapeNet [6] or ModelNet [56] were made
available to the academic community in order to de-
velop new learning-based methods for 3D reconstruc-
tion. Other commonly used datasets are ScanNet [11],
which contains annotated 3D scans of indoor scenes,
NYU Depth Dataset [39] and SUN RGB-D [50], which
contain annotated RGB-D images.

2.1 Single and Multiple View Scene Recon-
struction

Some works [9, 22, 58] discretize the 3D space using
voxels, which are then predicted by neural networks
(NNs) similar to those used for images. When using
voxels, the reconstruction quality is severely affected
by memory constraints [22]; data compression struc-
tures that take advantage of the sparsity of the data,
such as octrees, can been used to increase the output
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resolution [46, 53].

Some researchers tried to devise networks that out-
put meshes directly; some works [18, 19, 49] consider
the object as a whole, whereas the object is managed
as the union of simple parts in [8, 16]; each part is mod-
eled separately, thus producing higher quality results.
These approaches suffer from bad topology, and they
do not really take advantage of the ability of meshes
to efficiently scale with the shape complexity.

Some of the most recent works use implicit represen-
tations in the forms of occupancy functions [37, 47, 59]
or signed distance functions [33], avoiding the dis-
cretization of the 3D space. Methods based on im-
plicit representations do not generalize well to unseen
objects (i.e., objects that do not appear in the train-
ing dataset) and poses; moreover, they tend to produce
overly smooth shapes [4].

Izadinia et al. [25] use Convolutional Neural Net-
works (CNNs) to train comparison metrics, which are
used in an iterative algorithm to optimize placement
and scale of objects, in order to match the reference im-
age of an indoor scene. Although the generated scene
is similar to the reference image, it is not possible to
determine the real sizes of objects from a single RGB
image.

Guo et at. [20] can predict position, orientation and
size of individual objects in a scene from a single RGB-
D image, but small objects tend to be missing from
the reconstructed scene and occlusion can lead to er-
roneous estimates.

Holistic approaches [24, 42] do not consider one ob-
ject at a time, but they reason about the scene as
a whole, trying to understand the relationships (e.g.,
support, symmetry, etc.) among the objects. Huang et
al. [24] jointly recover room layout, camera pose, and
object bounding boxes of an indoor scene, whereas the
solution proposed in [42] can also reconstruct the mesh
of objects.

FroDO [30] can estimate the pose of an object and
reconstruct its shape, but it requires a series of local-
ized RGB images.

CoReNet [44] can predict the shape, relative pose
and class of all objects depicted in a single image, but
the quality of the generated geometry is affected by
the discretization step, which is required in order to
reconstruct the object shape.

Given an input image containing multiple objects,
Kuo et al. [27] first find object instances through seg-
mentation, then they retrieve the most similar CAD
model to any object instance by using a shared em-
bedding space for image-CAD pairs. In addition to

shape retrieval, they predict the object pose.

Vid2CAD [36] integrates single-frame predictions by
NNs with globally-consistent poses obtained by solving
the alignment problem as a temporally global, multi-
view constraint optimization problem.

2.2 Reconstruction from RGB-D Scan

SG-NN [12] takes as input partial RGB-D scans and
predicts missing geometry in a self-supervised manner.
The result is an high resolution 3D reconstruction of
the scene. RevealNet [23], given an incomplete RGB-D
scan, detects the objects in the scene and infers their
complete geometry.

Scan2CAD [3] predicts correspondence heatmaps
between regions of an RGB-D scan and 3D CAD mod-
els using a 3D CNN, then it finds the 9-DoF poses
for 3D CAD model alignment to the scan. The main
disadvantage of this approach is that it requires to
compare each model in the database to each scanned
region to reconstruct the whole scene. Scan2CAD is
extended in [2] by the addition of layout estimation,
which also helps in improving the overall accuracy.

3 The Proposed Solution

The proposed system recognizes the framed objects
and retrieves the 3D CAD models (represented as
polygonal meshes) corresponding to the object classes
from a database. Let M = {mn} be the model set,
with 1 ≤ n ≤ N and N be the number of 3D CAD
models. Each model mn belongs to a specific category
or class ck ∈ C = {ck}. For each object, the goal is to
infer its class ck, find the most similar 3D CAD model
mn and estimating its 7-DoF pose: 3-DoF for transla-
tion, 3-DoF for scale, and 1-DoF for rotation around
the vertical axis.

The system operates in indoor scenes using a hand-
held Android device running a Google ARCore-based
app [54]. ARCore is a collection of tools for creating
AR experiences. For each physical object, a snapshot
consisting of 1) the RGB image, 2) the depth data, 3)
the device pose, and 4) the lowest horizontal plane is
acquired.

The system does not require a depth sensor since
it leverages the Visual-SLAM and the depth map esti-
mation algorithms included in the ARCore Depth API.
Specifically, a Samsung Galaxy S8 fitted with a single
RGB camera was used in this work. Figure 2 illus-
trates the four stages of the proposed system.
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Figure 2: The reconstruction pipeline of the proposed system. Stage 1 is executed by the client whereas stages
2, 3 and 4 are executed by the server.

3.1 Snapshots acquisition

The first stage of the presented solution consists in
taking snapshots of the objects by using the Android
smartphone. Starting from the utilities implemented
in the DepthLab app [13] provided by Google, an
Android app was developed using Unity3D1 and the
ARCore Depth API SDK. The developed app tracks
the smartphone in the Unity3D world coordinates, it
predicts the depth maps in real-time and it detects
the horizontal planes. When the app starts, AR-
Core defines a coordinate frame W = {O, xyz} by
fixing its origin and orientation to the starting posi-
tion Pdevice(0) ∈ R3 and orientation Rdevice(0) ∈ R3 of
the device:

O = Pdevice(time = 0) (1)

xyz = Rdevice(time = 0) (2)

By moving the smartphone, the device pose is com-
puted by the ARCore Visual-SLAM algorithm. When
the user wants to retrieve a digital version of an ob-
ject, they should target the object on the smartphone
screen by using the fixed virtual red cursor shown in
Figure 2. Then, the user can acquire the snapshot
by tapping on the “Snap!” button, which triggers four
events:

1. The app saves the i-th single-view RGB image
F rgb
i of the scene in camera resolution Resrgbcam.

2. The app checks the detected horizontal planes
Ph
i = {pi,j},∀j ∈ {1, 2, . . . , J}, where J is the

number of detected planes in the given snapshot.
The lowest plane hlp,i is considered as a candidate

1https://unity.com/

ground plane, and its height relative to the smart-
phone initial position is stored in a CSV file called
SnapInfo:

hlp,i = min
j∈{1,2,...,J}

height(pi,j) (3)

The rotation about the vertical axis Rv
device,i of

the smartphone is also stored and later used to
estimate the rotation of the object.

3. The app stores in a CSV file called ScreenToDepth
the mapping between the screen space coordinates
of the captured frame F rgb

i and the coordinates of

the estimated depth map F depth
i of that frame.

This is necessary because the depth map esti-
mated by ARCore has a resolution of 160x90px,
which is different and much less than the color
frame resolution Resrgbcam, equal to 2220x1080px.

4. In order to construct the point cloud in camera
space Qcam

i corresponding to a given depth map
(see Section 3.2), the program uses the camera
intrinsic parameters, i.e. principal point (cu, cv)
and focal length f . If Q(u, v) denotes the point of
the point cloud corresponding to the pixel (u, v)
of the depth map, and z(u, v) is the depth value,
then its x, y and z coordinates are computed using
the following equation:

Q(u, v) =

u−cu
f z(u, v)

v−cv
f z(u, v)

z(u, v)

 (4)

5. The app stores in another CSV file called Point-
Cloud the mapping between the screen space co-
ordinates of the estimated depth map F depth

i and
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the world space 3D points. The world space 3D
points have been computed starting from the cam-
era space 3D points using the utilities provided
by [13]. The generated point cloud has approxi-
mately 14000 points.

These operations are repeated for each object that the
user wishes to replace with a 3D model. This stage
ends after the user clicks on the “Finish” button, which
instructs the smartphone to forward all generated files
to the server.

3.2 Object Classification and Estimation of
Object Position and Scale

The server automatically processes the files generated
by the smartphone application in the second stage.
In this stage, the goal is both to classify the selected
object in each snapshot and to estimate its position
Pi ∈ R3 and size Si ∈ R3

>0 in the world space. In
order to extract from the RGB image only the object
targeted by the user, the system performs a seman-
tic segmentation, which works by assigning a semantic
label (i.e., an object class label) to each pixel in the
image.

It is possible to find several DL solutions to accom-
plish this task for indoor environments. In particu-
lar, there are well-known datasets such as COCO [35],
ADE20K [62] and SUN RGB-D [50] on which Deep
Neural Networks are trained. The presented solu-
tion uses MSeg [28], which combines all the men-
tioned datasets plus Mapillary [40], IDD [55], BDD [60]
and Cityscapes [10] into a single composite dataset
with 194 categories. The neural network architec-
ture is HRNet-W48 [52], which was pre-trained with
Mseg-3m-1080p model shared by [28].

The output of the segmentation network is a gray
scale image F gray

i , whose pixels have a gray color code
corresponding to a specific semantic class. Since the
segmentation network returns an image with a differ-
ent resolution than the input image, the image is scaled
back to the resolution of the frame F rgb

i acquired by
the smartphone using the nearest-neighbor interpola-
tion to avoid introducing artifacts such as gray tones
not present before. The pixel in the center of the im-
age carries the color code of the targeted object. If
the color code represents a class of objects managed
by the system, the server processes the image further,
otherwise it discards it.

The system is now able to retrieve from the raw
point cloud Qi of the single view snapshot the point
cloud of the object Q′i highlighted in the mask, by

using the pixel-by-pixel mapping between the mask,
the relative estimated depth map and then the world
space point cloud. The point cloud is transformed from
camera space to world space using a transformation
matrix Tcam→world as shown in the following equation:

Qworld
i = Tcam→world ·Qcam

i (5)

Then, the set of points belonging to the object is ex-
tracted from the original point cloud by using a binary
mask that can be obtained by performing a flood fill
operation on the segmentation image starting from its
central pixel.

For small objects (e.g., mice, remotes, bowls, cups,
etc.), it is sufficient to compute a 3D oriented bound-
ing box of the segmented point cloud Qworld

i to obtain
the centroid and the 3D size of the object. The system
uses the algorithm implemented in Open3D [63], which
is an approximation to the minimum volume box con-
taining a set of points. On the other hand, large-size
objects present several challenges: 1) they may consist
of different parts, 2) they may have outliers in the point
cloud caused by the single view of the object 3) and
they may have flying points caused by the smoothing
that ARCore applies to the depth maps. The ARCore
smoothing process cannot be disabled and it is shown
in Figure 3.

For such objects, a RANdom SAmple Consensus
(RANSAC) algorithm is applied to the segmented
point cloud, detecting only the horizontal planes.
Then, the 3D oriented bounding box is computed con-
sidering the points positioned on the detected plane.
This operation returns the extent of the object and the
position of the centroid where the value of its vertical
axis represents the height of the object.

When objects are composed of parts with holes, the
ARCore smoothing process creates flying points that
could affect the size of the 3D oriented bounding box.
Chairs are particularly challenging objects because the
backrest can present cavities and also because the 3D
oriented bounding box would not provide information
about the height of the seat (a correctly aligned collider
could be useful in AR/VR applications). To overcome
these problems, the system proceeds in three steps.
The first step creates a mask of depth discontinuities
in the depth map to remove most of the point cloud
outliers: an automatic Canny edge detection algorithm
similar to the one presented in [5] is applied to a gray
scale version of the depth map that is normalized to en-
hance the depth variations. Then, two morphological
transformations, dilation and closing, are used. The
kernel of the Canny edge varies with the distance of
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(a) ToF sensor depth (b) ToF point cloud

(c) ARCore depth (d) ARCore point cloud

Figure 3: The depth maps and point clouds. (a-b)
The depth map acquired with a generic ToF sensor
and the related point cloud, respectively. (c-d) The
same ToF depth map processed with ARCore and the
related point cloud, respectively. The ARCore pro-
cessing creates flying points on the object contour.

Figure 4: Depth images (represented as normalized
gray scale images) and relative edge masks obtained
using a Canny edge detection operator.

the object center from the smartphone, as shown in
Figure 4.

The generated binary mask is used to remove the
outliers in the point cloud, which are concentrated in
depth discontinuities. The RANSAC algorithm de-
tects the horizontal plane of the seat in the second step,
whereas a statistical outlier removal algorithm is ap-
plied to the point cloud segmented by the plane in the
third step, removing the remaining outliers left over
from the previous step. The whole process is shown in
Figure 5.

At this point, the system computes the 3D ori-
ented bounding box of the segmented plane found
by RANSAC, which provides the extent of the seat
and the centroid falling on the seat; this gives the
seat’s height. The overall height of the chair is also
determined by finding the highest point of the seg-
mented point cloud data. On the other hand, cabi-
nets, dressers, and nightstands are treated differently
by the system due to three factors: 1) the segmenta-
tion network does not always predict the correct la-
bel, 2) objects lying on the small surface of a night-
stand might create artifacts on the point cloud data
and the RANSAC algorithm may not detect the hori-
zontal plane and 3) the camera might not frame the top
surface of a cabinet due to its height, so the RANSAC
algorithm will fail to find a plane in this case either.
For these classes of objects, the system finds the high-
est vertex of the segmented point cloud, which is as-
sumed to be the height of the top surface, and then it
creates an artificial horizontal plane by moving the ver-
tices on the vertical axis. The algorithm provided by
Open3D for the estimation of the 3D oriented bound-
ing box is used to obtain the extent of the object and
the 2D position of the centroid, which is not affected
by the previous operations.

3.3 3D Model Retrieval

Image-based 3D model retrieval is the task of retriev-
ing a relevant 3D synthetic object from a database
that is similar to a query photo captured in real world.
The domain gap between 3D shapes and natural im-
ages is a major challenge [32, 29, 51, 15]. There are
different ways to perform 3D model retrieval: Chen
et al. [7] introduced LightField Descriptors (LFDs) to
represent 3D shapes, whereas other approaches use
CNNs [31, 34]. In this work, A VGG-19 [48] CNN
was used as it provides better fine-grained 3D model
retrieval with respect to other approaches such as
LFDs. A subset of 3D models from the ShapeNet-
Core dataset [6] is rendered from 12 viewpoints, then
the VGG-19 CNN pre-trained on ImageNet is used to
extract their features. These features are computed

6



(a) Depth map

(e) Normalized
depth map (g) Point cloud

(h) Outliers in red

(i) Bounding box

(b) Point cloud

(c) Outliers in red (d) Bounding box

W/o canny edge
outlier removal

With canny edge
outlier removal

(f) Edges

Outliers not removed by
statistical outlier removal

Figure 5: Canny edge-based outlier removal. The (a) input depth map estimated by ARCore is converted to
a point cloud (b-g). With statistical outlier removal (SOR), the outliers highlighted in red in (c) are detected
and removed; in (d) it is shown how the bounding box is not correct because some outliers were left by the
SOR. By using the Canny edge detection algorithm on the (e) normalized depth map, whose result is shown
in (f), the outliers generated by the ARCore smoothing process can be removed (h) and the bounding box is
correctly estimated (i).

and stored once. The most similar object is deter-
mined by computing the Euclidean distance between
the extracted features of the segmented target object
and the features computed for the renderings associ-
ated to 3D models of the same category. To reduce
the noise of natural images, the system removes most

Figure 6: Query segmented images and top-3 models
retrieved. The first column represents the segmented
photos of real objects used as queries, whereas the sec-
ond to forth columns represent the most similar re-
trieved models (best from left to right).

of the background and other elements by extracting
the query object from the snapshot using the binary
mask generated in stage 2, followed by a blurring op-
eration to soften the borders and a final cropping op-
eration to center the object. The features of the seg-
mented objects are extracted by the VGG-19 CNN,
then the Euclidean distance between the query image
and all the renderings belonging to the objects under
the category given by the segmentation network is cal-
culated. The 3D object associated to the rendering
with the shortest distance to the natural RGB image
is selected (an example of 3D model retrieval is shown
in Figure 6).

3.4 Object Pose Estimation

The system predicts the rotation of the object around
the vertical axis in the fourth stage. Several DL solu-
tions try to solve the problem of object pose estima-
tion from a single RGB image, but many require that
the neural network has to be trained on the specific
object whose pose is to be estimated. This approach
is incompatible with the conditions under which the
system is intended to operate: an indoor environ-
ment where never-before-seen objects have to be con-
sidered. For this reason, the proposed system uses
PoseFromShape [57]. This DL solution can predict the
viewpoint of an object in an RGB image with respect
to known viewpoints. For this work, PoseFromShape
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uses the model provided by [57] trained on ShapeNet-
Core, a subset of ShapeNet (Figure 7 illustrates some
models of the ShapeNet dataset). From this dataset,
the 3D models of the considered category were taken
and rendered from different viewpoints using Blender.

The background of the RGB snapshot could impact
on the accuracy of the prediction, thus the system uses
the image of the segmented object obtained in the pre-
vious stage.

Since the system has already retrieved the 3D object
from the previous step, it feeds the neural network with
the collection of renderings associated to that object
and the segmented photo of the object.

The output of the PoseFromShape network is the
camera’s viewpoint, which is composed of the Euler an-
gles for azimuth, elevation and in-plane rotation. The
system only considers the azimuth that is going to be
applied to the 3D model used to represent the physical
object.

3.5 Scene Reconstruction and AR Visual-
ization

For each snapshot, the system generates three CSV
files containing: 1) position and size of the object, 2)
vertical rotation of the object and 3) rotation of the
smartphone. Furthermore, the height of the floor
hfloor valid for the whole reconstructed scene system

Figure 7: Some 3D models from ShapeNet Core
dataset. The models are in a canonical pose.

Figure 8: The AR view. Two chairs visualized by the
AR app: the occlusions are taken into account.

is stored in an additional CSV file named Floor. The
height of the floor is the average of all the values that
differ from the lowest of the list {hlp,i} by 4 cm or less:

hlp = min
i

hlp,i (6)

hfloor = avg(hlp,i) if abs(hlp,i − hlp < 4cm) (7)

It has been observed that when the tracking of a
plane is lost and then detected again, there is a differ-
ence of less than 4 cm from previous detection.

A desktop application has been developed using
Unity3D to visualize the reconstructed scene. The 3D
models were taken from the ShapeNetCore dataset [6].
The 3D models have been pre-processed to present real
world sizes and centroid positions consistent with the
one estimated by the system. The Unity3D desktop
app parses all the CSV files, selecting the 3D mod-
els and computing the appropriate rotation, scale and
position values. To qualitatively evaluate the accuracy
of the reconstruction, all 3D models are also visualized
by a mobile AR app. The user can freely move around
the scene to verify whether the 3D models correctly
overlap with the real objects. The geometry-aware oc-
clusion feature of ARCore facilitates the evaluation. In
fact, since a dense depth map is estimated at almost
every frame, it is possible to check whether a 3D model
is correctly superimposed on the physical object (Fig-

8



ure 8). At the following link it is possible to find a
video showing the proposed system2.

4 Experimental validation

To evaluate the accuracy of the system, a new dataset
is introduced. The dataset consists of 500 snapshots
of several objects with different shapes. The objects
are divided in categories and the snapshots were taken
from different points of view.

4.1 Scaling error

The ground truth (GT) is represented by the physical
object size. To determine the scaling error of each cate-
gory, several snapshots have been taken from different
views. Then, the root mean squared errors (RMSE)
between the GT and the estimated size is computed for
each snapshot. Finally, the average of the all RMSE
values is computed, determining the category scaling
error. The error is computed for each dimension (x, y,
and z) and it is expressed as a percentage of absolute
difference from the ground truth value.

4.2 Position error

The position GT of the object is determined using a
marker placed at the center of the physical object.
The marker is used to create a mask that segments
the points at the center of the object. Hence, the 3D
bounding box can be computed finding the center co-
ordinates of the object. Then, the same procedure as
the one introduced in Section 4.1 is applied to deter-
mine the category position error, expressed in meters.

4.3 Vertical rotation error

The GT value of the object vertical rotation is de-
termined using the same marker recognition process
as used in Section 4.2. However, the smartphone is
mounted on a fixed support to ensure consistency dur-
ing the evaluation process. The rotation assessment
is computed using two different images: the GT im-
age (with the marker, see Figure 9) and the evaluated
one (without the marker). The GT rotation is deter-
mined by computing the marker rotation, whereas the
rotation of the evaluated object is computed by the
proposed solution. Finally, the rotational error is ob-
tained by calculating the average of all RMSE values,
expressed in degrees.

2https://youtu.be/SW0JWhPBX50

(a) Object with marker (b) The estimated pose

Figure 9: (a) Captured photo showing an object with
the marker used to determine the ground truth pose;
(b) the estimated pose of the same object obtained
with the proposed system.

5 Discussion

The position, rotational and scaling errors are shown
in Table 1. It appears that the position and scaling
errors along the Y axis grow if the surface of the ob-
ject is not flat or there are obstacles that partially
occlude the object surface, thus interfering with the
depth map estimation algorithm. Small occlusions,
such as a laptop covering part of a table, are toler-
ated, whereas a heavily occluded table may lead to a
failure in the segmentation stage. Regarding the rota-
tion error, some inconsistencies have been detected in
objects with symmetric shapes, resulting in wrong ro-
tations of 180◦ around the vertical axis. These wrong
predictions seem to happen regardless of the dataset
used to train the network. Generally, the errors in-
crease when the object is not fully captured in the
snapshot, and thus the 3D oriented bounding box does
not perfectly align to the segmented point cloud of the
object itself. Matte black surfaces pose a challenge
since the stereo matching algorithm [54] fails to pro-
vide consistent correspondences among frames com-
posed by a large amount of dark pixels, thus creating
reconstruction errors and artifacts on the depth map.
The proposed system reconstructs a scene using sin-
gle snapshots for each object, thus it is important to
capture the object from views that cover the essential
parts of the object (e.g., to estimate the position and
size of a chair, the seat should be visible). It has been
noted that chests of drawers and nightstands may be
misclassified as cabinets by the segmentation network.
This is probably due to the fact that the evaluated
image regions considered by HRNet do not contain
enough information to discern the differences among
some classes of objects having similar features [52].
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Avg. RMSE
Position (m)

Avg. RMSE
Scaling (%)

Avg. RMSE
Scaling Factor Error (%)

Avg. RMSE
Rotation (◦)

Object (PS/R) x y z x y z (x, y, z) y

Chair (61/11) 0.03 0.02 0.02 10 2 13 10 9
Swivel chair (24/6) 0.02 0.02 0.03 6 6 12 8 15
Armchair (33/8) 0.05 0.02 0.07 13 4 12 10 9
Table (62/9) 0.05 0.02 0.04 7 3 10 7 12
Nightstand (31/6) 0.04 0.06 0.05 13 7 23 14 18*
Chest of drawers (12/7) 0.03 0.07 0.08 6 5 8 6 8
Cabinet (57/5) 0.06 0.03 0.05 15 6 14 12 14
Bed (24/7) 0.09 0.04 0.1 7 8 17 10 14
Laptop (22/12) 0.02 0.02 0.02 7 8 21 12 10
Bowl (17/-) 0.05 0.03 0.04 14 22 7 14 -
Mouse (25/6) 0.02 0.01 0.02 11 26 11 16 2*
Remote (22/5) 0.03 0.02 0.01 6 20 25 17 6*
Book (33/8) 0.02 0.01 0.02 17 23 15 18 6*

Table 1: The main outcomes. The average of the root mean squared errors of position, scaling, vertical rotation
and the average size error in 3D. Objects marked with * may have 180◦ rotation error. PS and R stand for
the number of position-scaling and rotation snapshots, respectively.

Finally, regarding the execution time, the system
has been evaluated using a laptop equipped with a
CPU Intel Core i7-8750h and an NVIDIA RTX 2060
GPU. The proposed solution can reconstruct a scene
with five objects in 21 seconds: 15 seconds for the seg-
mentation task, approximately 2 seconds for 3D model
retrieval, less than 2 seconds for objects processing
and 2.25 seconds for the pose inference.

6 Conclusion

This paper presents a system able to reconstruct a
scene captured by an Android smartphone supported
by ARCore. With respect to the current state of the
art, the proposed solution exploits only the RGB cam-
era, without employing traditional depth sensors. The
system consists of an ARCore-based app that takes
snapshots of objects in an indoor environment from a
single view. The snapshots are then processed on a
server: the target object in the frame is classified and
the most similar 3D model is retrieved from a database;
then, scale, position and vertical rotation of the ob-
ject are estimated. All DL modules can be replaced
as better solutions become available. In addition, two
Unity3D applications have been presented: 1) a desk-
top app that populates the virtual scene with instances
of 3D models using the estimated pose without deform-
ing object meshes and 2) an AR app that superimposes

the virtual objects over their real counterparts. These
applications can be used in online multiplayer mode,
thus visualizing the AR instance of the desktop/VR
player from the smartphone and vice-versa the desk-
top/VR instance of the tracked AR user in the recon-
structed scene.

Several techniques have been described to overcome
the challenges posed by the single view snapshots and
the poor resolution of the depth maps. A dataset of
more than 500 snapshots was introduced to evaluate
the system accuracy.
Future work will include a wider model dataset, which
in combination with non-trivial deformation of meshes
could allow more fine-grained shape retrieval. Further-
more, the scene layout will be also determined, provid-
ing the ability to detect and reconstruct walls, floors
and ceilings. Finally, other methods that overcome
the vertical rotation constraint could be investigated
in order to detect rotations around any axis.
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