
14 May 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing / Ardito, Luca; Bottino,
Andrea; Coppola, Riccardo; Lamberti, Fabrizio; Manigrasso, Francesco; Morra, Lia; Torchiano, Marco. - In: ACM
TRANSACTIONS ON SOFTWARE ENGINEERING AND METHODOLOGY. - ISSN 1049-331X. - 31:2(2021), pp. 1-32.
[10.1145/3477427]

Original

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing

ACM postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1145/3477427

Terms of use:

Publisher copyright

© ACM 2021. This is the author's version of the work. It is posted here for your personal use. Not for redistribution. The
definitive Version of Record was published in ACM TRANSACTIONS ON SOFTWARE ENGINEERING AND
METHODOLOGY, http://dx.doi.org/10.1145/3477427.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2915055 since: 2021-11-24T17:03:41Z

ACM

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

Feature Matching-based Approaches to Improve the
Robustness of Android Visual GUI Testing

LUCA ARDITO, Politecnico di Torino
ANDREA BOTTINO, Politecnico di Torino
RICCARDO COPPOLA, Politecnico di Torino
FABRIZIO LAMBERTI, Politecnico di Torino
FRANCESCO MANIGRASSO, Politecnico di Torino
LIA MORRA, Politecnico di Torino
MARCO TORCHIANO, Politecnico di Torino

In automated Visual GUI Testing (VGT) for Android devices, the available tools often suffer from low robustness
to mobile fragmentation, leading to incorrect results when running the same tests on different devices.
To soften these issues, we evaluate two feature matching-based approaches for widget detection in VGT scripts,
which use, respectively, the complete full-screen snapshot of the application (Fullscreen) and the cropped
images of its widgets (Cropped) as visual locators to match on emulated devices.
Our analysis includes validating the portability of different feature-based visual locators over various apps and
devices and evaluating their robustness in terms of cross-device portability and correctly executed interactions.
We assessed our results through a comparison with two state-of-the-art tools, EyeAutomate and Sikuli.
Despite a limited increase in the computational burden, our Fullscreen approach outperformed state-of-the-art
tools in terms of correctly identified locators across a wide range of devices and led to a 30% increase in
passing tests.
Our work shows that VGT tools’ dependability can be improved by bridging the testing and computer vision
communities. This connection enables the design of algorithms targeted to domain-specific needs and thus
inherently more usable and robust.

CCS Concepts: • Software and its engineering→ Software defect analysis; Software verification and
validation; Software testing and debugging; • Computing methodologies→ Matching.

Additional KeyWords and Phrases: Mobile Computing, Software Testing, Visual GUI Testing, Feature matching

ACM Reference Format:
LucaArdito, Andrea Bottino, Riccardo Coppola, Fabrizio Lamberti, FrancescoManigrasso, LiaMorra, andMarco Torchi-
ano. 2018. Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing.
ACM Trans. Softw. Eng. Methodol. 1, 1 (July 2018), 33 pages. https://doi.org/10.1145/1122445.1122456

Authors’ addresses: Luca Ardito, Politecnico di Torino, Corso Duca degli Abruzzi 29, Torino, Italy, 10129, luca.ardito@
polito.it; Andrea Bottino, Politecnico di Torino, Corso Duca degli Abruzzi 29, Torino, Italy, 10129, andrea.bottino@polito.it;
Riccardo Coppola, Politecnico di Torino, Corso Duca degli Abruzzi 29, Torino, Italy, 10129, riccardo.coppola@polito.it;
Fabrizio Lamberti, Politecnico di Torino, Corso Duca degli Abruzzi 29, Torino, Italy, 10129, fabrizio.lamberti@polito.it;
Francesco Manigrasso, Politecnico di Torino, Corso Duca degli Abruzzi 29, Torino, Italy, 10129, francesco.manigrasso@polito.
it; Lia Morra, Politecnico di Torino, Corso Duca degli Abruzzi 29, Torino, Italy, 10129, lia.morra@polito.it; Marco Torchiano,
Politecnico di Torino, Corso Duca degli Abruzzi 29, Torino, Italy, 10129, marco.torchiano@polito.it.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2018 Association for Computing Machinery.
1049-331X/2018/7-ART $15.00
https://doi.org/10.1145/1122445.1122456

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

https://doi.org/10.1145/1122445.1122456
https://doi.org/10.1145/1122445.1122456

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

2 Ardito, et al.

1 INTRODUCTION
Modern Android apps have reached a high complexity level, almost bridging the gap with traditional
desktop software in terms of exhibited features. Nowadays, mobile apps are using sophisticated
frameworks and modern development processes, with quick delivery cycles. Moreover, there is
a very tight competition on the online markets where they are released: the official Google Play
store counts 2.96 million apps available as of June 2020, and 84.3 billion downloads for the whole
2019 [53]. These characteristics should encourage a thorough Verification and Validation phase to
gain the necessary confidence that the apps behave correctly and systematically use automated
techniques to support and complement the slow and error-prone manual practice.

The vast majority of Android apps are Graphical User Interface (GUI) intensive and collect most
of the user’s interaction through GUI widgets, or Views. Thereby, a critical issue is ensuring that
the running app correctly renders the widgets. Recent years witnessed the development of many
End-to-End (E2E) testing tools that allow developers to create repeatable test scripts mimicking
a human interaction with the finished app and evaluate their response [12]. Many of these tools
identify the GUI widgets through layout properties of the GUI structure that serve as textual locators
and are hence called Layout-based testing tools. Similarly, the execution correctness is validated
by verifying the properties of the GUI layout. These tools, however, are unable to test the actual
graphical appearance of the Application Under Test (AUT) when shown to its final user. Thus,
visual failures may slip through undetected.

To address this limitation, researchers proposed to tackle app testing with the Visual GUI Testing
(VGT) paradigm [2]. With this paradigm, the verification of behavior’s correctness involves a
visual comparison between the app’s current and expected visual appearance. This comparison
leverages image recognition algorithms and uses screen snapshots as both visual locators (to identify
the widgets) and oracles (to determine whether the displayed widget is correct). Thus, the main
advantage of the VGT approach is that it allows testers to verify that the widgets are displayed in
the correct position and appearance. In contrast, layout-based techniques have a limited ability to
verify the rendered GUI’s appearance and typically only check a widget’s instantiation and not
whether its appearance is correct.

In addition to the visual verification component, VGT techniques allow emulating user interaction
with the GUI in an entirely agnostic way to AUT implementation, operating system (OS), and
platform. These features make VGT techniques optimal for testing those applications that need to
provide high portability across different platforms. In particular, they represent a valid alternative to
the (costly) manual testing of those applications that contain a lot of visual content, whose rendering
must be carefully verified. Although the demonstrated benefits of applying VGT tools for desktop
software [3], in the industrial practice of mobile app development, the inherent characteristics
of the domain have slowed down their adoption. Indeed, visual tests of Android apps are very
fragile due to hardware fragmentation [31]. Therefore, since every app must be compatible with
many different devices (with varying screen sizes, pixel densities, and rendering specifications),
marginal variations in the graphical rendering can invalidate the recognition of visual locators and
oracles. As a result, test cases may not be portable to devices different than those on which the
captures have been performed. Moreover, graphical changes in the same app’s consecutive releases
may break the tests, requiring additional maintenance in existing test suites to adapt locators and
oracles. Our previous studies have shown that state-of-the-art VGT testing tools are complicated to
port to different devices unless leveraging hybrid techniques that regenerate VGT tests for each
device from an original layout-based test suite [22]. However, such an approach increases the test
suite maintenance costs since visual locators’ regeneration is a time-consuming operation that
must be performed at each new application release that includes changes in the GUI appearance.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

99

100

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

126

127

128

129

130

131

132

133

134

135

136

137

138

139

140

141

142

143

144

145

146

147

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 3

With this discussion in mind, one possible question is how to improve the effectiveness of the
VGT paradigm. The hypothesis underlying our work is that the algorithms currently used by
state-of-the-art VGT tools (which usually leverage pixel-to-pixel comparisons) can be made more
robust to possible graphical variations across devices, OSs, and versions. In particular, our work
aims at analyzing the role of feature matching algorithms, a specific class of Computer Vision (CV)
algorithms, as an enabling technology for more robust Android VGT tools [59]. These algorithms
rely on the analysis of local textural features invariant to several image variations (like color, shape,
scale, and rotation), allowing them to detect one or more targets in cluttered scenes robustly.
The idea of applying feature matching algorithms in the VGT domain is not new [1, 48, 58].

However, to the best of our knowledge, the approach presented in this paper represents the first
attempt to systematically evaluate the suitability of different feature matching algorithms to support
VGT applications and, specifically, their robustness to device fragmentation. In particular, we present
the design of two different feature matching-based algorithms to identify widgets’ visual locators,
referred to in the following as Fullscreen and Cropped. Our experimental results show how our
approach can increase the robustness of visual locator matching, improve over state-of-the-art VGT
tools, and achieve higher portability across devices.
To validate the robustness of visual locator matching, we perform a two-fold analysis. First,

we validate the portability of different locator matching strategies and feature descriptors on
different devices over a large set of Android apps by comparing recall, precision, and execution
time. Second, we perform an exploratory study on a real test suite, and we compare our feature
matching approaches with state-of-the-art VGT tools in terms of resilience to device change.

Additionally, we contribute to state of the art in the field by introducing DatAndroid1, a dataset
including screenshots and associated metadata (i.e., View Hierarchies) of about 100 apps emulated
on 14 different devices, for a total of roughly 1,400 combinations, which could serve as a public
benchmark for the portability of VGT techniques. To the best of our knowledge, the only available
public large-scale datasets with screenshots are RICO and ERICA [26]. However, they do not
provide screenshots of the same app rendered on different devices, with varying screen sizes,
pixel densities, and rendering specifications; hence, they are not suitable for investigating the
performance, robustness and portability of VGT tools, or their underlying CV techniques.
The present manuscript is structured as follows: Section II provides background information

about Android GUI Testing techniques, VGT tools, and CV techniques for GUI testing; Section III
introduces the two matching algorithms that we propose; Section IV illustrates the experimental
procedure to evaluate feature matching algorithms for VGT; Section V provides a description and
discussion of the collected results; Section VI summarizes the threats to the validity of the current
study and, finally, Section VII concludes the paper and provides directions for future work.

2 BACKGROUND AND RELATEDWORK
In this section, we first illustrate the main concepts behind automated GUI testing, then we examine
the Android-specific VGT techniques and we highlight their major limitations. We finally provide
an overview of recent literature related to image recognition algorithms’ application to VGT for
Android apps.

2.1 Android GUI structure and automated GUI testing
Android apps (and mobile apps, in general) can be divided into three main categories, according
to the way they are built: native apps, created using the Android-specific design guidelines and
the related development framework; web-based apps, i.e., web applications optimized to be loaded

1The dataset is available for download on Zenodo or at the link https://frankissimo.github.io/datAndroid/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

https://frankissimo.github.io/datAndroid/

148

149

150

151

152

153

154

155

156

157

158

159

160

161

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177

178

179

180

181

182

183

184

185

186

187

188

189

190

191

192

193

194

195

196

4 Ardito, et al.

on browsers installed on Android devices; hybrid apps, combining the principles of native and
web-based apps by employing components that are capable of loading dynamic content from the
web at run time.

While web-based apps and the content of hybrid apps are designed by following the usual web
development principles, native apps are built with a precise set of visual components. Each app
screen is managed by an Activity. This component defines and builds the GUI shown to the user,
which is composed of Views (i.e., widgets) arranged in a tree structure according to a specific layout
[52]. The layout can be defined programmatically (in the code of the Activity class) or by defining
static XML files that can be loaded (or “inflated”) as the Activity’s first operation. Screen transitions
are obtained by registering callbacks on interactable GUI elements (like buttons and text fields) and
processing user inputs (like clicks, text insertions, and swipe operations).
One of the most widely used approaches to automated GUI testing for Android applications is

layout-based testing. This approach leverages the possibility to extract, at any given time during the
app execution, the current screen hierarchy, where each View is associated with a set of platform-
specific parameters, like unique id, textual content, size, and screen position. These properties allow
identifying the visible elements used by Layout-based testing tools as both locators (to identify the
Views to interact with) and oracles (to verify if a specific View has been shown on the screen with
the desired properties).
The relevance of Layout-based testing is witnessed by the fact that most of the research in

automated GUI testing for Android apps focused on this approach. Linares-Vasquez et al. [38]
provided a classification of over 80 testing tools based on the approach adopted to define the
test sequences. According to this classification, Automation Frameworks and APIs allow testers to
create JUnit-like test scripts to be run against Android GUIs. Examples of this category are the
tools embedded with the Android development framework (Espresso [50], UIAutomator [64]), and
Robotium [63]). Record and Replay tools create sequences of interactions by capturing manual
sequences executed by a tester into repeatable scripts. Recent examples are Barista [28] and
OBDR [46]. Automated Test Input Generation Techniques execute tests without the need for manually
defining input sequences; the sequences can be generated randomly, as with SAPIENZ [42], or
Monkey [27], the official GUI random exerciser provided by Android. More sophisticated approaches
automatically create the test sequences by generating and using GUI models, like the finite state
machines exploited by MobiGUITAR [7] and DroidMate [15].

2.2 Tools for Visual GUI Testing
VGT is an alternative approach to GUI testing that uses CV to automate testers’ tasks [19]. Test cases
developed by the VGT approach show several key features: high readability (since each interaction
is described with screen captures of the application and not with code); a more natural development
of scripts with respect to the Layout-based approach (which, for the definition of each locator,
requires the tester/developer search unambiguous properties in the layouts); complete platform
independence (since the GUI tests are agnostic of the specific platform and OS for which the AUT
is engineered, and they only require to render or emulate it). Empirical controlled experiments
have demonstrated that VGT tools can significantly increase testers’ productivity [10].

Several commercial and open-source tools have adopted the VGT approach. Sikuli [62] uses image
recognition algorithms to identify GUI components. The tool provides an integrated development
environment (IDE) for assisted script generation and can output test scripts in Python, Ruby, and
JavaScript. Libraries for using Sikuli matching commands inside JUnit test cases are also available.
EyeAutomate (evolution of JAutomate [6]) uses a proprietary algorithm to recognize graphical
oracles and provides an IDE for manual script definition as well as a Java library to write down
JUnit-like test methods. The tool supports the creation of text-based repeatable scripts written in a

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

197

198

199

200

201

202

203

204

205

206

207

208

209

210

211

212

213

214

215

216

217

218

219

220

221

222

223

224

225

226

227

228

229

230

231

232

233

234

235

236

237

238

239

240

241

242

243

244

245

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 5

proprietary syntax. Layout Bug Hunter (LBH) validates bugs in the GUI rendering by checking
layout errors caused by changing the screen size [32]. Commercial products are also available, like
AppliTools, which uses visual inputs combinedwithmachine learning capabilities, and PhantomCSS,
based on pixel-by-pixel screen comparisons [60].
Several studies in the literature proved the applicability of these tools in real-world scenarios.

Alegroth et al. documented the feasibility of the VGT technique’s long-term usage through an
industrial case study [3]. Borgesson et al. performed comparative studies between Sikuli and
JAutomate in an industrial setting, finding that VGT is an applicable technology for automated
system testing with significant advantages compared to manual system testing and manual scripting
and proving that the technique can be successfully used for automated acceptance testing [16].
However, as highlighted by most VGT studies, the main limitation of this approach is the high

maintenance cost of visual test suites [4]. Several studies tried to address the maintenance issues by
providing translation-based or hybrid approaches that combine visual and Layout-based locators’
characteristics by using the latter to automatically re-generate the visual captures [5, 11, 36].
These approaches are however limited to the translation of a limited set of types of locators and
interactions, and generally do not achieve a 100% precision in visual oracle generation, thereby
requiring manual intervention at times. They also require the layout-based test suite to be rendered
against each emulated device for the creation of visual screen captures, therefore they are not
indicated for large-sized test suites.

2.3 Issues with VGT of Android apps
Beyond the limitations introduced in the previous section, Android fragmentation is recognized as
a relevant issue to tackle by developers and testers [42]. The fragmentation concept can be divided
into hardware fragmentation, i.e., inconsistencies among various hardware specifications that can
cause differences in GUI renderings, and software fragmentation, i.e., inconsistencies due to the
different versions of the OS, application programming interface (API), and GUI customizations
[51]. Fragmentation mandates additional effort by both developers and testers to ensure that their
apps’ features are entirely portable to the devices that the app must provide compatibility with. A
comprehensive testing procedure shall test the app on multiple handsets, each with its hardware
and software characteristics [34].

Fragmentation significantly impacts GUI visual test practices since it results in the impossibility
to guarantee that the image recognition algorithms can correctly find the locators and oracles
captured on a source device. A further issue is that the Android framework allows rendering
layouts in different ways (i.e., with a variable number and arrangement of widgets) on devices with
different pixel densities and screen sizes. For instance, multiple widgets can be compacted in menus
or inserted into scroll views on smaller screen sizes and visualized only after swipe operations
(as in figure 1, which reports an example of the same Activity rendered on two different devices).
Thereby, GUI test cases are intrinsically fragile to fragmentation, since even if no faults are present
when executing the app on different devices, visual test scripts may require the locators to be
adapted to the specific size and arrangement of the widgets on the target device to avoid wrong
test executions.
Another major problem documented for VGT, although not exclusive to the Android domain,

is the graphical fragility, driven by pure graphical changes to widgets or modifications in AUT
layout properties (e.g., textual content or hierarchy changes) [24]. These situations require test
maintenance, forcing testers to provide new visual locators for each widget whose appearance has
changed. Controlled experiments on mobile applications have measured that maintenance effort
due to graphical fragilities in VGT test suites can account for up to 30% of total test maintenance
time [21].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

246

247

248

249

250

251

252

253

254

255

256

257

258

259

260

261

262

263

264

265

266

267

268

269

270

271

272

273

274

275

276

277

278

279

280

281

282

283

284

285

286

287

288

289

290

291

292

293

294

6 Ardito, et al.

(a) Google Nexus S (b) Google Nexus 5

Fig. 1. Main Activity of the ASCII Notes application on devices with different screen sizes. On the smaller
Nexus S screen, a lower number of components is displayed than on the Nexus 5 screen.

A final drawback of VGT tools is that they are commonly run in a desktop environment that
emulates the AUT on an Android Virtual Device (AVD). This approach adds an additional layer of
fragility to visual tests since the recognition of the locators is influenced by the rescaling operated
on the AVD by the host OS [11][37].

2.4 Computer Vision techniques for automated GUI testing
Several VGT tools like Sikuli [2] and EyeAutomate [1] rely on CV techniques to automate the search
of visual locators. The most common approach, which is also our work’s goal, is to recognize a
visual locator’s location in the device screen capture using image matching algorithms.

The literature has documented several failures and issues associated with commercial and
open-source VGT tools. One of the main difficulties in analyzing the causes of these problems
is that the algorithms’ full specifications are often undisclosed. Nonetheless, some data on the
matching algorithms’ performance (mainly exploiting their implementation in the OpenCV library)
is available in the literature [17, 47, 48].
Among the available VGT tools, Sikuli is based on a simple template matching technique that

searches the visual locator position in the target screenshot. The same approach is also discussed
in [47]. This algorithm simply slides the template image over the target screenshot and compares
the template and the underlying target patch. This comparison involves a similarity metric such
as the squared difference or the normalized correlation of pixel intensities. The sliding approach
of template matching potentially requires sampling a large number of points. Thus, VGT tools
typically reduce the search space’s size by stopping as soon as a suitable match is found. However,
this choice may be suboptimal if the same or similar widgets occur within the application. Moreover,
template matching is not robust to variations in scale (which occur when the image is rendered on
devices with different physical characteristics) and rotation and color (which are relatively frequent
during the evolution of the AUT [49]), leading to wrong executions due to image recognition
failures.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

295

296

297

298

299

300

301

302

303

304

305

306

307

308

309

310

311

312

313

314

315

316

317

318

319

320

321

322

323

324

325

326

327

328

329

330

331

332

333

334

335

336

337

338

339

340

341

342

343

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 7

More recently, matching algorithms based on local feature descriptors emerged as a more effective
and robust alternative to pixel-based similarity. Feature matching refers to a set of CV techniques
that aim to find corresponding or similar image patches in two images, with numerous applications
including stereo matching and image retrieval [25]. A feature matching algorithm comprises three
essential steps: keypoint extraction, local feature extraction, and keypoint matching.

The goal of keypoint extraction is to find distinctive locations that can increase the uniqueness
of the features extracted, usually promoting high-contrast regions of the image, such as object
corners. These keypoints are then associated with a local feature vector, i.e., a local texture descriptor
that provides a strong characterization of the local image patches surrounding an image point,
invariant to several image variations (like color, shape, scale, and rotation). Several local feature
descriptors have been defined [39, 59]. Popular choices include SIFT [39], SURF [14], and Akaze
[29], which differ in terms of computational cost, accuracy, and robustness [54]. Finally, keypoints
extracted from the two images are matched using suitable metrics in the feature space (i.e., matched
keypoints identify visually similar regions with a low distance in the feature space) to establish a
point-to-point correspondence between the two images.

An example of keypoint descriptors’ application to VGT is MAuto [58], a tool that generates test
sequences for mobile games through the Record and Replay technique. MAuto leverages AKAZE
feature descriptors to identify locators in the AUT. However, the excessive number of features in
the query images used to identify locators limited the approach’s applicability. As a workaround to
this issue, the authors restricted the search to a limited region of the query image, which had to be
appropriately and heuristically calibrated to provide a suitable number of features for identifying
the locators.
Available studies related to feature matching algorithms applied to the VGT tasks suffer from

two main limitations. The first is algorithmic in nature, as most of the state-of-the-art tools and
approaches take as input only the cropped image of a single input visual locator [1, 2, 58]. This
approach is not robust in the presence of repeated or similar widgets, where the locator could be
potentially matched to multiple widgets. To address this issue, we propose a Fullscreen matching
algorithm which leverages all visual information available in the source and target screenshots,
and compare it experimentally with the state-of-the-art approach. The second limitation lies in
the limited experimental validation, which is usually based on a few selected apps or case studies
[58]. Previous studies therefore do not provide a comprehensive assessment of state-of-the-art CV
algorithms. To close the gap, we offer to the community DatAndroid, a dataset of roughly 100 apps
rendered on 14 different devices, as well as an experimental methodology to systemically compare
the robustness of different algorithms and descriptors in the presence of device fragmentation.

3 FEATURE MATCHING BASED VGT
As mentioned in the introduction, our primary goal was to design and develop an approach capable
of (i) matching widgets rendered on Android app screens, (ii) performing interactions on individual
widgets, and (iii) running test sequences on them. The main constraint on our method is that it
must locate the widgets of interest on various devices where the app may run. In the following, we
adopt these definitions:

• Source device: the device where the visual locator is captured;
• Target device: the device where the locator should be found.

Our purely visual testing approach uses only rendered screens as input and, differently than
several state-of-the-art applications of VGT to Android apps, we search for the visual locators
directly in the screen captures obtained by ADB (Android Debug Bridge) interaction with the
Android devices rather than in the renderings of the screen on the host desktop system where the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

344

345

346

347

348

349

350

351

352

353

354

355

356

357

358

359

360

361

362

363

364

365

366

367

368

369

370

371

372

373

374

375

376

377

378

379

380

381

382

383

384

385

386

387

388

389

390

391

392

8 Ardito, et al.

Table 1. Input and output of the two algorithms

Fullscreen algorithm Cropped algorithm

Input /
Locator

fullscreen capture of the source de-
vice screen, bounding box of the
widget

Cropped screen capture containing
only the widget

Result x, y coordinates belonging to the widget in the target device screen

device is emulated. This approach’s advantages are twofold: it can be applied to both emulated and
real devices, and it does not need to consider the resizing of the virtual device GUI operated by the
host OS. We also emphasize the fact that, in principle, the source and target devices may coincide.
This condition occurs, for example, when comparing different versions of GUIs that have graphical
variations.

The proposed feature matching based VGT is based on determining, for each visual locator in the
source screenshot, its location in the target image (or lack thereof). This analysis leverages feature
matching algorithms, which identify in the target the location of a region of the source image
that represents the widget to be searched. Under these conditions, the matching algorithms can be
handled in two different ways, referred to in the following as Fullscreen and Cropped (summarized
in Table 1). The main steps of both algorithms are illustrated and compared in Figure 2.
Assuming for simplicity that the test involves a single widget, the visual locator on the source

device (e.g., the bounding box of the widget) is identified in both cases by a human tester during the
creation of the test suite. The main difference between the two algorithms is that, in Fullscreen, we
use for identification all visual information available in the source screenshot, whereas, in Cropped,
we use only the information present in the visual locator.

The identification of the position of the visual locator is based on established feature matching
techniques. These techniques leverage local texture descriptors (see Section 2.4 for details and
Section 4.3.2 for the description of the specific descriptors analyzed in our research). For tasks like
image registration, object tracking, and recognition, robust matching algorithms can be applied
to pair keypoint descriptors obtained from the source and target images. These algorithms work
as follows. First, the best match between descriptors is computed by means of a suitable metric
in the feature space (e.g., euclidean distance). Then, since the extracted feature point pairs might
suffer from significant correspondence errors or mismatches in the pairing, a common strategy is to
postprocess candidate matches with robust data fitting techniques such as RANSAC (which stands
for RANdom SAmple Consensus) [13]. RANSAC starts from an initial estimate of the homography
relating the two images (computed from all the matches) and then iteratively removes the outliers,
i.e., the matches that are not consistent with the estimated homography, to update the homography
with the remaining set of inliers. Figure 3 shows an example of matching a source and target
snapshot, where the initial keypoint matches (Figure 3 left) are "cleaned" applying RANSAC as
a post-processing step (Figure 3 right). The remaining matches will be the base of the clustering
method used to identify the locator position in the target image.

In the following sections, we detail the Fullscreen and Cropped algorithms where, for the sake of
clarity and without loss of generalization, we assume again that the test involves a single widget.
Implementation details are reported in Section 4.3.2.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

393

394

395

396

397

398

399

400

401

402

403

404

405

406

407

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 9

source Fullscreen
with

source widget bounding
box

Feature Matching Algorithm
and

RANSAC application
Clustering

Fullscreen algorithm

Cropped algorithm

source Cropped
Feature Matching Algorithm

and
RANSAC application

Clustering

bounding
box

(X,Y)
interaction
coordinate

target Fullscreen

target Fullscreen

Fig. 2. Schematic representation of the two matching algorithms compared in this work. The example shows
the AcsNotes app with Nexus S and Pixel 3a XL as source and target devices, respectively. First row: Fullscreen.
From left to right: the source and target screenshot (the green region indicates the visual locator); results of
the keypoint matching (green lines indicate the matched keypoints associated to the source widget, grey
lines the other matched keypoints); the identified interaction coordinates (identified by the larger red circle).
Second row: Cropped. From left to right: the cropped widget and target screenshot; results of the keypoint
matching; the identified interaction coordinates (identified by the larger red circle). Both algorithms match
the source widget with two potential target widgets, identified by the clustering step as two clusters of
keypoints (highlighted by the small and large red circles); the largest one is selected as interaction coordinates.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

465

466

467

468

469

470

471

472

473

474

475

476

477

478

479

480

481

482

483

484

485

486

487

488

489

490

10 Ardito, et al.

Initial keypoint matches RANSAC - refined matches

Fig. 3. Example of RANSAC post-processing (in Fullscreen algorithm). Left: Initial keypoint matches. Right:
RANSAC-refined matches. In both images, the green lines indicate the matched keypoints.

3.1 Fullscreen matching algorithm
The Fullscreen matching algorithm (Algorithm 1) is summarized in the top part of Figure 2. It
receives as input both the source and target fullscreen images, along with the (manually identified)
bounding box of the source locator.

With this approach, we first extract the keypoints from both source and target images, and then
we post-process their matches with RANSAC. To identify the widget’s target location, we use the
widget bounding box to prune the set of matches (i.e., by discarding all matches whose source
keypoints fall outside the bounding box). Finally, to obtain the most likely interaction coordinate
pairs (i.e., the widget interaction coordinates on both source and target, which are needed by
the test procedure), we apply the MeanShift clustering algorithm [30] to the source and target
keypoints. On each device, the largest cluster found identifies the target locator, and its centroid is
returned as the final output of the matching algorithm.

Algorithm 1 Fullscreen matching algorithm
1: FsSource← Source image of Full Screenshot
2: FsTarget← Target image of Full Screenshot
3: Src_bb_target← Source bounding box
4: function FullScreen(FsSource,FsTarget,Src_bb_target)
5: 𝑠𝑟𝑐_𝑝𝑡𝑠, 𝑡𝑎𝑟𝑔_𝑝𝑡𝑠 ← feature_matching(𝐹𝑠𝑆𝑜𝑢𝑟𝑐𝑒, 𝐹𝑠𝑇𝑎𝑟𝑔𝑒𝑡)
6: 𝑠𝑟𝑐_𝑝𝑡𝑠, 𝑡𝑎𝑟𝑔_𝑝𝑡𝑠 ← RANSAC(𝑠𝑟𝑐_𝑝𝑡𝑠, 𝑡𝑎𝑟𝑔_𝑝𝑡𝑠)
7: 𝑠𝑟𝑐_𝑝𝑡𝑠, 𝑡𝑎𝑟𝑔_𝑝𝑡𝑠 ← select_target_keypoints(𝑠𝑟𝑐_𝑝𝑡𝑠, 𝑡𝑎𝑟𝑔_𝑝𝑡𝑠, 𝑆𝑟𝑐_𝑏𝑏_𝑡𝑎𝑟𝑔𝑒𝑡)
8: 𝑐𝑙𝑖𝑐𝑘_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ← Meanshift(𝑡𝑎𝑟𝑔_𝑝𝑡𝑠)

return 𝑐𝑙𝑖𝑐𝑘_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

The advantages of the Fullscreen algorithm are two-fold. First, it reduces the time needed to
process the entire test suite if more than one widget has to be extracted for the test generation.
Second, RANSAC relies on the computation of a homography that implicitly favors spatial widget

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 11

arrangements that are similar between source and target. Therefore, when the same (or similar)
widgets are repeated in the GUI, it is possible to match each widget with its most similar counterpart,
with RANSAC ensuring that the final matching is also spatially coherent. A typical example that can
benefit from these characteristics is a calendar application, where the same numeric symbols repre-
sent different days of the month. However, in these situations, RANSAC may occasionally remove
a correct match. The main disadvantage of this algorithm, however, is the higher computational
cost than Cropped when a single widget has indeed to be identified.

3.2 Cropped matching algorithm
The Cropped matching algorithm (Algorithm 2) is summarized in the bottom part of Figure 2. It
receives as input the cropped image of the source device widget and the target screenshot (i.e., the
same input required by Sikuli and other comparable tools). The source keypoints are extracted
only from this cropped image and matched to those extracted from the target screenshot. Again,
we apply RANSAC for outlier removal and MeanShift for the identification of the interaction
coordinates.

Algorithm 2 Cropped matching algorithm
1: CsSource← Source image of Cropped Screenshot
2: FsTarget← Target image of Full Screenshot
3: function Cropped(CsSource,FsTarget)
4: 𝑠𝑟𝑐_𝑝𝑡𝑠, 𝑡𝑎𝑟𝑔_𝑝𝑡𝑠 ← feature_matching(𝐶𝑠𝑆𝑜𝑢𝑟𝑐𝑒, 𝐹𝑠𝑇𝑎𝑟𝑔𝑒𝑡)
5: 𝑠𝑟𝑐_𝑝𝑡𝑠, 𝑡𝑎𝑟𝑔_𝑝𝑡𝑠 ← RANSAC(𝑠𝑟𝑐_𝑝𝑡𝑠, 𝑑𝑠𝑡, 𝑡𝑎𝑟𝑔_𝑝𝑡𝑠)
6: 𝑐𝑙𝑖𝑐𝑘_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠 ← Meanshift(𝑡𝑎𝑟𝑔_𝑝𝑡𝑠)

return 𝑐𝑙𝑖𝑐𝑘_𝑐𝑜𝑜𝑟𝑑𝑖𝑛𝑎𝑡𝑒𝑠

Fig. 4. Sample content for the main Activity of PassAndroid with repeated visual locators in the same screen
(e.g., the “custom Pass” text box, and the blue squares on the left).

This algorithm’s main advantage is that it is faster than Fullscreen when the test involves a single
widget. However, there can be identification errors when the source locator is present multiple times
in the target screen (as in the example in Figure 4, which shows a screenshot of the PassAndroid

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

540

541

542

543

544

545

546

547

548

549

550

551

552

553

554

555

556

557

558

559

560

561

562

563

564

565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

587

588

12 Ardito, et al.

Action +
widget

Test
Execution

Match

Extract

Goal 1Goal 2

Test cases
Widget

Source device

Destination device

Coordinates

Descriptor

Fig. 5. Visual experimental design summary.

Table 2. Goal-Question-Metric template for the study

Goal 1 Goal 2

Object of Study Feature matching algorithms Visual testing
Purpose Compare different descriptors and matching

algorithms
Compare with state-of-the-art VGT tools

Focus Precision, recall, execution time Device fragmentation, working tests, portability
Context Matching of mobile GUI components Mobile GUI test suites

Stakeholders Researchers Researchers, developers, testers

application that contains repeated graphical and textual content in the same Activity). In these
cases, the matching algorithm returns at most one locator, which is not necessarily the correct one.

4 EXPERIMENTAL DESIGN
Our experimental assessment, summarized in Figure 5, addresses two different aspects, the feature
matching algorithms and the visual testing process.

4.1 Goals
We report the Goal-Question-Metric (GQM) [18] template for the study in Table 2.

The first goal aims at assessing the effectiveness of feature matching algorithms in identifying
widgets on Android GUIs. We compared different algorithms and descriptors based on standard
performance measures for classification and retrieval algorithms (recall, precision) and execution
time. The results are then interpreted according to researchers’ perspective in the CV field, providing
evidence about the performance of such techniques in the domain of Android GUIs. The aim is to
enable selecting the combination of algorithm and descriptor with the highest performance on a
wide range of applications, widgets, and source/target devices.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

630

631

632

633

634

635

636

637

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 13

The second goal concerns feature matching algorithms’ applicability for recognizing visual
locators and oracles in visual test suites for Android applications.We compared the feature matching
technique with state-of-the-art VGT tools by considering the impact of device fragmentation on test
scripts. The results pertaining to this goal are then interpreted according to researchers’ perspectives
in the GUI testing field, testing tool creators, and developers. Although, in theory, we expect that a
feature matching technique with higher performance can enhance test portability, several factors
may reduce or increase portability in practice. For example, the impact of individual widgets on
final performance is unbalanced because some of them are selected more frequently than others
(and thus, their correct recognition is more critical).

4.2 Research questions and metrics
4.2.1 RQ1: Feature matching performance. To achieve the first goal of the study, we formulated the
following research question:

RQ1: How well do feature and template matching algorithms perform when applied to Android
GUI widgets?

The research question was divided into the following sub-questions:

RQ1.1: Which widget matching algorithm between Fullscreen and Cropped performs best?
RQ1.2: Which feature descriptor between SIFT, SURF and AKAZE performs best? How do they

compare with template matching approaches?
RQ1.3: How do feature descriptors and matching algorithms compare in terms of execution

time?
RQ1.4: Which are the main issues for widget matching using feature descriptors?

To answer RQ1.1 and RQ1.2, we resorted to precision and recall, standard performance measures
for retrieval and classification techniques.
We performed an overall performance assessment considering all the widgets extracted from

the source and target devices’ screen hierarchy. The advantage of this approach is that it enables
a comprehensive, large scale and easily automated performance evaluation; however, it does not
account for the fact that different types of widgets are selected more or less frequently in test suites
and thus have different impacts on the perceived performance of the VGT tool.

From the screen hierarchy of each device, we extracted for each widget the bounding box, along
with the content-desc, text, and resource-id properties. This information is used to
generate the reference standard or ground truth: for each pair of devices, two graphic components
represent the same widget if they have the same id, text, and description. In addition, for each
leaf element in the screen hierarchy, we trace the path to its root: if two paths traverse the same
containers, preserving the spatial order, they are assigned to the same widget. This constraint allows
us to enforce each widget’s uniqueness, preserve the relationships between them, and account for
cases in which some properties are left empty by the app developer. Another critical aspect to be
considered is the timing of the app execution. In particular, the screenshot and dump grabbing
must be synchronized and executed after the application is fully rendered to guarantee that the
two are correctly aligned.
Based on this reference standard, we are able to define which locators are correctly and which

are incorrectly matched by the visual algorithms.
In particular, given two visual locators, one in the source screen and one in the target screen, we

define:
• True Positive (TP), if the locators correspond to the same widget in the reference standard
and are matched by the algorithm;

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

638

639

640

641

642

643

644

645

646

647

648

649

650

651

652

653

654

655

656

657

658

659

660

661

662

663

664

665

666

667

668

669

670

671

672

673

674

675

676

677

678

679

680

681

682

683

684

685

686

14 Ardito, et al.

• False Positive (FP), if the locators do not correspond to the same widget in the reference
standard but are matched by the algorithm;
• False Negative (FN), if the locators correspond to the same widget in the reference standard,
but they are not matched by the algorithm.

Precision and recall are then calculated as:

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =

∑
𝑇𝑃∑

𝑇𝑃 +∑ 𝐹𝑃
;

𝑟𝑒𝑐𝑎𝑙𝑙 =

∑
𝑇𝑃∑

𝑇𝑃 +∑ 𝐹𝑁
.

To answer RQ1.3, we measured the total time needed for the feature matching algorithms to
be applied to the subject images, including feature extraction and matching. In the Fullscreen
algorithm, we estimated the processing time as the time to process the entire source and the target
screens, plus the additional processing time due to the clustering phase. In the Cropped algorithm,
we estimated the time to recover the coordinates for a widget as the sum of the descriptor calculation
time and the clustering phase. All calculations prudentially refer to the worst-case scenario in
which a single widget is matched on each target screenshot; in the case of multiple widgets to
be matched simultaneously, the Fullscreen algorithm’s processing time should be divided by the
number of widgets to be matched.

4.2.2 RQ2: Application to GUI testing. To achieve the second goal of the study, we formulated the
following research question:

RQ2: How can feature matching algorithms enhance the portability of GUI test cases in the
Android domain?

The research question can be divided into the following sub-questions:

RQ2.1 : How do feature description algorithms compare with state-of-the-art visual testing
tools in terms of portability of test scripts to different devices?

RQ2.2 : How do feature description algorithms compare with state-of-the-art visual testing
tools in terms of performance?

To answer RQ2.1, we measured the following metrics on the executions of visual test cases on
different devices:
• the number of test cases that are executed correctly on different devices;
• the number of correctly identified unique locators;
• the number of correctly performed interactions.

To answer RQ2.2, we measured the total execution time of the scripts, as well as the average
time obtained by dividing the former time by the total number of interactions.

4.3 Experimental subjects and instruments
4.3.1 Selected applications. For the first research question, wemined applications from theUpToDown
.apk store2, a marketplace providing more than 50k free Android apps already used as a source
for experimental studies [44][45]. We limited our work to a specific category of Android apps to
avoid considering applications with very different graphical appearances, e.g., games or apps with
prominent multimedia content. We selected the Writing and Notes category, containing mostly
utilities to manage and organize text-based content and item lists. We mined with a Python script
the entire population of 195 apps belonging to the selected category as of January 2020. We also
2https://en.uptodown.com/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

687

688

689

690

691

692

693

694

695

696

697

698

699

700

701

702

703

704

705

706

707

708

709

710

711

712

713

714

715

716

717

718

719

720

721

722

723

724

725

726

727

728

729

730

731

732

733

734

735

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 15

Table 3. Details about the experimental subjects selected for RQ2

PassAndroid AntennaPod

GitHub commits 1,697 7,281
GitHub releases 104 98
GitHub stars 542 3.4k
GitHub forks 120 928
PlayStore downloads 1M+ 500k+
PlayStore rating 4.3* 4,7*

(a) PassAndroid - Pass Activity (b) AntennaPod - Subscriptions
Activity

Fig. 6. Sample screen captures of the experimental subjects for RQ2

verified whether the apps were compatible with the set of emulated devices that we selected for
our analysis. After this verification phase, we came up with a population of 95 valid apps.

For the second research question, we selected two different experimental subjects: PassAndroid
[8, 22, 43, 61], a tool for storing and managing different types of tickets through QR codes belonging
to the Writing/Notes category of Android apps; AntennaPod [33, 35, 40, 50, 56], an application
for listening and managing podcast subscriptions, belonging to the Multimedia/Video category of
Android apps. The two apps are popular and long-lived open-source projects on GitHub and are
available on the PlayStore and FDroid. We report details about the two apps in Table 3 and sample
screen captures in Figure 6.

The test suites were developed by one of the authors of this study with the Appium automation
framework. The PassAndroid test suite was partly based on an existing test suite used for a previous
study [23]. The author was given no indication about the purpose of the test suite and the designed
experiment to avoid possible biases in creating the test scripts. We generated the screen captures
and visual locators for each interaction with the GUI by tracing the Layout-based test suite’s
execution with proper callbacks.
The characteristics of the test suite are reported in Table 4. The suite consists of 30 different

test cases with a varying number of interactions. Not all the interactions of the test suite require a

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

736

737

738

739

740

741

742

743

744

745

746

747

748

749

750

751

752

753

754

755

756

757

758

759

760

761

762

763

764

765

766

767

768

769

770

771

772

773

774

775

776

777

778

779

780

781

782

783

784

16 Ardito, et al.

Table 4. Details about interactions and locators of the test suite developed for the second experimental goal

PassAndroid AntennaPod
Property Total Avg. Median Total Avg. Median

Number of interactions 190 6.3 6 306 10.2 11
Interactions requiring visual locators 170 5.6 5 234 7.8 8

Number of interacted widgets 46 5.3 3 77 7.4 8
Number of different locators 52 5.3 5 77 7.4 8

visual locator (e.g., PressBack or GoHome are directly executed by the tool through calls to APIs of
the ADB and not by interacting with the emulated GUI). The actual number of interacted widgets
is markedly lower than the number of interactions performed in the tests, meaning that there are
multiple interactions with the same widgets in different tests or even in the same test. It is also
worth noting that, in the case of PassAndroid, the number of different visual locators is higher than
the number of unique interacted widgets. This fact means that in different test cases or different
execution moments, the same widget may have different graphical appearances.

4.3.2 Feature matching implementation details. We used the latest releases (at the time of the
experiment, in June 2020) of the Python version of OpenCV and RANSAC libraries (3.4.2.17).
In this work, we compare three scale, rotation and translation invariant feature matching tech-

niques: SIFT [39], SURF [14] and AKAZE [29, 58]. They represent classes of descriptors with
different trade-offs in terms of accuracy, memory occupation, and execution time [55]. AKAZE was
already successfully used in VGT tools [58]. It belongs to the class of binary descriptors (like ORB
and BRISK) and offers a reduction of the computational burden. To perform the actual matching,
we use brute force matching, i.e., each keypoint is associated with the closest one in the feature
space using as a metric the Euclidean distance for SIFT and SURF and the Hamming distance for
AKAZE.

As for the RANSAC, we used a recent variant named Graph-Cut RANSAC [13], which is faster
and more accurate than standard RANSAC. Graph-Cut RANSAC is applied with the following
parameters: the smallest number of data points to evaluate model parameters is set to 10, the
maximum number of iterations to 1000, and the threshold value (to determine which data points
are fit by the model) is set to 100.

4.3.3 State-of-the-art VGT tools. As state-of-the-art tools to be included in the comparison, we
selected EyeAutomate [6], release 2.2, and SikuliX [62], release 1.1.2, since they are the most cited
in empirical studies on visual testing. We have used the tools by leveraging the provided APIs in
Java.

To achieve a more systematic comparison with state-of-the-art tools for RQ1, we re-implemented
the matching algorithm employed by the open-source software SikuliX using the same library
(OpenCV) and settings employed in the tool. This choice made it possible to extract the raw
matching performance of SikuliX on a widget-by-widget basis, exploiting the experimental setup
and script developed for RQ1. This approach could not be used for EyeAutomate since the latter
is not open source and leverages a proprietary algorithm on which it was not possible to apply
reverse engineering.

4.3.4 Android virtual devices. As our emulated Android devices set, we leveraged the 14 default
devices in the Android AVD Manager. The properties of the considered devices are reported in
Table 5. All the devices used Android API 25 (version 7.11) and mounted x86 system images. The
emulated devices were not hardware-accelerated, had device frame and keyboard inputs enabled,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810

811

812

813

814

815

816

817

818

819

820

821

822

823

824

825

826

827

828

829

830

831

832

833

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 17

Table 5. List of emulated devices considered for the research

Device model Screen size (pixels) Resolution

Nexus 5 1080 × 1920 xxhdpi
Pixel 3 1080 × 2160 440dpi
Pixel 2 1080 × 1920 420dpi
Nexus 5X 1080 × 1920 420dpi
Nexus 6P 1440 × 2560 560dpi
Nexus 6 1440 × 2560 560dpi
Nexus S 480 × 800 hdpi
Pixel 3a 1080 × 2220 440 dpi
Pixel 3a XL 1080 × 2160 402 dpi
Pixel 1080 × 1920 420 dpi
Nexus 4 768 × 1280 xhdpi
Pixel 3 XL 1440 × 2960 560 dpi
Pixel 2 XL 1440 × 2880 560 dpi
Pixel XL 1440 × 2560 560 dpi

while all the animations were disabled to avoid errors in transitions between Activities. In the table,
we reported in bold the devices that we used as sources for the experiments. As it can be seen, we
selected three devices with very different resolutions and pixel densities.

4.3.5 Experimental setup. All the experiments were performed on a desktop PC with an Intel
i7-4770 running at 3.40GHz clock, with 8GB RAM and Ubuntu 20.04 LTS 64-bit as OS.

4.4 Procedure
4.4.1 RQ 1. We designed and implemented an automatic procedure for performance assessment
across our app’s database; this procedure allows extensive validation with minimal human effort.

We evaluated the feature matching algorithms on all the widgets shown in the main Activities for
each pair of source and target devices. We only used these Activities to avoid the need to navigate
the different screens of the apps. We leveraged the Android emulator’s debugging capabilities to
retrieve from all the devices detailed information about these Activities; to this aim, we used the
dump files containing all properties of the current visualized widgets.

The dump files’ information can emulate the cropping and bounding box drawing operations that
the tester would perform to prepare the visual test suite. It should be stressed that the information
contained in the dump files is not used by the matching algorithm (which relies purely on the visual
content) but is merely exploited to automate the assessment procedure.

In our experiments, we extracted all possible widgets from the source device screen and attempted
to find the corresponding visual locators in the target device screen with different algorithms and
descriptors. We repeated the procedure on 3 × 13 pairs of devices, using one of the three selected
devices as source and the remaining 13 devices as the potential target. Recall and precision were
separately computed for each app, then their distribution was calculated over the entire database
grouping by the statistical factors of interest.
Like in a real test case, we assume to perform matching based only on the visible components.

Due to fragmentation, some components may be rendered on the source device but not on the target
device (Figure 1). Since our approach is purely visual, such locators are not included in the ground
truth, and any accidental matching would be counted as an FP. Finally, it is worth underlining that
a VGT tool would fail if the missing component is included in a test suite. This entails that even

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

834

835

836

837

838

839

840

841

842

843

844

845

846

847

848

849

850

851

852

853

854

855

856

857

858

859

860

861

862

863

864

865

866

867

868

869

870

871

872

873

874

875

876

877

878

879

880

881

882

18 Ardito, et al.

a perfect recall does not guarantee, in principle, perfect test portability. This aspect is taken into
account in RQ2 and the analysis of the generated dataset.

4.4.2 RQ 2. We collected the screen captures and the cropped widget locators for all interactions
in the test suite on the three devices we used as sources. Then, we executed the test cases on all 14
devices of the set and measured the number of correctly identified locators, correctly performed
interactions, and completely executable test cases. A test case is considered completely executable
if a given feature matching algorithm correctly identifies all locators used in it. We also considered
the situation in which the source and target devices coincide since the matching algorithms may
yield wrong coordinate pairs even if the test script is applied on the same device where the locators
were captured (e.g., in the case of multiple widgets with the same appearance). The application
of a test script on the original device is a common scenario since VGT techniques can be used for
regression testing on new releases of the application.
We ran all test cases by embedding the feature matching algorithms (which provide as output

the coordinate pairs of the identified widgets) in scripts that executed the found coordinates’
interactions by using the Appium library. We verified the correctness of the resulting coordinates
by checking the dump files obtained after each interaction.
We then used EyeAutomate and Sikuli with the cropped screen captures to replicate the test

executions. This time we used only the Cropped captures since the pixel-per-pixel comparisons
used by the tools would mostly lead to failures in recognizing fullscreen captures even in the
presence of minor changes in device screen sizes.
Visual test scripts were always executed on a solid black background to minimize other visual

elements’ interference. No other computationally intensive program was run concurrently to avoid
external influences on execution times.

4.4.3 Statistical analysis. Amulti-way factorial Permutational Analysis of Variance (PERM-ANOVA)
[9] was conducted to examine the main effects of matching algorithm, descriptor, target, and source
device, as well as the interaction effects between target and source devices on each metric defined
for research questions RQ1 and RQ2. PERM-ANOVA is a non-parametric multivariate statistical test.
The null hypothesis tested by PERM-ANOVA is that the centroids of the partitions or groups defined
by a similarity metric (e.g., the Euclidean distance) are equivalent for all groups. Exact p-values are
obtained by calculating the test statistics’ value for all (or a large random subset) of permutations of
the observations across different groups. In particular, the proportion of the values of the statistics
under different permutations (i.e., random re-allocation of individual samples to different groups)
that are equal to or higher than the observed value. If the null hypothesis was true, any observed
differences would be similar to those obtained under permutation. PERM-ANOVA only requires
exchangeability and does not make any assumption on the sample distribution, accommodating
severely non-normal variables, contain a large number of zeros, or are ordinal or qualitative in
nature [9].

For RQ1, the matching algorithm and feature descriptors were modeled as separate fixed factors,
along with their interaction. For RQ2, we considered the overall technique as a fixed factor, which
could be either one of the combinations of the descriptor and matching algorithm (e.g., SIFT -
Fullscreen) or one of the state-of-the-art VGT tools. Each app was modeled as a different subject
with repeated measures. Post-hoc comparison between the different combinations of matching
algorithms and feature descriptors was performed using distribution-free pairwise two-sample
permutation tests [41] applying Bonferroni correction. We also measured the effect size for any
pair of groups of observations by using Cliff’s delta formula. Statistical analysis was performed in
R, and the effsize package was adopted for effect size computation [57].

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

883

884

885

886

887

888

889

890

891

892

893

894

895

896

897

898

899

900

901

902

903

904

905

906

907

908

909

910

911

912

913

914

915

916

917

918

919

920

921

922

923

924

925

926

927

928

929

930

931

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 19

0

5

10

15

20

Google Nexus 5 Nexus S Pixel 3 XL
Source Device

P
er

ce
nt

ag
e

of
 d

iff
er

en
tly

 r
en

de
re

d
w

id
ge

ts

Target Device

Google Nexus 4

Google Nexus 5

Google Nexus 5X

Nexus 6

Nexus 6P

Nexus S

Pixel

Pixel 2

Pixel 2 XL

Pixel 3

Pixel 3 XL

Pixel 3a

Pixel 3a XL

Pixel XL

Fig. 7. Percentage of widgets that are present in the source device but not in the target device, based on
the comparison of the XML trees in the dump files. The percentage is calculated separately for each source
and target device pair and is higher for device pairs with very different screen sizes. Yellow lines report the
intervals of confidence calculated on a binomial distribution.

The raw data and markdown scripts have been made available on a GitHub repository 3. Null
hypotheses, detailed results for the post-hoc comparison and values of effect size are reported in
the supplementary material of the present manuscript 4.

5 RESULTS
5.1 Dataset characteristics
In this section, we describe the characteristics of the subjects collected for the RQ1 study. In the
population of 95 apps, a total of 787, 850, and 900 unique widgets were identified for the Nexus S,
Nexus 5, and Pixel 3 XL devices, respectively.

As mentioned in Section 2.3, some widgets could not be localized in both the source and target
devices. A number of possible causes were identified for this phenomenon. Most commonly, Android
performs rescaling and resizing operations to optimize the User Experience, adapting the interface
layout to the screen size, which in turn changes the position, dimension, and resolution of the
widgets. Some widgets may be grouped together to reduce visual clutter on small devices. In fact,
the average number of individual widgets per app is proportional to the screen size of the emulated
device, ranging from 8.11 (Nexus S) to 9.28 widgets/app (Pixel 3). Less frequently, discrepancies
between the source and target devices arise due to banners incorporated in the app’s layout, which
are selected randomly and remain on screen with an automatic refresh time.
The above-mentioned differences may constitute an intrinsic limitation to the performance of

visual matching algorithms, at least in the current Record and Replay scenario, which assumes that
the interactions recorded on the source device, and their visual locators, can be found and replicated
on the target device. To estimate the order of magnitude and potential impact of this issue, we

3https://github.com/SoftengPoliTo/image_matching_study
4https://figshare.com/articles/online_resource/Feature_Matching-based_Approaches_to_Improve_the_Robustness_of
_Android_Visual_GUI_Testing_Supplementary_material/14912292

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

20 Ardito, et al.

Table 6. Average values (and std. deviation) of precision, recall and execution time, grouped by technique.

Recall Precision Execution time (s)

SIKULI - Cropped 0.38 (0.33) 0.46 (0.37) 0.41 (0.49)

AKAZE - Cropped 0.71 (0.31) 0.84 (0.26) 0.69 (0.71)
SIFT - Cropped 0.95 (0.12) 0.91 (0.17) 1.0 (0.51)
SURF - Cropped 0.91 (0.18) 0.86 (0.21) 0.99 (1)
AKAZE - Fullscreen 0.87 (0.20) 0.92 (0.19) 1.28 (0.7)
SIFT - Fullscreen 0.88 (0.19) 0.93 (0.18) 1.48 (0.63)
SURF - Fullscreen 0.89 (0.18) 0.92 (0.18) 1.31 (1.06)

G
oogle N

exus 5
N

exus S
P

ixel 3 X
L

0% 25% 50% 75% 100%

AKAZE − Cropped

AKAZE − Fullscreen

SIFT − Cropped

SIFT − Fullscreen

SURF − Cropped

SURF − Fullscreen

AKAZE − Cropped

AKAZE − Fullscreen

SIFT − Cropped

SIFT − Fullscreen

SURF − Cropped

SURF − Fullscreen

AKAZE − Cropped

AKAZE − Fullscreen

SIFT − Cropped

SIFT − Fullscreen

SURF − Cropped

SURF − Fullscreen

Recall

Descriptor

AKAZE

SIFT

Sikuli

Fig. 8. Distribution of the recall over the set of apps and target devices, per source device and technique.
Recall is reported for each combination of descriptor and matching algorithm, Fullscreen (blue) vs. Cropped
(light blue).

calculated for each device pair the percentage of widgets (mean and confidence interval) that were
present in the ground truth of the source device but not in the ground truth of the target device,
and reported the distribution in Figure 7. It should be noticed that this percentage is independent
of the specific algorithm or visual testing tool and depends solely on the combination of source
and target devices. The percentage of widgets that cannot be correctly located is in most cases
well below 10%, except for the two devices with the largest difference in resolution and screen size
(Nexus S and Pixel 3 XL).

5.2 RQ1: Feature matching performance
Table 6 shows the average and standard deviation values for the metrics selected for RQ1, namely
recall, precision, and execution time.

The distribution of the recall and precision is reported in Figures 8 and 9. Recall and precision are
calculated for each app and for each target device and then grouped by source device and technique.
Overall, there is a statistically significant difference across all groups for both precision (𝑝-values <
2e-16) and recall (𝑝-values < 2e-16). In our results, precision and recall exhibit similar behavior:
since a given source widget on the source device can be associated only to a single target widget, a

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

981

982

983

984

985

986

987

988

989

990

991

992

993

994

995

996

997

998

999

1000

1001

1002

1003

1004

1005

1006

1007

1008

1009

1010

1011

1012

1013

1014

1015

1016

1017

1018

1019

1020

1021

1022

1023

1024

1025

1026

1027

1028

1029

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 21

G
oogle N

exus 5
N

exus S
P

ixel 3 X
L

0% 25% 50% 75% 100%

AKAZE − Cropped

AKAZE − Fullscreen

SIFT − Cropped

SIFT − Fullscreen

SURF − Cropped

SURF − Fullscreen

AKAZE − Cropped

AKAZE − Fullscreen

SIFT − Cropped

SIFT − Fullscreen

SURF − Cropped

SURF − Fullscreen

AKAZE − Cropped

AKAZE − Fullscreen

SIFT − Cropped

SIFT − Fullscreen

SURF − Cropped

SURF − Fullscreen

Precision

Descriptor

AKAZE

SIFT

Sikuli

Fig. 9. Distribution of the precision over the set of apps and target devices, per source device and technique.
Recall is reported for each combination of descriptor and matching algorithm, Fullscreen (dark blue) vs.
Cropped (light blue).

Nexus 5

Nexus 4

Nexus 5X

Nexus 6

Nexus 6P

Nexus S

Pixel 2

Pixel 2 XL

Pixel 3

Pixel 3 XL

Pixel 3A

Pixel 3A XL

Pixel

Pixel XL

Nexus 5 Nexus S Pixel 3 XL
Source device

Ta
rg

et
 d

ev
ic

e

75.0%

80.0%

85.0%

90.0%

95.0%
Mean Recall

Fig. 10. Average recall of the SIFT - Fullscreen combination, with varying source and target devices.

correct matching would increase both precision and recall, whereas an incorrect matching would
affect both. We thus report for brevity a detailed analysis only for recall.
We observed a significant effect of matching algorithm, descriptor, and their interaction on

both precision and recall (𝑝 < 1e-10). At post-hoc analysis, the Fullscreen technique achieved
higher recall than the Cropped technique for the AKAZE (𝑝 < 1e-10), SIFT (𝑝 = 2e-07), and SURF
descriptors (𝑝 < 1e-10). For the Cropped technique, SIFT and SURF outperformed both the AKAZE
descriptor (𝑝 < 1e-10) and Sikuli template matching (𝑝 = 0.0); SIFT also achieved higher recall than
SURF (𝑝 = 0.0). For the Fullscreen technique, SURF slightly outperformed both AKAZE (𝑝 = 3.5e-05)
and SIFT (𝑝 = 2e-13), whereas differences between SIFT and SURF were not statistically significant
(𝑝 = 0.09). Sikuli can only operate in the Cropped modality, hence post-hoc comparison with the
Fullscreen algorithms was not attempted. The worst performing technique was Sikuli, followed by

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

1030

1031

1032

1033

1034

1035

1036

1037

1038

1039

1040

1041

1042

1043

1044

1045

1046

1047

1048

1049

1050

1051

1052

1053

1054

1055

1056

1057

1058

1059

1060

1061

1062

1063

1064

1065

1066

1067

1068

1069

1070

1071

1072

1073

1074

1075

1076

1077

1078

22 Ardito, et al.

the Cropped algorithm with the AKAZE descriptor. In general, the Fullscreen algorithm appeared
more robust to the choice of the descriptor.

The source and target devices had a significant effect on the recall (𝑝 < 1e-10) and, as expected,
a significant interaction (𝑝 < 1-10). The best performance was obtained when using the Pixel 3
XL as a source (the device with a larger screen size and resolution), whereas starting from the
smallest device (Nexus S) as the source device, generally poorer results were observed. This is
further illustrated by the color map in Figure 10, reporting the recall for source and target device
pairs for the best performing technique (i.e., SIFT - Fullscreen).

Both algorithms were, on average, quite successful in locating widgets. Across all tested source-
target device pairs and apps, roughly 60% of the cases achieved a perfect recall of 100% (6431/10997
for the Fullscreen and 6879/10997 for the Cropped algorithm), meaning that all source widget
locators could be correctly matched on the target device, whereas roughly 75% of them (8208/10997
and 7919/10997) achieved a recall higher than 80%. Therefore, the distribution is highly skewed on
the left side, which explains a large number of outliers in the boxplots reported in Figures 8 and 9.
Nonetheless, in a small number of cases, 1% (185/10997) and 4% (480/10997) for the Fullscreen and
Cropped algorithms respectively, the recall was below 25%, i.e., most of the visual locators could
not be identified on the target device.
At visual inspection, for the Fullscreen algorithm, such outliers appear to be mostly associated

with widgets (including buttons) that display long text strings. Widgets that include text are
processed as any other widget and, usually provide many robust keypoints, thus facilitating many-
to-many feature matching. However, since the latter process is entirely visual and does not take
into account the text semantics, the same letters can be matched in different words, leading in a
few cases to a high number of FPs. RANSAC becomes less effective in eliminating outliers as the
number of FPs increases.
The Cropped algorithm may fail when the keypoints in the source visual locator are matched

with multiple target widgets. This can be due to repeated or similar widgets (see the example
in Figure 4) or, like for the Fullscreen algorithm, to the presence of long text strings. In these
settings, RANSAC does not have enough information to select the correct matching based on spatial
consistency, which would require considering all the widgets in the source and target devices
simultaneously. Thus, the results of the final clustering may be wrong.
Finally, the execution time is reported in Figure 11. The average processing time is higher for

the Fullscreen algorithm (due to the need to calculate all the keypoints in the source image) and
increases with the size of the device screen. A few outliers can be observed mostly due to apps with
long text strings, which increase the number of matches. As expected from the literature, AKAZE
is faster than SURF, whereas SIFT is the slowest descriptor.

5.3 RQ2: Application to GUI testing
Table 7 reports the average and standard deviation values for the metrics measured to answer
RQ2. The average values include the measurements on both the applications considered in the
experimental procedure. Feature matching-based algorithms outperformed the state-of-the-art
VGT tools in all the aspects related to RQ2.1. EyeAutomate and Sikuli showed lower portability for
the three evaluated metrics with all the source devices. Table 8 and table 8 report the average and
standard deviation values for the individual SUTs considered for the experiment.
Regarding the executed interactions, feature matching algorithms guaranteed a percentage of

correctly executed interactions that ranged from 72% (for AKAZE - Cropped) to 95% (for SURF -
Cropped), significantly higher than state-of-the-art tools, between 43% (Sikuli) and 59% (EyeAuto-
mate). Hence, for the considered combinations of apps and emulated devices, our methodology
increased the percentage of correctly executed instructions by at least 30% compared to the best

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

1079

1080

1081

1082

1083

1084

1085

1086

1087

1088

1089

1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

1119

1120

1121

1122

1123

1124

1125

1126

1127

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 23

G
oogle N

exus 5
N

exus S
P

ixel 3 X
L

0 5 10 15 20

AKAZE − Cropped

AKAZE − Fullscreen

SIFT − Cropped

SIFT − Fullscreen

SURF − Cropped

SURF − Fullscreen

AKAZE − Cropped

AKAZE − Fullscreen

SIFT − Cropped

SIFT − Fullscreen

SURF − Cropped

SURF − Fullscreen

AKAZE − Cropped

AKAZE − Fullscreen

SIFT − Cropped

SIFT − Fullscreen

SURF − Cropped

SURF − Fullscreen

Time (s)

Descriptor

AKAZE

SIFT

Sikuli

Fig. 11. Distribution of the execution time (in seconds) over the set of apps and target devices, per source
device and technique. Recall is reported for each combination of descriptor andmatching algorithm, Fullscreen
(blue) vs. Cropped (light blue).

Table 7. Average values (and std. deviation) of the percentage of executed interactions, found locators, passing
tests and time per interaction over all executions of the test suites, grouped by technique

Proportion of correctly Proportion of Proportion of correctly
executed interactions found locators executed tests Time per interaction

EyeAutomate 0.59 (0.25) 0.60 (0.23) 0.17 (0.22) 548 (313)
Sikuli 0.43 (0.24) 0.31 (0.26) 0.11 (0.27) 373 (134)

AKAZE - Cropped 0.72 (0.18) 0.67 (0.22) 0.24 (0.29) 1238 (458)
SIFT - Cropped 0.89 (0.09) 0.92 (0.08) 0.50 (0.37) 2041 (904)
SURF - Cropped 0.82 (0.16) 0.81 (0.15) 0.43 (0.32) 1925 (1057)
AKAZE - Fullscreen 0.94 (0.06) 0.94 (0.06) 0.76 (0.24) 1927 (1261)
SIFT - Fullscreen 0.95 (0.06) 0.96 (0.04) 0.77 (0.25) 2712 (1836)
SURF - Fullscreen 0.95 (0.06) 0.95 (0.04) 0.75 (0.22) 2737 (2044)

performing state-of-the-art VGT tool (EyeAutomate). We observed a significant effect on the per-
centage of found locators of the matching algorithm, descriptor, source, and target device, and
the combination of source and target devices (with 𝑝-values < 10e-16). At post-hoc analysis, we
verified that the SURF - Fullscreen technique outperformed in a statistically significant way all
the Cropped matching algorithms and the VGT tools in terms of correctly executed interactions
(with 𝑝-values ranging from 4.64e-07 for the comparison with SIFT - Cropped to 2.89e-26 for the
comparison with Sikuli).
The boxplot in Figure 12 reports the percentage of found locators for each source and target

pair, grouped by technique. Sikuli was the worst option (31% of found unique locators), whereas
SIFT - Fullscreen proved to be the best one (96%), with 36% more locators found than the best
performing state-of-the-art VGT tool analyzed (EyeAutomate). We observed a significant effect on
the percentage of found locators of the matching algorithm, descriptor, source and target device,

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

1128

1129

1130

1131

1132

1133

1134

1135

1136

1137

1138

1139

1140

1141

1142

1143

1144

1145

1146

1147

1148

1149

1150

1151

1152

1153

1154

1155

1156

1157

1158

1159

1160

1161

1162

1163

1164

1165

1166

1167

1168

1169

1170

1171

1172

1173

1174

1175

1176

24 Ardito, et al.

Table 8. Average values (and std. deviation) of the percentage of executed interactions, found locators, passing
tests and time per interaction over all executions of the test suites, for the PassAndroid SUT

Proportion of correctly Proportion of Proportion of correctly
executed interactions found locators executed tests Time per interaction

EyeAutomate 0.64 (0.24) 0.59 (0.19) 0.26 (0.24) 711 (399)
Sikuli 0.48 (0.24) 0.37 (0.26) 0.15 (0.29) 418 (139)

AKAZE - Cropped 0.83 (0.12) 0.78 (0.16) 0.37 (0.34) 1268 (487)
SIFT - Cropped 0.93 (0.06) 0.95 (0.03) 0.73 (0.24) 1476 (586)
SURF - Cropped 0.91 (0.06) 0.84 (0.11) 0.62 (0.22) 1160 (440)
AKAZE - Fullscreen 0.94 (0.07) 0.93 (0.06) 0.78 (0.21) 1144 (388)
SIFT - Fullscreen 0.93 (0.07) 0.96 (0.04) 0.74 (0.30) 1287 (431)
SURF - Fullscreen 0.96 (0.03) 0.94 (0.04) 0.85 (0.12) 1011 (313)

Table 9. Average values (and std. deviation) of the percentage of executed interactions, found locators, passing
tests and time per interaction over all executions of the test suites, for the AntennaPod SUT

Proportion of correctly Proportion of Proportion of correctly
executed interactions found locators executed tests Time per interaction

EyeAutomate 0.53 (0.25) 0.61 (0.26) 0.90 (0.17) 385 (169)
Sikuli 0.38 (0.23) 0.26 (0.26) 0.08 (0.26) 328 (114)

AKAZE - Cropped 0.63 (0.21) 0.56 (0.21) 0.11 (0.14) 1225 (445)
SIFT - Cropped 0.84 (0.09) 0.89 (0.10) 0.28 (0.32) 2610 (816)
SURF - Cropped 0.74 (0.18) 0.77 (0.17) 0.25 (0.29) 2695 (943)
AKAZE - Fullscreen 0.95 (0.06) 0.95 (0.05) 0.73 (0.26) 2711 (1345)
SIFT - Fullscreen 0.97 (0.04) 0.96 (0.04) 0.80 (0.19) 4137 (1573)
SURF - Fullscreen 0.93 (0.07) 0.95 (0.04) 0.65 (0.26) 4399 (1490)

EyeAutomate

Sikuli

AKAZE − Cropped

SIFT − Cropped

SURF − Cropped

AKAZE − Fullscreen

SIFT − Fullscreen

SURF − Fullscreen

0% 25% 50% 75% 100%
Found locators

mode

Cropped

Fullscreen

VGT tool

Fig. 12. Distribution of the percentage of found locators for each source and target device pair, grouped by
technique. Available tools (dark blue), Fullscreen (blue), Cropped (light blue).

and the combination of source and device (with 𝑝-values < 10e-16). When using the Fullscreen
algorithm, the percentage of found locators did not differ significantly for each descriptor. The
heatmap in Figure 13 reports the percentage of found locators per source and target device pair for
the best performing technique (i.e., SIFT - Fullscreen).
The plot shows lower percentages of found locators when the Nexus S was selected as either

the source or target device. This outcome was likely due to the small size of the device screen
(480 × 800 pixels). The average percentage of passing test cases was lower than that of executed
instructions and found locators. This result was mainly due to the fact that the same unique locator
can be used multiple times in different tests: e.g., in PassAndroid, most of the test cases involve a
click on the floating action button, which systematically leads to a FP when the AKAZE - Cropped

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

1177

1178

1179

1180

1181

1182

1183

1184

1185

1186

1187

1188

1189

1190

1191

1192

1193

1194

1195

1196

1197

1198

1199

1200

1201

1202

1203

1204

1205

1206

1207

1208

1209

1210

1211

1212

1213

1214

1215

1216

1217

1218

1219

1220

1221

1222

1223

1224

1225

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 25

Nexus 4

Nexus 6

Nexus 6p

Nexus S

Nexus5

Nexus5x

Pixel

Pixel 2

Pixel 2xl

Pixel 3

Pixel 3A

Pixel 3a XL

Pixel 3XL

Pixel XL

Nexus S Nexus5 Pixel 3
Source device

Ta
rg

et
 d

ev
ic

e

80.0%

85.0%

90.0%

95.0%

100.0%
Found Locators

Fig. 13. Percentage of found locators during the test suite execution with the SIFT - Fullscreen technique,
with varying source and target devices.

EyeAutomate

Sikuli

AKAZE − Cropped

SIFT − Cropped

SURF − Cropped

AKAZE − Fullscreen

SIFT − Fullscreen

SURF − Fullscreen

0.0 2.5 5.0 7.5
Times for correct interaction (s)

mode

Cropped

Fullscreen

VGT tool

Fig. 14. Distribution of the average time per correct interaction for each source and target device pair, grouped
by technique.

technique is used; in AntennaPod, many test cases involve the execution of a click on the Android
menu button, which in most cases is not recognized by EyeAutomate. However, the percentages
of passing tests were very high for the Fullscreen algorithm, regardless of the descriptor used,
with 77% for SIFT - Fullscreen. Only 17% and 11% of the test cases were successfully executed for
state-of-the-art VGT tools EyeAutomate and Sikuli, respectively. We observed a significant effect of
matching algorithm, descriptor, source, and target device on the percentage of passing tests, as
well as of the combination of source and target (with 𝑝-values < 10e-16). At post-hoc analysis, the
SURF - Fullscreen configuration outperformed all other techniques in a statistically significant way,
except for AKAZE - Fullscreen (𝑝 = 0.06). For feature matching algorithms, with post-hoc tests we
measured statistically significant differences except for AKAZE - Fullscreen, SIFT - Fullscreen, and
SURF - Fullscreen.
Figure 14 reports the distribution of the average time needed by the VGT tools to perform a

correct interaction (i.e., time to identify a widget plus time to execute interaction), grouped by
technique. VGT tools exhibited a lower execution time per interaction, with an average time of
373 milliseconds for Sikuli and 548 milliseconds for EyeAutomate. The fastest feature matching
technique was AKAZE - Cropped (1.24 seconds per interaction), whereas SIFT - Fullscreen was the

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

1226

1227

1228

1229

1230

1231

1232

1233

1234

1235

1236

1237

1238

1239

1240

1241

1242

1243

1244

1245

1246

1247

1248

1249

1250

1251

1252

1253

1254

1255

1256

1257

1258

1259

1260

1261

1262

1263

1264

1265

1266

1267

1268

1269

1270

1271

1272

1273

1274

26 Ardito, et al.

slowest (2.74 seconds per interaction). We observed a significant effect on the percentage of passing
tests of matching algorithm, descriptor, source, and target device (with 𝑝-values < 10e-16), whereas
no significant interaction was found between the time to find a locator and the combination of
source and target devices (𝑝 = 0.99).
As a final analysis, we observed the effect of the selected app (in our case, PassAndroid vs.

AntennaPod) on the controlled variables. From the average and median values reported in Table
8 and 9 we can see that the SIFT - Fullscreen algorithm performed best for all metrics with the
AntennaPod SUT. Conversely, the SURF - Fullscreen was the best algorithm for the PassAndroid
SUT regarding the percentage of executed interactions and the proportion of correctly executed
tests, whereas SIFT - Fullscreen was still the best algorithm in terms of found locators. Sikuli was
the best performing algorithm in terms of time per interaction for both SUTs. The impact on the
results was more marked when the Cropped algorithm, rather than Fullscreen algorithm, was
used. This result can be reasonably justified with the assumption that the performance of the
Cropped algorithm strictly depends more on the nature of the individual SUT, since the results can
be strongly impacted by the different arrangement of widgets in the layouts.
We observed a statistically significant effect on the percentage of found interactions, correct

tests, and average time per interaction (p-value < 2.2e-16). The selected app had no significant
effect on the percentage of correctly found locators (p-value = 0.094). This result strongly suggests
that the ability to find individual locators of the feature matching algorithms is unrelated to the
AUT. The percentage of passing tests and executed interactions, on the contrary, strongly depends
on the way the individual test suite has been defined (i.e., the number of locators used in each test
case and the repetition of locators in different test cases). The time to execute the feature matching
algorithms is also expected to be correlated to the AUT since it depends on the total number of
objects on the screen that have to be examined.

6 DISCUSSION
The performance of VGT tools strongly depends on the performance and quality of the underlying
image analysis technique. By systematically exploring different combinations of feature matching
algorithms and feature descriptors, we observed that the portability of test suites across mobile
devices could be substantially improved over state-of-the-art tools.
For RQ1, we compared different algorithms from a purely visual matching perspective, inves-

tigating how often, on average, is it possible to correctly match any given widget from a source
device through its relative visual locator on a target device.
Overall, the Fullscreen algorithm proved more robust and precise in locating widgets. By de-

termining the optimal matching for all widgets simultaneously, it can solve complex cases (e.g.,
repeated widgets) where the Cropped algorithm is likely to fail. The difference is striking for the
AKAZE descriptor, which also achieves the lowest overall performance. This result is consistent
with the literature indicating that AKAZE is more computationally efficient but less robust to
downscaling than SIFT and SURF [55].
For RQ2, we compared how well the different algorithms performed, in terms of robustness of

the test cases based on them.
The number of correctly found locators in RQ2 is consistent with the recall in RQ1, and the same

trend emerges in both the analyses with respect to both matching algorithm and descriptor. Among
the configurations of feature descriptors and algorithms, SURF - Fullscreen is the best solution
in terms of the percentage of correct interactions and of test suites executed. SIFT - Fullscreen is
the best combination in terms of percentage of found locators. Based on the combined results of
RQ1 and RQ2, both SIFT and SURF emerge as viable options, with SIFT achieving slightly higher
performance and SURF being slightly faster.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

1275

1276

1277

1278

1279

1280

1281

1282

1283

1284

1285

1286

1287

1288

1289

1290

1291

1292

1293

1294

1295

1296

1297

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1319

1320

1321

1322

1323

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 27

The procedure followed in RQ1 can be easily replicated by researchers willing to evaluate other
matching algorithms that can be employed in VGT of Android applications. The methodology sys-
tematically and automatically compares the algorithms across applications and devices, bypassing
the need to define test cases manually. The procedure, however, does not consider the varying
relevance of different types of widgets in real-world test suites, in which the performance of the
matching algorithms with individual widgets can influence the result of the execution of several
test cases. In our second experiment, we measured an average percentage of passed tests that were
much lower than found locators (with a difference between -20% and -30%), primarily due to a
single mismatched locator. This result suggests that further research work is needed to assess and
improve the performance selectively on the most relevant widgets for real test cases.

When the source is equal to the target device, the EyeAutomate and Sikuli tools showcased very
high percentages of found locators (and therefore of correct interactions and passed tests). However,
they showed low portability across devices, with EyeAutomate consistently outperforming Sikuli
(in accordance with previous studies [21]). The proposed feature matching techniques have higher
overall portability, increasing the percentage of found locators and passed tests by at least 30% with
respect to state-of-the-art VGT tools.

We postulate that the performance gap arises from the combination of two factors: the matching
strategy and the feature extraction. State-of-the-art VGT tools like EyeAutomate and Sikuli are all
based on the less performing Cropped algorithm, whereas our results highlight that the task is best
tackled as a many-to-many matching problem where all widgets are simultaneously optimized.
Secondly, SIFT and SURF provide more robust features than pixel-level template matching. In
particular, their invariance to scale is of paramount importance when covering a wide range of
screen sizes.
These results suggest that state-of-the-art VGT test suites may provide sufficient robustness

when used only on a single device, e.g., for regression testing purposes. Conversely, when the
portability to different devices is important, our algorithms based on feature description algorithms
are preferable. A further advantage of the proposed matching algorithms is that they do not require
scaling of the screen captures to the size of the AVD as exactly rendered on the host screen, which
on the contrary, is needed when using Sikuli and EyeAutomate.
In terms of execution time, the difference between the Fullscreen and Cropped algorithms is

almost negligible. However, Sikuli and EyeAutomate are faster than the feature matching algorithms,
with Sikuli being the fastest (the decrease of average time per interaction ranges from 70% with
respect to AKAZE - Cropped, to 85% with respect to SURF - Fullscreen). We speculate that the
difference is due to the more effective but more computationally expensive descriptors and to the
search strategy. EyeAutomate starts searching from the last location (or the upper left corner, by
default) [1], whereas our proposed techniques take into account (and compute the features for) all
possible locations within the image. This choice has obvious advantages in the case of multiple
similar widgets, increasing the accuracy, but it is paid for in terms of execution time. We did not
specifically attempt to optimize the feature matching algorithms and their implementation for
execution time, leaving this aspect to future work.
The additional time needed can be a limitation when the locators have to be found in highly

dynamic GUIs, where the widgets and images can change very rapidly (e.g., in games). However,
the feature matching algorithm we propose is commonly used for photos, so it may provide higher
precision when used for complex GUIs than Sikuli and EyeAutomate. Additional comparisons with
graphically-intensive apps should be performed as future work to investigate this aspect.
By performing a large-scale, automatic validation across multiple applications and devices, we

found some limitations to matching algorithms based solely on visual features. The layout of
Android applications is optimized based on the screen size by, e.g., resizing, rescaling, and grouping

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

1336

1337

1338

1339

1340

1341

1342

1343

1344

1345

1346

1347

1348

1349

1350

1351

1352

1353

1354

1355

1356

1357

1358

1359

1360

1361

1362

1363

1364

1365

1366

1367

1368

1369

1370

1371

1372

28 Ardito, et al.

widgets, exploiting vertical and horizontal scrolling, etc. In a small but not negligible percentage
of cases, widgets present in the source device cannot be located in the target device, especially
if the difference in screen size is large. In addition, some types of widgets and components (e.g.,
those with long text strings) are more prone to matching errors. These issues may affect a small
number of test suites and hence may remain undetected following the assessment procedure in RQ2.
Many of these issues could be tackled more effectively by integrating feature matching algorithms
with semantic image interpretation capabilities, identifying the type, content, and function of each
widget, and, if needed, modifying the matching strategy or even inserting additional operations
(e.g., scrolling) in the test suite.

The proposed algorithms do not distinguish between text-based and image-based widgets and
do not explicitly seek to identify or interpret the text. For feature-based matching, this operation is
not necessary as the text provides many robust keypoints, which is generally beneficial in terms of
performance but may occasionally create robustness issues for a minority of apps with very long
text strings. In the case of widget detection, a mixed approach was found beneficial over a purely
visual approach [20]. Similar strategies may be integrated in the future by slightly modifying the
feature extraction.

Regardless of the algorithm or tool employed, the selection of the source and target devices had
a statistically significant impact on all performance measures. Very small devices, like Nexus S,
yield significantly worse performance when used as either source or target devices. This fact has
practical implications for developers and testers, who need to consider the range of devices they
wish to support carefully. When the range of target devices is wide, selecting a source device with
medium to large screen size will increase portability and decrease the effort needed to maintain the
test suite.

7 THREATS TO VALIDITY
External validity threats. For the first experiment, we considered a single category of apps mined
from a single database. Although this decision sets a realistic context for a high number of Android
apps, it does not ensure that the results that we described are applicable to any type of Android app.
Further studies are needed in games and other highly dynamic GUIs, which require both highly
accurate and fast visual matching algorithms.
To better characterize the properties and generalizability of our results, we have studied the

distribution of different types of widgets in our dataset (additional details are provided in the
Supplementary Material). We further compared this distribution with that of the RICO dataset
[26], which is based on a larger sample of roughly 9300 apps. Roughly 50% of the widgets (40%
in the RICO population) are TextView components. The most frequent widgets include Button
(13%), ImageView (11%), View (6%), and ImageButton (6%). All other categories constitute overall
11% of the total number of widgets. The distribution is qualitatively comparable between our
dataset and the entire RICO population, with a higher prevalence of TextView, EditText, and Button
components in our dataset and a higher prevalence of View and ImageView in the RICO population.
From this analysis, we conclude that any approach designed to solve the VGT issues, especially in
the mobile domain, must include solid image recognition capabilities. Moreover, although slightly
biased towards text components, our dataset can still be considered representative of a larger app
population.

Furthermore, for the analysis of the precision and recall of feature matching algorithms, we only
used the widgets in the main Activity of the considered apps; this set may not include widget types
shown after navigation in the screens of the app. For the second experiment, we considered a single
AUT (PassAndroid). Hence, the measured metrics may vary if the approach is applied to different
apps.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

1373

1374

1375

1376

1377

1378

1379

1380

1381

1382

1383

1384

1385

1386

1387

1388

1389

1390

1391

1392

1393

1394

1395

1396

1397

1398

1399

1400

1401

1402

1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

1415

1416

1417

1418

1419

1420

1421

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 29

To answer RQ2, we had to limit our experimentation to just two experimentation subjects for
execution time reasons. To avoid cherry-picking, we considered AUTs that are commonly used in the
software testing literature. To provide additional external validity to our findings, we compared our
test suites with existing GUI test suites in open-source projects, leveraging a repository of GUI tests
mined from GitHub. On a total of 3226 correctly identified widgets interacted in Espresso test cases,
we found out that 40% of interactions were on Text-based widgets, followed by Toolbars (10.6%),
different types of Buttons (8,1%), NavigationViews (4%) and ListViews (3,5%). These percentages
are compatible with the test suites that we developed for our two experimental subjects.

Finally, we only considered 14 emulated Android devices that are embedded in Android Studio;
it is not ensured that the measured metrics can be applied to other devices, even if with equal
resolution and screen size. Other context factors like, e.g., the OS version, may also have an influence
on the metrics. All the considered devices also are part of the Google ecosystem and come equipped
with an uncustomized Android version. Extending the experiment to other families of devices
would require the use of real hardware devices or the use of third-party emulators. The first solution
would require changes in the algorithms used by the VGT tools to search for the widgets in the
screen of the connected device instead of the desktop environment screen; the second would require
alternatives to ADB commands, to control the download of screen hierarchies and captures.

Internal validity threats. The metrics that we measured, especially those regarding the execution
time of the feature matching algorithms, strongly depend on their specific implementations. In par-
ticular, it is possible that better-optimized implementations could lower execution times, especially
for the feature matching techniques for which only a Python prototype was available, albeit based
on well-established and widely adopted libraries such as OpenCV.
We have considered only one version for the same app across multiple devices. In settings like

regression testing, the actual performance may be lower than that observed due to changes in
the app layout, widget, and functionalities. The internal validity of our experiments, however, is
preserved since all algorithms and tools were compared on equal grounds.

Construct validity. It is not ensured that the metrics used in this work (i.e., precision and recall for
RQ1 and percentage of correct locators, interactions, and tests for RQ2) are the best possible proxies
to observe the portability and the robustness to device fragmentation issues for Android VGT. We
cannot ensure, for instance, that the measured metrics can correctly evaluate the fault-finding
ability of test cases on different devices in a real testing scenario.
Researcher Bias could be introduced by creating a test suite for the PassAndroid app that was

made by one of the authors of the paper. However, the author was not instructed to insert specific
widgets or visual locators in the test suite, neither was inclined to demonstrate a specific result.

8 CONCLUSIONS AND FUTUREWORK
The performance and, ultimately, the applicability of the VGT paradigm strongly depends on the
robustness of the underlying image recognition algorithms. Our results show that state-of-the-
art tools have limited portability across devices. A holistic approach in which the matching is
simultaneously optimized for all widgets, combined with robust local feature descriptors, allowed
our configurations to outperform state-of-the-art VGT tools by at least 30% in terms of correctly
executed test suites.
Still, much remains to be done to ensure the full portability of test suites across devices and

app versions. To support future research in this domain, we release the DatAndroid dataset5
which includes close to 100 apps rendered on multiple devices and specifically targets the issue of
portability.

5available at https://frankissimo.github.io/datAndroid/

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

https://frankissimo.github.io/datAndroid/

1422

1423

1424

1425

1426

1427

1428

1429

1430

1431

1432

1433

1434

1435

1436

1437

1438

1439

1440

1441

1442

1443

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

30 Ardito, et al.

As our future work, we envision to embed our matching approaches in a full-fledged VGT
tool, with capabilities of test creation, test execution/replication, and test repair in case of device
fragmentation fragility. We plan on exploiting deep learning techniques to perform a semantic
interpretation of Android GUIs screenshots, complementing and extending matching algorithms
based solely on the computation of visual similarities. Finally, we plan to validate our methodology
on different types of apps and different virtual devices, to improve the generalizability of our
results.

REFERENCES
[1] Synteda AB. 2018. EyeAutomate Documentation. https://eyeautomate.com/wp-content/themes/EyeAutomateTheme/

resources/EyeAutomateCertifiedTesterCourse.pdf. Accessed: 2020-08-06.
[2] Emil Alégroth. 2015. Visual GUI Testing: Automating High-level Software Testing in Industrial Practice. Chalmers

University of Technology, Göteborg.
[3] Emil Alégroth and Robert Feldt. 2017. On the long-term use of visual GUI testing in industrial practice: a case study.

Empirical Software Engineering 22, 6 (2017), 2937–2971.
[4] Emil Alégroth, Robert Feldt, and Pirjo Kolström. 2016. Maintenance of automated test suites in industry: An empirical

study on Visual GUI Testing. Information and Software Technology 73 (2016), 66–80.
[5] Emil Alégroth, Zebao Gao, Rafael Oliveira, and Atif Memon. 2015. Conceptualization and evaluation of component-

based testing unified with visual GUI testing: an empirical study. In 2015 IEEE 8th International Conference on Software
Testing, Verification and Validation (ICST). IEEE, Graz, Austria, 1–10.

[6] Emil Alegroth, Michel Nass, and Helena H Olsson. 2013. JAutomate: A tool for system-and acceptance-test automation.
In 2013 IEEE Sixth International Conference on Software Testing, Verification and Validation. IEEE, Washington, DC, USA,
439–446.

[7] Domenico Amalfitano, Anna Rita Fasolino, Porfirio Tramontana, Bryan Dzung Ta, and Atif M Memon. 2015. MobiGUI-
TAR: Automated model-based testing of mobile apps. IEEE software 32, 5 (2015), 53–59.

[8] Domenico Amalfitano, Vincenzo Riccio, Ana CR Paiva, and Anna Rita Fasolino. 2018. Why does the orientation change
mess up my Android application? From GUI failures to code faults. Software Testing, Verification and Reliability 28, 1
(2018), e1654.

[9] Marti J Anderson. 2014. Permutational multivariate analysis of variance (PERMANOVA). Wiley statsref: statistics
reference online 1 (2014), 1–15.

[10] Luca Ardito, Riccardo Coppola,MaurizioMorisio, andMarco Torchiano. 2019. Espresso vs. EyeAutomate: An experiment
for the comparison of two generations of android GUI testing. In Proceedings of the Evaluation and Assessment on
Software Engineering. ACM, Copenhagen, Denmark, 13–22.

[11] Luca Ardito, Riccardo Coppola, Marco Torchiano, and Emil Alégroth. 2018. Towards automated translation between
generations of GUI-based tests for mobile devices. In Companion Proceedings for the ISSTA/ECOOP 2018 Workshops.
ACM, Amsterdam, Netherlands, 46–53.

[12] Ishan Banerjee, Bao Nguyen, Vahid Garousi, and Atif Memon. 2013. Graphical user interface (GUI) testing: Systematic
mapping and repository. Information and Software Technology 55, 10 (2013), 1679–1694.

[13] Daniel Barath and Jiri Matas. 2017. Graph-Cut RANSAC. In 2018 IEEE/CVF Conference on Computer Vision and Pattern
Recognition. IEEE, Salt Lake City, UT, USA, 6733–6741.

[14] Herbert Bay, Andreas Ess, Tinne Tuytelaars, and Luc Van Gool. 2008. Speeded-Up Robust Features (SURF). Comput.
Vis. Image Underst. 110, 3 (June 2008), 346–359. https://doi.org/10.1016/j.cviu.2007.09.014

[15] Nataniel P. Borges, Maria Gómez, and Andreas Zeller. 2018. Guiding App Testing with Mined Interaction Models.
In Proceedings of the 5th International Conference on Mobile Software Engineering and Systems (Gothenburg, Sweden)
(MOBILESoft ’18). Association for Computing Machinery, New York, NY, USA, 133–143. https://doi.org/10.1145/
3197231.3197243

[16] Emil Borjesson and Robert Feldt. 2012. Automated system testing using visual GUI testing tools: A comparative study
in industry. In 2012 IEEE Fifth International Conference on Software Testing, Verification and Validation. IEEE, Montreal,
Quebec Canada, 350–359.

[17] G. Bradski. 2000. The OpenCV Library. Dr. Dobb’s Journal of Software Tools 1 (2000), –.
[18] Victor R Basili-Gianluigi Caldiera and H Dieter Rombach. 1994. Goal question metric paradigm. Encyclopedia of

software engineering 1 (1994), 528–532.
[19] Tsung-Hsiang Chang, Tom Yeh, and Robert C Miller. 2010. GUI testing using computer vision. In Proceedings of the

SIGCHI Conference on Human Factors in Computing Systems. Association for Computing Machinery, New York, NY,
USA, 1535–1544.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

https://eyeautomate.com/wp-content/themes/EyeAutomateTheme/resources/EyeAutomateCertifiedTesterCourse.pdf
https://eyeautomate.com/wp-content/themes/EyeAutomateTheme/resources/EyeAutomateCertifiedTesterCourse.pdf
https://doi.org/10.1016/j.cviu.2007.09.014
https://doi.org/10.1145/3197231.3197243
https://doi.org/10.1145/3197231.3197243

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

1512

1513

1514

1515

1516

1517

1518

1519

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 31

[20] Jieshan Chen, Mulong Xie, Zhenchang Xing, Chunyang Chen, Xiwei Xu, Liming Zhu, and Guoqiang Li. 2020. Object
detection for graphical user interface: old fashioned or deep learning or a combination?. In Proceedings of the 28th ACM
Joint Meeting on European Software Engineering Conference and Symposium on the Foundations of Software Engineering.
Association for Computing Machinery, New York, NY, USA, 1202–1214.

[21] Riccardo Coppola, Luca Ardito, and Marco Torchiano. 2019. Fragility of layout-based and visual GUI test scripts: an
assessment study on a hybrid mobile application. In Proceedings of the 10th ACM SIGSOFT International Workshop on
Automating TEST Case Design, Selection, and Evaluation. Association for Computing Machinery, New York, NY, USA,
28–34.

[22] Riccardo Coppola, Luca Ardito, Marco Torchiano, and Emil Alégroth. 2020. Translation from Visual to Layout-based
Android Test Cases: a Proof of Concept. In 2020 IEEE International Conference on Software Testing, Verification and
Validation Workshops (ICSTW). IEEE, Washington, DC, USA, 74–83.

[23] Riccardo Coppola, Luca Ardito, Marco Torchiano, and Emil Alégroth. 2021. Translation from layout-based to visual
android test scripts: An empirical evaluation. Journal of Systems and Software 171 (2021), 110845. https://doi.org/10.
1016/j.jss.2020.110845

[24] Riccardo Coppola, Maurizio Morisio, Marco Torchiano, and Luca Ardito. 2019. Scripted GUI testing of Android
open-source apps: evolution of test code and fragility causes. Empirical Software Engineering 24 (2019), 1–44.

[25] Ritendra Datta, Dhiraj Joshi, Jia Li, and James Z. Wang. 2008. Image Retrieval: Ideas, Influences, and Trends of the
New Age. ACM Comput. Surv. 40, 2, Article 5 (May 2008), 60 pages. https://doi.org/10.1145/1348246.1348248

[26] Biplab Deka, Zifeng Huang, Chad Franzen, Joshua Hibschman, Daniel Afergan, Yang Li, Jeffrey Nichols, and Ranjitha
Kumar. 2017. Rico: A mobile app dataset for building data-driven design applications. In Proceedings of the 30th Annual
ACM Symposium on User Interface Software and Technology. Association for Computing Machinery, New York, NY,
USA, 845–854.

[27] A. Developers. 2012. Ui/application exerciser monkey.
[28] Mattia Fazzini, Eduardo Noronha de A Freitas, Shauvik Roy Choudhary, and Alessandro Orso. 2017. Barista: A

technique for recording, encoding, and running platform independent android tests. In Software Testing, Verification
and Validation (ICST), 2017 IEEE International Conference on. IEEE, Washington, DC, USA, 149–160.

[29] Pablo Fernández Alcantarilla. 2013. Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces. In
Proceedings of the British Machine Vision Conference. BMVA Press, Durham, UK. https://doi.org/10.5244/C.27.13

[30] K. Fukunaga and L. Hostetler. 1975. The estimation of the gradient of a density function, with applications in pattern
recognition. IEEE Transactions on Information Theory 21, 1 (1975), 32–40.

[31] Dan Han, Chenlei Zhang, Xiaochao Fan, Abram Hindle, Kenny Wong, and Eleni Stroulia. 2012. Understanding android
fragmentation with topic analysis of vendor-specific bugs. In Reverse Engineering (WCRE), 2012 19th Working Conference
on. IEEE, Washington, DC, USA, 83–92.

[32] Kristian Fjeld Hasselknippe and Jingyue Li. 2017. A novel tool for automatic GUI layout testing. In 2017 24th Asia-Pacific
Software Engineering Conference (APSEC). IEEE, Washington, DC, USA, 695–700.

[33] Jiajun Hu, Lili Wei, Yepang Liu, Shing-Chi Cheung, and Huaxun Huang. 2018. A tale of two cities: How webview
induces bugs to android applications. In Proceedings of the 33rd ACM/IEEE International Conference on Automated
Software Engineering. Association for Computing Machinery, New York, NY, USA, 702–713.

[34] Jouko Kaasila, Denzil Ferreira, Vassilis Kostakos, and Timo Ojala. 2012. Testdroid: automated remote UI testing on
Android. In Proceedings of the 11th International Conference on Mobile and Ubiquitous Multimedia. Association for
Computing Machinery, New York, NY, USA, 1–4.

[35] Emily Kowalczyk, Myra B Cohen, and Atif M Memon. 2018. Configurations in Android testing: they matter. In
Proceedings of the 1st International Workshop on Advances in Mobile App Analysis. Association for Computing Machinery,
New York, NY, USA, 1–6.

[36] Maurizio Leotta, Andrea Stocco, Filippo Ricca, and Paolo Tonella. 2018. Pesto: Automated migration of DOM-based
Web tests towards the visual approach. Software Testing, Verification And Reliability 28, 4 (2018), e1665.

[37] Ying-Dar Lin, Jose F Rojas, Edward T-H Chu, and Yuan-Cheng Lai. 2014. On the accuracy, efficiency, and reusability of
automated test oracles for android devices. IEEE Transactions on Software Engineering 40, 10 (2014), 957–970.

[38] Mario Linares-Vásquez, Kevin Moran, and Denys Poshyvanyk. 2017. Continuous, evolutionary and large-scale: A new
perspective for automated mobile app testing. In Software Maintenance and Evolution (ICSME), 2017 IEEE International
Conference on. IEEE, Washington, DC, USA, 399–410.

[39] David G Lowe. 2004. Distinctive image features from scale-invariant keypoints. International journal of computer
vision 60, 2 (2004), 91–110.

[40] Eduardo Luna and Omar El Ariss. 2018. Edroid: A mutation tool for android apps. In 2018 6th International Conference
in Software Engineering Research and Innovation (CONISOFT). IEEE, Washington, DC, USA, 99–108.

[41] SS Mangiafico. 2015. An R Companion for the Handbook of Biological Statistics, Version 1.09 c, 274 p.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

https://doi.org/10.1016/j.jss.2020.110845
https://doi.org/10.1016/j.jss.2020.110845
https://doi.org/10.1145/1348246.1348248
https://doi.org/10.5244/C.27.13

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

1566

1567

1568

32 Ardito, et al.

[42] Ke Mao, Mark Harman, and Yue Jia. 2016. Sapienz: Multi-objective automated testing for Android applications. In
Proceedings of the 25th International Symposium on Software Testing and Analysis. Association for Computing Machinery,
New York, NY, USA, 94–105.

[43] Matias Martinez and Bruno Gois Mateus. 2020. How and Why did developers migrate Android Applications from Java
to Kotlin? A study based on code analysis and interviews with developers.

[44] Alessio Merlo and Gabriel Claudiu Georgiu. 2017. Riskindroid: Machine learning-based risk analysis on android. In
IFIP International Conference on ICT Systems Security and Privacy Protection. Springer, Cham, 538–552.

[45] Salvador Morales-Ortega, Ponciano Jorge Escamilla-Ambrosio, Abraham Rodriguez-Mota, and Lilian D Coronado-De-
Alba. 2016. Native malware detection in smartphones with Android OS using static analysis, feature selection and
ensemble classifiers. In 2016 11th International Conference on Malicious and Unwanted Software (MALWARE). IEEE,
Washington, DC, USA, 1–8.

[46] Kevin Moran, Richard Bonett, Carlos Bernal-Cárdenas, Brendan Otten, Daniel Park, and Denys Poshyvanyk. 2017.
On-device bug reporting for android applications. In Mobile Software Engineering and Systems (MOBILESoft), 2017
IEEE/ACM 4th International Conference on. IEEE, Washington, DC, USA, 215–216.

[47] Maxim Mozgovoy and Evgeny Pyshkin. 2017. Using Image Recognition for Testing Hand-drawn Graphic User
Interfaces. In Proceedings of the The Eleventh International Conference on Mobile Ubiquitous Computing, Systems, Services
and Technologies. IARIA, Barcelona, 25–28.

[48] Maxim Mozgovoy and Evgeny Pyshkin. 2018. Pragmatic Approach to Automated Testing of Mobile Applications
with Non-Native Graphic User Interface. In International Journal On Advances in Software. IARIA, Wilmington, UK,
239–246.

[49] Maxim Mozgovoy and Evgeny Pyshkin. 2018. Unity Application Testing Automation with Appium and Image Recognition.
Springer International Publishing, Cham, 139–150. https://doi.org/10.1007/978-3-319-71734-0_12

[50] Stas Negara, Naeem Esfahani, and Raymond PL Buse. 2019. Practical Android test recording with Espresso test recorder.
In Proceedings of the 41st International Conference on Software Engineering: Software Engineering in Practice. IEEE,
Washington, DC, USA, 193–202.

[51] Je-Ho Park, Young Bom Park, and Hyung Kil Ham. 2013. Fragmentation problem in Android. In 2013 International
Conference on Information Science and Applications (ICISA). IEEE, Washington, DC, USA, 1–2.

[52] Alireza Sahami Shirazi, Niels Henze, Albrecht Schmidt, Robin Goldberg, Benjamin Schmidt, and Hansjörg Schmauder.
2013. Insights into layout patterns of mobile user interfaces by an automatic analysis of android apps. In Proceedings of
the 5th ACM SIGCHI symposium on Engineering interactive computing systems. Association for Computing Machinery,
New York, NY, USA, 275–284.

[53] Statista. 2021. Global Google Play app downloads 2016-2019. https://www.statista.com/statistics/734332/google-play-
app-installs-per-year/. Accessed: 2020-06-19.

[54] S. A. K. Tareen and Z. Saleem. 2018. A comparative analysis of SIFT, SURF, KAZE, AKAZE, ORB, and BRISK. In 2018
International Conference on Computing, Mathematics and Engineering Technologies (iCoMET). IEEE, Washington, DC,
USA, 1–10.

[55] Shaharyar Ahmed Khan Tareen and Zahra Saleem. 2018. A comparative analysis of sift, surf, kaze, akaze, orb, and brisk.
In 2018 International conference on computing, mathematics and engineering technologies (iCoMET). IEEE, Washington,
DC, USA, 1–10.

[56] Swapna Thorve, Chandani Sreshtha, and Na Meng. 2018. An empirical study of flaky tests in android apps. In 2018
IEEE International Conference on Software Maintenance and Evolution (ICSME). IEEE, Washington, DC, USA, 534–538.

[57] Marco Torchiano. 2020. effsize: Efficient Effect Size Computation. Politecnico di Torino. https://doi.org/10.5281/zenodo.
1480624 R package version 0.8.1.

[58] J. Tuovenen, Mourad Oussalah, and Panos Kostakos. 2019. MAuto: Automatic Mobile Game Testing Tool Using
Image-Matching Based Approach. The Computer Games Journal 8 (10 2019), 215–239. https://doi.org/10.1007/s40869-
019-00087-z

[59] Tinne Tuytelaars and Krystian Mikolajczyk. 2008. Local invariant feature detectors: a survey. Now Publishers Inc,
Boston, USA.

[60] Mikko Vesikkala. 2014-05-05. Visual Regression Testing forWeb Applications; Selainpohjaisten ohjelmistojen visuaalinen re-
gressiotestaus. G2 Pro gradu, diplomityö; masterThesis. Aalto University. http://urn.fi/URN:NBN:fi:aalto-201405131809

[61] Jiwei Yan, Hao Liu, Linjie Pan, Jun Yan, Jian Zhang, and Bin Liang. 2020. Multiple-entry testing of android applications
by constructing activity launching contexts. In 2020 IEEE/ACM 42nd International Conference on Software Engineering
(ICSE). IEEE, Washington, DC, USA, 457–468.

[62] Tom Yeh, Tsung-Hsiang Chang, and Robert C Miller. 2009. Sikuli: using GUI screenshots for search and automation. In
Proceedings of the 22nd annual ACM symposium on User interface software and technology. Association for Computing
Machinery, New York, NY, USA, 183–192.

[63] Hrushikesh Zadgaonkar. 2013. Robotium Automated Testing for Android. Packt Publishing, Birmingham, UK.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

https://doi.org/10.1007/978-3-319-71734-0_12
https://www.statista.com/statistics/734332/google-play-app-installs-per-year/
https://www.statista.com/statistics/734332/google-play-app-installs-per-year/
https://doi.org/10.5281/zenodo.1480624
https://doi.org/10.5281/zenodo.1480624
https://doi.org/10.1007/s40869-019-00087-z
https://doi.org/10.1007/s40869-019-00087-z
http://urn.fi/URN:NBN:fi:aalto-201405131809

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

Feature Matching-based Approaches to Improve the Robustness of Android Visual GUI Testing 33

[64] Denys Zelenchuk. 2019. Espresso and UI Automator: the Perfect Tandem. In Android Espresso Revealed. Springer,
Cham, 165–189.

ACM Trans. Softw. Eng. Methodol., Vol. 1, No. 1, Article . Publication date: July 2018.

	Abstract
	1 Introduction
	2 Background and related work
	2.1 Android GUI structure and automated GUI testing
	2.2 Tools for Visual GUI Testing
	2.3 Issues with VGT of Android apps
	2.4 Computer Vision techniques for automated GUI testing

	3 Feature matching based VGT
	3.1 Fullscreen matching algorithm
	3.2 Cropped matching algorithm

	4 Experimental design
	4.1 Goals
	4.2 Research questions and metrics
	4.3 Experimental subjects and instruments
	4.4 Procedure

	5 Results
	5.1 Dataset characteristics
	5.2 RQ1: Feature matching performance
	5.3 RQ2: Application to GUI testing

	6 Discussion
	7 Threats to validity
	8 Conclusions and future work
	References

