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Abstract: Demand Response (DR) programs represent an effective way to optimally manage building
energy demand while increasing Renewable Energy Sources (RES) integration and grid reliability,
helping the decarbonization of the electricity sector. To fully exploit such opportunities, buildings are
required to become sources of energy flexibility, adapting their energy demand to meet specific grid
requirements. However, in most cases, the energy flexibility of a single building is typically too small
to be exploited in the flexibility market, highlighting the necessity to perform analysis at a multiple-
building scale. This study explores the economic benefits associated with the implementation of a
Reinforcement Learning (RL) control strategy for the participation in an incentive-based demand
response program of a cluster of commercial buildings. To this purpose, optimized Rule-Based
Control (RBC) strategies are compared with a RL controller. Moreover, a hybrid control strategy
exploiting both RBC and RL is proposed. Results show that the RL algorithm outperforms the
RBC in reducing the total energy cost, but it is less effective in fulfilling DR requirements. The
hybrid controller achieves a reduction in energy consumption and energy costs by respectively 7%
and 4% compared to a manually optimized RBC, while fulfilling DR constraints during incentive-
based events.

Keywords: demand response; energy flexibility; cluster of buildings; energy management; deep
reinforcement learning

1. Introduction

The path towards the decarbonization of the energy and building sector paved the
way for the integration of Renewable Energy Sources (RES), seen as key actors to tackle
climate change.

However, the high volatility of renewable electricity sources can jeopardize grid
reliability [1]. In this scenario, system flexibility can be exploited to guarantee the stability
of the electricity grid [2]. Energy flexibility can be provided by three main sources: flexible
generators (e.g., cogeneration units), energy storages (e.g., batteries, thermal storages), and
flexible demand (e.g., industrial or commercial buildings) [2].

However, due to the high cost of operating and maintaining flexible sources on the
supply-side [3], the last few years have seen building Demand Side Flexibility (DSF) as one
of the most explored and promising opportunities. In fact, buildings account for around
40% of global energy demand, thus representing a valuable opportunity for the design of
advanced strategies oriented to provide demand flexibility services. According to [4], the
energy flexibility of a building depends on the possibility to manage its energy demand
and local generation according to climate conditions, user needs, and grid requirements.
This can be achieved by implementing Demand Side Management (DSM) [5] and load
control strategies, which also include Demand Response (DR) programs [6]. DR programs
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allow users to obtain an economic advantage from the curtailment or shifting of their
building load according to the grid requirements, and they can be classified into two main
categories, as shown in Figure 1: incentive-based and time-based programs [7].
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The incentive-based DR relies on remuneration of participants who manually or au-
tomatically reduced their electrical loads after a request delivered from the DR service
provider thanks to the adoption of Capacity Market Program (CAP) (e.g., aggregator), or al-
lowing the provider to turn off some appliances, as in Direct Load Control (DLC) programs.
This kind of DR program is beneficial to address temporary unfavorable conditions, such
as local or regional grid congestion or operational reliability problems, such as Ancillary
Services (A/S). On the other hand, time-based DR programs leverage the use of dynamic
energy prices that can be established in advance, as Time of Use rates (TOUs), in Real-Time
(RTP), or according to grid necessities (e.g., Critical Peak Pricing (CPP)). Such tariffs are
used to incentivize energy users to shift their electrical energy consumption from peak to
off-peak hours.

The following subsection provides an overview of DR-related works, together with
adopted control strategies and paper contributions.

Related Works

Many studies have analyzed the role and potentialities of demand response in build-
ings, highlighting the potential benefits for the grid. Early studies analyzed the role of
curtailable loads, such as smart appliances and smart lighting systems, which can be
controlled by the Building Energy Management System (BEMS) [8], considering user pref-
erences [9,10] to minimize energy consumption [11,12]. Other studies have discussed the
application of DR-oriented strategies considering the management of energy systems, such
as electric heaters [13] and energy storage technologies [14,15], to facilitate the partici-
pation in DR programs for residential and small commercial customers. In addition, as
stated in [16], the increasing spread of Electric Vehicles (EV) and Hybrid Electric Vehicles
(HEV) has introduced the opportunity to exploit the management of EV charge/discharge
cycles [17,18] for providing peak shaving [19,20] and ancillary services [21,22] to the grid.

Lastly, many studies have focused the attention on HVAC systems that could be
responsible up to 50% of electricity consumption in commercial buildings. From this
perspective, the optimal management of HVAC systems represents a significant flexibility
resource for the electrical grid, as extensively documented in [23–26], that can bring benefits
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in terms of peak reduction and frequency regulation [27,28]. However, the participation
in DR events leveraging HVAC systems bears the risk of Indoor Environmental Quality
(IEQ) and comfort degradation for building occupants. Indeed, despite the great potential
in terms of demand flexibility, the spread of DR programs in small commercial buildings
has still to overcome some barriers to unlock its full potential without impacting user
preferences, since electricity is a resource whose value for consumers is much higher than
its price [29]. Specifically, to avoid indoor thermal comfort violations while participating
in DR events, thermal storages play a key role [30], making it possible to fully unlock the
energy flexibility potential of buildings minimizing the compromises for the occupants.
For this reason, recent studies have investigated the effectiveness of control strategies for
increasing the feasibility of DR programs by means of optimized management of thermal
storage and HVAC systems [31,32].

As highlighted, the future of demand response in buildings will be greatly influenced
by the ability of novel control logics in preventing occupant discomfort while ensuring, with
an optimized energy system management, technical benefits for the grid and cost savings
for end-users. To this purpose, there is an increasing need for advanced approaches to the
building control problem that make it possible to consider multiple objective optimizations
also including new requirements emerging from the grid side.

In the literature, several methods have been used to deal with DR optimization prob-
lems, whose main drivers are the scale of the analysis and the computational requirements.
The most used approaches rely on convex optimization methods, such as Mixed Integer
Linear Programming (MILP) [33] or Mixed Integer Non-Linear Programming (MILNP) [34],
considering the single building scale. Depending on the constraints and complexity of the
considered DR problem, other common techniques include fuzzy logic controllers [35] and
Particle Swarm Optimization (PSO) [15], achieving near-optimal solutions.

However, when dealing with a multiple-building scale, mathematical solutions re-
quire the introduction of a bi-level optimization, increasing the computational complexity
of the control problem and limiting the effectiveness of MILP. Among the proposed alterna-
tives, game theory-based algorithms [36], Genetic Algorithms (GA), and learning-based
algorithms [37] represent valuable solutions to reduce computational costs while finding
near-optimal solutions for large-scale control problems.

In this context, recent studies started to investigate the potentiality of Reinforcement
Learning (RL), a branch of machine learning that deals with the optimal control of complex
systems [38] for building energy management. One of the main key features of RL is its
model-free nature. Indeed, RL algorithms do not require a model of the system to be
controlled and learn a sub-optimal control policy through trial-and-error interaction with
the environment and by leveraging historical data. This feature allows RL controllers to
integrate human preferences into the control loop, making them suitable for the control of
complex energy systems that deal with non-linearity processes [39] and demand response
initiatives [37]. From this perspective, promising performances have been achieved by
RL controllers, for example, in addressing electrical battery management where costs and
battery degradation were minimized [40–42].

Moreover, RL and Deep Reinforcement Learning (DRL) algorithms have already
proven their effectiveness when applied to the built environment [43], specifically to the
application at the single building level, providing cost reduction, equipment efficiency [44],
and improved indoor comfort for occupants [45,46].

Many studies have demonstrated the RL potential when applied in the context of
DR with the aim of flattening the electricity consumption curve [47,48] or control thermal-
related loads [49] in single buildings. However, the energy flexibility of a single building is
typically too small to be bid into a flexibility market, highlighting the necessity to analyze
the aggregated flexibility provided by a cluster of buildings [50].

Nonetheless, when dealing with multiple buildings, the attention of RL algorithms
has been focused on the market side. In particular, [51–53] emphasized the effectiveness of
RL in exploiting variable electricity tariffs to reduce both provider and customer costs. As
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a reference, in [54,55], the authors used RL and deep neural networks to identify suitable
incentive tariffs and to effectively ease the participation of buildings in incentive-based
DR programs.

Despite RL algorithms having gained increased attention in the field of demand
response and building energy management (at both single and multiple building levels),
there is a lack of studies focused on the application of incentive-based DR programs in
multiple buildings considering thermal-sensitive electrical loads. Therefore, there is the
necessity to assess their potential in this field of application, considering the effect that
such an advanced energy management strategy has in terms of peak rebound (i.e., a
consumption increase after the DR event).

The paper also proposes a hybrid approach that exploits both advantages of DRL and
RBC controllers to overcome possible controller instabilities, further described below. This
approach is intended to be readily implementable in real applications to further promote
the use of incentive-based DR programs in clusters of small commercial buildings.

The aim of this paper is to explore the potentialities of DR-based controllers for
increasing demand flexibility for a cluster of small commercial buildings. To this purpose,
Thermal Energy Storage (TES) systems are considered as a key technology to be exploited
in the scenario of participation in an incentive-based DR program.

The proposed controller was designed to optimize the energy usage for each building
and reduce the cluster load during DR events when the grid required a load flexibility
effort. For benchmarking purposes, the DRL controller was compared with two Rule-
Based Controllers (RBC) and a hybrid-DRL controller to evaluate the effectiveness and the
adaptability of the proposed solution. The hybrid solution was proposed as a way to deal
with random exploration during the initial stage of the training process (“cold start”). An
alternative is represented by the use of rule-based expert procedure [40], which helps the
DRL controller to find an optimal policy more quickly and efficiently to overcome this issue.
However, the initial benefits come at the expense of long-term performances, which could
worsen [56]. The hybrid solution is proposed as a trade-off between random exploration
and rule-based expert procedure.

Based on the literature review, the main novelties introduced in the paper can be
summarized as follows:

• The paper exploits a single-agent RL centralized controller that acts on the thermal
storages of multiple buildings, with a strategy explicitly designed to maximize the
benefits of an incentive-based DR program, for both the grid and energy customers.

• The paper proposes a detailed comparison between a DRL controller (based on the Soft
Actor Critic (SAC) algorithm) and a hybrid DRL-RBC controller, used to avoid control
instabilities during DR events that could compromise the economic profitability for
the final user.

• The paper proposes a detailed cost analysis, which focuses on electricity costs, peak costs,
and DR profits, emphasizing the strengths and weaknesses of each controller analyzed.

The paper is organized as follows: Section 2 introduces the methods adopted for
developing and testing the controllers, including algorithms and simulation environment.
Then, Section 3 describes the case study and the control problem, while Section 4 introduces
the methodological framework at the basis of the analysis. Section 5 reports a detailed
description of the case study, explaining the energy modeling of the system and the de-
sign/training process of the developed controllers. Section 6 provides the results obtained,
while a discussion of results is given in Section 7. Eventually, conclusions and future works
are presented in Section 8.

2. Methods

Reinforcement learning is a branch of machine learning aimed at developing an
autonomous agent that learns a control policy through direct interaction with the environ-
ment, exploiting a trial-and-error approach. RL can be expressed as a Markov Decision
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Process (MDP), which can be formalized by defining a four-value tuple including state,
action, transition probability, and reward, described in the following.

The state is defined by a set of variables whose values provide a representation of
the controlled environment. The action corresponds to the decision taken by the agent on
the control environment in order to maximize its goals mathematically expressed in the
reward function. The transition probability P(st+1 = s′|st = s, at = a) = P : S× A× S′ is
the probability associated with the state change of the environment (from a state s to a
state s’) when action a is taken. According to the Markov Property [38], these probabilities
depend only on the value of state s and not on the previous states of the environment.
Eventually, the reward function is used to quantify the immediate reward associated with
the tuple S× A× S′ and makes it possible to assess the performance of the agent according
to the control objectives defined by the analyst. The main task of the agent is to learn the
optimal control policy π, maximizing the cumulative sum of future rewards.

The state-value vπ(s) and action-value qπ(s, a) functions determine the optimal policy
of the RL agent and are used to show the expected return of a control policy π at a state or
a {state,action} tuple, as follows:

vπ(s) = E[rt+1 + γvπ

(
s′
)∣∣St = s, St+1 = s′] (1)

qπ(s, a) = E[rt+1 + γqπ

(
s′, a′

)∣∣St = s, At = a] (2)

where γ is included between 0 and 1 and represents the discount factor. If γ = 1, the agent
will prioritize future rewards instead of current ones, while for γ = 0, the agent assigns
higher values to states that lead to high immediate rewards.

These functions represent, respectively, the goodness of being in a certain state St with
respect to the control objectives [57] and the goodness of taking a certain action At in a
certain state St following a specific control policy π [58].

As a reference, Figure 2 shows a RL-based framework applied to a control problem
concerning a building energy system. In Figure 2, the controller (agent) is supposed to be
connected to a heat pump and a chilled water storage with the aim to satisfy the cooling
energy demand of a building. The agent can take an action (e.g., charging or discharging
the storage) when the environment is in a certain state (e.g., during a DR event) to optimize
the building energy usage (i.e., parameter included in the reward function).
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The most widely applied approach among RL algorithms, due to its simplicity, is
the Q-Learning [59]. Q-Learning maps the relationships between states and action pairs
exploiting a tabular approach [60] storing Q-values and selecting the set of optimal actions
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according to those values. The control agent gradually updates Q-values through the
Bellman equation [61]:

Q(s, a) ← Q(s, a) + λ
[
rt + γmaxa′Q

(
s′, a′

)
−Q(s, a)

]
(3)

where λ (0,1) is the learning rate, which determines how rapidly new knowledge overrides
old knowledge. When λ = 0, no learning happens, while for λ set equal 1, new knowl-
edge completely overrides what was previously learned by the control agent. Despite the
effectiveness, due to large state and action spaces that need to be stored, the tabular repre-
sentation is inadequate in real-world implementations. In this paper, the Soft Actor–Critic
(SAC) algorithm, an actor–critic method, was employed. SAC is an off-policy algorithm
based on the maximum entropy deep reinforcement learning framework, introduced by
Haarnoja et al. [62]. Unlike Q-learning, SAC is capable of handling continuous action
spaces, extending its applicability to various control problems. A detailed description of
the SAC algorithm is provided in the following subsection.

Soft Actor–Critic

Soft Actor–Critic exploits the actor–critic architecture, approximating the state-value
function and the action-value function using two different deep neural networks. In
particular, the Actor maps the current state based on the action it estimates to be optimal,
while the Critic evaluates the action by calculating the value function. Furthermore, the
off-policy formulation allows reusing previously collected data stored in a replay buffer
(D), increasing data efficiency.

SAC learns three different functions: (i) the actor (mapped through the policy function
with parameters φ), (ii) the critic (mapped with the soft Q-function with parameters θ), and
(iii) the value function V, defined as:

V(st) = Eat∼π [Q(st, at)− α log π(at|st)]
= Eat∼π [Q(st, at)] + αEat∼π [log π(at|st)]

= Eat∼π [Q(st, at)] + αH
(4)

The main feature of SAC is the entropy regularisation: this algorithm is based on
the maximum entropy reinforcement learning framework, in which the objective is to
maximize both expected reward and entropy [63] as follows:

π∗ = arg max
πφ

T

∑
t=0

E(st , at)∼ρπ

[
r(st, at) + αH

(
πφ(·|st )

)]
(5)

where (st, at)∼ρπ
is a state–action pair sampled from the agent’s policy, r(st, at) is the

reward for a given state–action pair, and H is the Shannon entropy term, which expresses
the attitude of the agent in taking random actions.

SAC performances are influenced by the temperature parameter α, which determines
the importance of the entropy term over the reward. Furthermore, to reduce the effort
required for tuning this hyperparameter, the paper exploits a recent version of the SAC
that employs alpha automatic optimization [62].

3. Case Study and Control Problem

The case study focused on the energy management optimization of a cluster of build-
ings considering the possibility to integrate DR signals in the control strategy. The consid-
ered cluster included four commercial buildings: a small office, a restaurant, a stand-alone
retail, and a strip mall retail. The four buildings analyzed belonged to commercial reference
buildings developed by U.S. Department of Energy (DOE). Each building was equipped
with a heat pump used to charge a cold storage and to satisfy the heating and cooling
energy demand of the building. Moreover, buildings used electric heaters and hot storages
to meet the DHW demand. The Heat Pump Size (HPsize) was defined considering the
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maximum hourly cooling demand (Ecooling,max) and a Safety Factor (SF) equal to 2.5 for
taking into account the reduced capacity during low external temperatures periods [64]:

HPsize = Ecooling,max ∗ SF [kW] (6)

The storages capacity (Ccooling for cooling and CDHW for DHW storages) was designed
according to the maximum hourly energy demand for cooling and DHW (EDHW,max),
considering a Capacity Factor (CF) equal to 3 [65]:

Ccooling = Ecooling,max ∗ CF [kWh] (7)

CDHW = EDHW,max ∗ CF [kWh] (8)

Table 1 reports for each building the geometrical features and the details about the
energy systems, together with Photovoltaic (PV) system size.

Table 1. Building and energy system properties.

Building
Number Type Surface [m2] Volume [m3]

Heat Pump
Capacity

[kW]

Cold Storage
Capacity

[kWh]

Hot Storage
Capacity

[kWh]

PV
Capacity

[kW]

1 Small Office 5000 13,700 748 898 16 50
2 Restaurant 230 710 197 158 33 0
3 Stand-alone Retail 2300 14,000 533 639 0 0
4 Strip Mall Retail 2100 10,800 660 792 0 40

Figure 3 shows the electric load profile of each building and for the entire district
for the first 3 days of simulations during the cooling season. In particular, the left side
of Figure 3 highlights the heterogeneity of both shape and intensity of the electric con-
sumption. The right side shows the disaggregation of the total district load into cooling,
DHW, non-shiftable appliances, and PV production. The control problem was tested over
a three-month period during summer (from 1 June to 31 August) when the cooling energy
demand was the main driver of the building cluster consumption.
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3.1. Description of the Control Problem

In this paper, the RBCs and DRL-based control strategies were implemented and
tested in CityLearn [66], a simulation environment based on OpenAI Gym [67]. The
environment has the aim to ease the training and evaluation of the RL controller in DR
scenarios considering a heterogeneous cluster of buildings. CityLearn received input pre-
simulated building hourly data and allowed the control of the charging and discharging
of the thermal energy storage devices installed in the buildings. The heating energy was
supplied by electric heaters while cooling energy was supplied by air-to-water heat pumps.
Furthermore, some buildings were equipped with a PV system to produce on-site energy.

The controllers were designed to manage the charging and discharging of cooling
and DHW storages for the district of buildings, with the aim to minimize electricity costs
and reduce electrical load as requested during the incentive-based DR events considered.
The electricity costs and the DR programs tariffs were the main drivers of the control
problem. In particular, an electricity price (cEl) that varied from cEl,off-peak = 0.01891 €/kWh
during off-peak hours (9 p.m.–12 a.m.) to cEl,on-peak = 0.05491 €/kWh during on-peak hours
(12 a.m.–9 p.m.) was considered. Moreover, a cost related to the monthly peak load (CPeak)
was considered and defined below:

CPeak = cPeak ∗ PMonthly, Peak [€] (9)

where CPeak [€/kW] is the tariff related to the monthly peak load PMonthly,Peak [kW],
evaluated as the maximum aggregated electrical load per each month related to the entire
cluster of buildings.

The DR income (IDR) was set according to the tariffs defined by an Italian electricity
provider. In detail, the overall DR remuneration was defined in Equation (10):

IDR = IFixed + IVariable [€] (10)

IFixed corresponds to the fixed user profit due to the participation in the DR program.
This remuneration is defined according to Equation (11):

IFixed = IPower ∗ LR [€] (11)

where IPower (€/kW/year) is the tariff related to the Load Reduction (LR) [kW] requested
during DR event and contracted between users and provider.

The variable term of DR income (IVariable) is defined according to Equation (12) and
takes into account the reduction in energy demand from the grid as requested by the
DR program:

IVariable =
N

∑
i=1

IEnergy ∗min{LR, CBLi − Pi,District} ∗ DRduration (12)

where IEnergy (€/kWh) is the tariff related to the energy reduction for DR. IVariable exploits the
concept of Customer Baseload (CBL), defined as the sum of cooling, DHW, and appliances
power minus the PV production, without considering the effect on the electrical load of
the storage operation. In particular, IVariable was evaluated as the difference between the
customer baseload and the aggregated load (PDistrict) during the DR period, multiplied by
the duration of the DR (DRduration). Moreover, the incentive was limited up to the contracted
power (LR), and a further reduction beyond LR would not be remunerated. IPower equal
to 30 €/kW/year, IEnergy = 0.25 €/kWh, and LR = 35 kW were assumed to simulate a
realistic scenario. The DR call (DRevent) was assumed to be stochastic, with a random
duration between 2 and 4 h during the period 2 p.m.–8 p.m. (DRduration), considering the
notification of the customer 1 h before the event start (DRnotice) and limiting its occurrence
at no more than one DR event per day, according to realistic strategies adopted by an
electricity provider.
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4. Methodology

This section reports the methodological framework adopted in the present paper
(Figure 4). First, two RBC and two DRL-based controllers were selected in order to assess
the advantages related to advanced control strategies. Then, DRL-based controllers were
trained and deployed to check the quality of control policies. Lastly, control performances
were analyzed, taking into consideration both pros and cons of each proposed strategy.
The main stages of the methodological process are below described.
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Design of control strategies: the first stage of the process is aimed at defining the
different approaches adopted in this paper, starting from state-of-the-art RBC controllers
up to advanced DRL and hybrid DRL strategies.

• Design of baseline rule-based controllers: two rule-based control strategies were defined in
the study. The first one (RBC-1) optimized cluster electrical load without considering
the participation of buildings in DR events during the entire simulation period. Such
RBC controller was used as a reference baseline against controllers which consider DR
signals in order to explicitly assess the benefits for the users and for the grid when
such feature of the controller is enabled. On the other hand, the second RBC controller
(RBC-2) was designed with the ability to satisfy DR requirements. Different from
RBC-1, this one represented a credible benchmark for more advanced controllers based
on DRL and hybrid-DRL approach that were considered in this study for addressing
the control problem.

• Design of deep reinforcement learning controller: the formulation of the DRL controller
started from the definition of the action-space, which included all the possible control
actions that could be taken by the agent. Then, the state-space was defined, including
a set of variables related to the controlled environment, which led the agent to learn
the optimal control policy. Lastly, the reward function was designed with the aim to
address the considered multi-objective control problem robustly. Such controller was
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then compared against the RBC strategies in order to assess its pros and cons and
better drive the design of a hybrid control logic in which DRL and RBC were coupled.

• Design of hybrid deep reinforcement learning controller: the controller was designed to
exploit the predictive nature of the DRL, while maintaining the deterministic nature
of the RBC, with the aim to maximize economic benefits for the users by minimizing
the violation of DR constraints during incentive-based events. This controller used
the same state–action space of the DRL controller with a different reward function that
did not take into account the fulfilment of DR requirements. In particular, during
the simulation of DR events, the hybrid control logic used actions provided by the
RBC, overwriting DRL control signal, always ensuring DR requirements satisfaction.
On the other hand, during the remaining part of the day, the controller exploited
the predictive nature of the DRL algorithm to optimize storage operation, reducing
energy costs.

Training and deployment of DRL-based controllers: after the design of the control
strategies, the two DRL-based controllers were trained offline, using the same training
episode (i.e., a time period representative of the specific control problem) multiple times,
continuously improving the agent control policy. Then, the DRL and hybrid-DRL agents
were first tested with the same schedule of DR events used for training, with the aim to
analyze the effectiveness of the learned control policy specifically. Then, to evaluate their
robustness and adaptability capabilities, the control agents were deployed considering a
schedule of DR events completely different from training.

Comparison of controller performances: lastly, the four controllers (i.e., RBC-1,
RBC-2, DRL, and Hybrid-DRL) were compared to identify the strengths and weaknesses
of each one explicitly. The DRL-based approaches were compared with RBCs, due to their
wide-spread real-world implementation. Therefore, RBCs were used as a benchmark also
according to the approach adopted in [56,64]. In this work, first, a cost disaggregation was
provided for each control strategy, identifying the advantages to join incentive-based DR
programs and highlighting the role of storage control for managing thermal-sensitive elec-
trical loads in buildings. Then, the analysis focused on the impact the participation in DR
events has on the grid, also identifying possible risk of peak rebound (i.e., the occurrence
of a peak condition after the demand response event).

5. Implementation

This section describes how the four controllers were designed. In addition to the two
rule-based controllers, used as baselines, a detailed description of state-space, action-space,
and reward functions of DRL and hybrid-DRL agents is provided in the following.

5.1. Baseline Rule-Based Controllers

Two rule-based controllers were used to compare the effectiveness of the DRL and
hybrid-DRL controller. In particular, the first rule-based controller (RBC-1) was designed to
reduce energy costs of each building, exploiting the variability of electricity tariffs during
the day, and did not consider any participation in incentive-based DR events.

For RBC-1, both chilled water and DHW storages were charged during the night
period and heat pumps could operate more efficiently in cooling mode when the electricity
price was lower, thanks to lower temperatures. In addition, both charging and discharging
actions were uniform throughout the day to reduce peak consumption and flatten the
electrical load profile. Equation (13) better clarifies the charging/discharging strategy for
the RBC-1.

aRBC−1 =

{
−1/∆t if 8 a.m. ≤ t ≤ 7 p.m.

0.1 else
(13)

where aRBC-1 represents the action taken by the RBC-1 agent and ∆t the number of hours
(i.e., 12 h) for which the electricity cost is equal to cEl,on-peak.

Conversely, the second rule-based controller (RBC-2) was designed to exploit electric-
ity tariffs and participate in incentive-based DR programs. In more detail, in the absence of
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DR events, RBC-2 performed the same actions as RBC-1. On the other hand, in the presence
of a DR event, the RBC-2 modified its actions according to the notified DR duration and the
State of Charge of the thermal storages (SOC), to meet contracted load reduction without
influencing user comfort. Specifically, the controller pre-charged storages if their SOC
was not sufficient to satisfy the required load reduction, while it continued to discharge
if the state of charge could meet grid request. The selected control actions and associated
constraints are indicated as follows.

• If 8 a.m. ≤ t ≤ 7 p.m.:

aRBC−2 =


−1/∆t i f DRnotice = 1 and DRevent = 0 and SOC >1/∆t ∗ (1 + DRduration)

1/∆t ∗ DRduration − SOC i f DRnotice = 1 and DRevent = 0 and SOC ≤1/∆t ∗ (1 + DRduration)
−1/∆t i f not DRnotice = 1 and DRevent = 0

(14)

where aRBC-2 represents the action taken by the RBC-2 agent, ∆t is the same as the case
of Equation (13), DRnotice is the notification received by the agent 1 h before the start of
the DR event (DRevent), DRduration is the duration of the DR event, and SOC is the state of
charge of the considered storage.

• If 1 a.m. ≤ t < 7 a.m. and 8 p.m. ≤ t ≤ 12 p.m., the action selected by RBC-2 (aRBC-2)
corresponded to the one selected by RBC-1 under the same constraints.

Figure 5 shows the behavior of the RBC agents for the cooling storage of a building in
the considered cluster: the grey line represents the RBC-2 control policy, while the black
dashed line pertains to the RBC-1 actions. The top part of the figure highlights the behavior
of the two controllers in the absence and in the presence of DR events when in the latter
case, a limited discharge rate reduction was performed by RBC-2 to avoid the full discharge
of the storage before the end of the DR event. The bottom part of the figure refers to a
different period and highlights the importance of the pre-charging strategy when the DR
event takes place during the last on-peak hours, together with the effect on the subsequent
charging process.
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5.2. Design of DRL and Hybrid-DRL Controllers

This section is focused on the design of DRL and hybrid-DRL controllers for optimiz-
ing the energy consumption of the buildings in the considered district. The section includes
the description of the action-space, state-space, and reward function. The controllers share the
same action-space and state-space while the reward functions were differently conceived.

5.2.1. Design of the Action-Space

In this study, each of the four buildings in the district was equipped with a thermal cold
storage and a heat pump to meet the cooling energy demand. In addition, buildings 1 and 2
(see Table 2) met the DHW demand using heat storages supplied by an electric heater.
Therefore, at each control time step (set equal to 1 h), the DRL agent provided six control
actions related to the charge/discharge of the storages (i.e., four chilled water and two
DHW storages). In detail, the DRL controller selected an action between [−1, 1], where
1 indicates a complete charge of the considered storage, and −1, its complete discharge.
However, to represent a more realistic charging and discharging process, the action space
was constrained between [−0.33, 0.33], considering that a complete charge or discharge
of the storage lasts three hours, as in [65]. Moreover, CityLearn ensured that the heating
and cooling energy demand of the building were always satisfied, overriding the actions of
DRL-based controllers to satisfy such constraints of thermal energy demand [68].

Table 2. State-space variables.

Variable Unit

Weather
Outdoor Air Temperature [◦C]

Outdoor Air Temperature Forecast (1 and 2 h ahead) [◦C]
Direct Solar Radiation [W/m2]

Direct Solar radiation Forecast (1 and 2 h ahead) [W/m2]
Diffuse Solar Radiation [W/m2]

Demand Response
DRevent [-]
DRnotice [-]

DRduration [h]
Load reduction (LR) [kW]

District
Electrical load (PDistrict) [kW]

Customer baseload (CBL) [kW]
Electricity Price Forecast (1 and 2 h ahead) [€/kWh]

Hour of day [h]
Day of the week [-]

Month [-]
Building

Non-shiftable load [kW]
Solar generation [kW]

Chilled water Storage SOC [-]
DHW storage SOC [-]

5.2.2. Design of the State-Space

The state-space represents the set of variables seen from the control agent. A proper
definition of these variables is crucial to help the controller in learning the optimal policy.
The variables included in the state-space are reported in Table 2.

The variables were classified into weather, demand response, district, and building
states. Weather variables, such as Outdoor Air Temperature and Direct Solar Radiation, were
included to account for their influence on the cooling load. Moreover, their predictions with
a time horizon of 1 and 2 h were used to enable the predictive capabilities of the controllers.

Through a boolean variable, the agent was informed of the occurrence of a DR event
in the current time step (DRevent) and 1 h before (DRnotice). Moreover, DR states included
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information on the requested electrical load reduction (LR) and the elapsing time before
the end of the DR event (DRduration). Variables that were in common between all buildings
in the cluster were included in district states, such as hour of day, day of the week, month,
electricity price, and forecast of the electricity price with a time horizon of 1 and 2 h ahead.
Furthermore, district variables also included the hourly net electricity demand (PDistrict) and
the total pre-computed district demand, used as customer baseload (CBL).

The remaining states were categorized as building variables, such as the appliances’
electrical load (non-shiftable load), the photovoltaic electricity production (Solar generation),
the state-of-charge of cooling and DHW storages (Chilled water storage SOC and DHW
storage SOC).

Figure 6 shows a graphical representation of state and action spaces. The control agent
received information on buildings, climatic conditions, and DR states for managing the
charging/discharging of the thermal storages to optimize the energy usage at the district
level, also considering the grid requirements.
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5.3. Design of the Reward Functions

The reward function has to be representative of the defined control problem and
assesses the effectiveness of the control policy. In this work, two separate reward functions
were defined for the DRL and hybrid-DRL controllers, while the hyperparameters used for
the controller design are reported in Appendix A.

5.3.1. Reward Function for DRL Controller

For the DRL controller, the reward was formulated as a linear combination of two
different contributions, a DR-related term (RDR) and a power-related term (RP).

These terms were combined employing two weights (wDR and wP, respectively) that
balance their relative importance. The general formulation of the reward is as follows:

RDRL =

{
wDR ∗ RDR if DRevent = 1

wP ∗ RP if DRevent = 0
(15)
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The DR related term guaranteed the DRL control agent to endorse the network re-
quests during the demand response event. The DR term was formulated according to
Equation (16).

RDR =

{
DRpen if PDistrict ≥ CBL− LR
DRprize if PDistrict < CBL− LR (16)

Due to this formulation, the agent received a penalty DRpen if the district load (PDistrict)
during the DR period was higher than the electrical load threshold, defined as the difference
between the customer baseload and the contracted load reduction, otherwise, it received a
prize DRprize. On the other hand, the power term of the reward RP had different expressions
depending on electricity cost cEl, as defined in the following:

RP =

{
RP,o f f−peak if cEl = cEl,o f f−peak
RP,on−peak if cEl = cEl,on−peak

(17)

Furthermore, the two parts of the power-related terms (RP,off-peak and RP,on-peak) depend
on the electrical load of the building district PDistrict, as expressed in Equations (18) and (19).

RP, o f f−peak =

{
pP1 i f th1, o f f−peak ≤ PDistrict ≤ th2, o f f−peak

pP2 else
(18)

RP, on−peak =


pP1 if th1,on−peak ≤ PDistrict ≤ th2,on−peak

PDistrict − th1,on−peak if PDistrict ≤ th1,on−peak(
th2,on−peak − PDistrict

)
∗ KP if PDistrict ≥ th2,on−peak

(19)

The formulation of the power term, shown in Figure 7, was conceived to flatten the
load profile. A number of thresholds were selected based on the load duration curve of the
cluster of buildings, therefore being case-specific to solve this problem.
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In particular, during off-peak periods, two thresholds were used to incentivize con-
sumption between the 40th percentile (th1,off-peak) and the 50th percentile (th2,off-peak),
rewarding (with a fixed prize term pP1) or penalizing (with a fixed penalty term pP2) the
controller. This reward formulation penalizes low values of electrical load, associated with
storage discharge or no usage, and high values of electrical load, which represent a sudden
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charging of the storages. On the other hand, an electrical load between the two thresholds
was incentivized, denoting a homogeneous storage charge over time.

Conversely, during on-peak periods, consumption was incentivized between the 45th
percentile (th1,on-peak) and the 80th percentile (th2,on-peak), associating this interval with
an optimal storage use. Similar to the off-peak periods, a load lower than th1,on-peak was
penalized, being associated with a sudden discharge, while a penalty multiplier (KP) was
introduced for load higher than th2,on-peak to prevent the occurrence of peaks. The values
chosen for all DRL reward terms are reported in Table 3.

Table 3. Values assumed for DRL reward function features.

Variable Value

wDR 0.035
wP 0.1

DRpen −45,000
DRprize 10,000

pP1 20
pP2 −10

th1,off−peak 70
th2,off−peak 110
th1,on−peak 100
th2,on−peak 200

Kp 30

5.3.2. Reward Function for the Hybrid-DRL Controller

The hybrid-DRL controller (DRL-RBC) exploited the same structure of the deep rein-
forcement learning controller, while during demand response events, it used the RBC-2
control strategy to address load reduction requests. For the hybrid controller, the reward
function only consisted of a power-related term that aimed to flatten the load profile,
expressed in the following way:

RDRL−RBC =

{
−w1 ∗ (PDistrict − thPeak) i f PDistrict ≥ thPeak

p1 else
(20)

The reward highly penalized a load greater than thPeak, chosen as the 95th percentile
of the load duration curve. This formulation allowed the controller to learn how to flatten
the load profile while fulfilling grid requirements. The values chosen for the hybrid-DRL
reward terms are indicated in Table 4.

Table 4. Values assumed for hybrid-DRL reward function features.

Variable Value

w1 100
p1 10

thPeak 300

6. Results

The section describes the results of the implemented framework. First, performances
during training periods of the developed DRL and hybrid-DRL controllers were compared
with the RBC-2, to explore how the different controllers handled the occurrence of DR
events. In detail, the load profile of all buildings in the district, comparing the storage
charging/discharging process of the controllers and the associated overall costs was ana-
lyzed. Moreover, RBC-1 was compared with other controllers to assess the user advantages
when participating in DR programs.

Afterward, to test the robustness of the controllers, the results obtained using a
different deployment schedule of DR events are discussed.
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6.1. Training Results

This subsection presents the results of the developed controllers deployed on the same
schedule used for the training phase.

Figure 8 reports the comparison between RBC-2 (on the top), hybrid-DRL (in the
middle), and DRL (on the bottom) controllers during a typical week of the analyzed period,
considering the chilled water storage charging/discharging process of building 3. As
previously explained, RBC-2 agent charged the storage during the off-peak periods in
order to discharge it during peak hours. In addition, the amount of energy discharged was
influenced by the DR program requirements (green zone), as shown in the upper part of
Figure 8 by the slope variation during the third day of the considered week. The DRL and
hybrid-DRL controllers exhibited a storage charging process similar to the RBC-2, while
the discharging one was differently managed. Although the cost of electricity was higher
during the on-peak hours, the DRL agent chose to maintain a high SOC of the storage
to meet the energy demand reduction by discharging the storage during the DR periods.
On the other hand, the hybrid-DRL controller discharged the storage, taking into account
the higher cost of energy as well as the necessity to reduce the energy demand, achieving
an energy saving of 7%. Therefore, the discharging process started approximately in the
middle of the on-peak period, ensuring that the storage had sufficient charge to satisfy the
potential occurrence of a demand response event.
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Figure 9 shows the comparison between the different control strategies for the cluster
(top part of the figure) and each building. In particular, the figure shows the effects of
two control strategies (RBC-2 and DRL) on the load profiles, considering as reference the
customer baseload. As shown in the upper part, the aggregated load profile resulting from
the DRL controller was more uniform than that resulting from RBC-2. Moreover, the DRL
agent showed greater adaptability to DR programs, optimizing both cluster load profile,
energy costs, and load reduction during DR events.
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On the other hand, the analysis at a single building level showed that, during DR
events, the centralized agent achieved load reduction by meeting the cooling and DHW
demand of building 2 and building 3 through the discharge of thermal storages. This result
highlighted the possibility to further reduce the load using the storages of building 1 and 4,
representing an additional source of flexibility for the cluster. Lastly, it could be noticed
that although single building profiles presented higher peaks than RBC-2, the aggregated
load displayed a flatten profile.

Lastly, Figure 10 reports a comparison of the cost disaggregation obtained for each
controller, according to the definition of the total cost given in Section 3.1. Overall, the DRL
controller was the most cost-effective due to optimal management that allowed the agent
to minimize costs related to energy consumption, also meeting grid requirements. The
DRL agent violated the DR program for 1 h out of a total of 105 due to a lack of storage
charge, allowing the agent to remain within the DR program and earning 1179 €. The
hybrid-DRL and the RBC-2 control policies led to higher costs, despite the absence of
violations over the entire demand response period. The hybrid agent was able to exploit
the variability of energy tariffs during the day and minimize the energy costs by leveraging
the adaptive capabilities of reinforcement learning. Although the peak cost was 10% higher
than the RBC-2, the total cost was lower. On the other hand, the RBC-1 agent was used to
assess user benefits for participating in incentive-based DR programs. In particular, the
comparison among the two RBC highlights how, despite the slight increase in energy costs,
the participation in DR programs led to overall savings of around 9%.
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6.2. Deployment Results

This subsection describes the results obtained by testing DRL and hybrid-DRL con-
trollers on the same simulation period used for training but considering a different DR
schedule to evaluate their adaptive capabilities. The new DR schedule consisted of 69 h,
compared to 105 h, considered in the training phase. The performances of the developed
controllers were compared with the RBC agents in Table 5.

Table 5. Cost disaggregation: a comparison between the developed agents during the deploy-
ment phase.

Controller Energy Cost [€] Peak Cost [€] DR Income [€] Total Cost [€]

RBC-1 11,110 1997 0 13,107
RBC-2 11,114 1997 −866 12,245
DRL 10,864 2014 −851 12,027

Hybrid-DRL 10,685 2335 −866 12,154

Results showed that DRL controller again ensured the lowest cost, minimizing energy
and peak costs. However, the profit associated with the participation in the demand
response program was lower due to 3 h of violations, during which the controller did not
guarantee load reduction. It must be noticed that in some cases, the violations might be
unacceptable in the contracts defined with the grid operators, leading to the exclusion from
the DR program.

On the other hand, the hybrid-DRL agent led to the highest peak cost due to a sudden
charge of storages to satisfy DR events, whose effects were balanced by a reduction of 4%
of the energy costs.

7. Discussion

The present paper aims to exploit deep reinforcement learning to optimally control
thermal storages of four small commercial buildings under an incentive-based demand
response program. The study focused on the comparison of different control strategies to
investigate the advantages and limitations of each controller. In particular, the RBC-1 was
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introduced as a baseline to assess the benefits of demand response programs for the users
considered in RBC-2 and DRL-based controllers.

On the other hand, RBC-2 was introduced to analyze and benchmark the effect of
exploiting advanced control strategies coupled with demand response programs in multiple
buildings, assessing the advantages of DRL controllers in reducing energy costs.

The paper proposed the implementation of automated demand response with particu-
lar attention to costs related to energy consumption, peak occurrence, and DR remuneration.
This approach led to the identification of the advantages of a data-driven strategy with
respect to a standard rule-based one.

Due to its adaptive nature, DRL exploited weather forecast conditions to maximize
heat pump efficiency, reducing energy costs. Moreover, different from RBC or hybrid
controllers, the DRL agent satisfied load reduction with a centralized approach, using only
a part of the storages of the buildings to meet load reduction. Due to better exploitation
of building flexibility, the centralized approach provided the opportunity to increase the
contractualized power, which will further reduce costs. The main limitation of the DRL
controller was related to the high effort necessary for the definition of the reward function.
In particular, the DR event was highly stochastic, leading to a sparse reward that must be
carefully managed. As a result, the design of the reward function was case-specific since it
used several thresholds deriving from the load duration curve. This concept provided the
motivation for the creation of the hybrid controller.

Conversely, the RBC-2 controller ensured the fulfillment of grid requirements during
DR events at the expense of system efficiency by operating a uniform charge and discharge
of storages.

Lastly, the hybrid controller experienced a slight cost reduction with respect to the
RBC-2, highlighting the ability of the controller to optimize energy consumption while
guaranteeing DR satisfaction.

Furthermore, the study also analyzed how the change in the DR schedule can influence
control performances, studying the effect of such modification on energy costs and DR
violations. Despite the effectiveness of the DRL controller to reduce energy costs, this paper
highlighted some limitations related to its readiness in reacting to stochastic DR events that
could lead to exclusion from the DR programs.

The paper showed that although a tailored RBC (i.e., RBC-2) was always able to meet
grid requirements during incentive-based DR events, it was not able to exploit flexibility
sources also improving energy efficiency. The DRL was able to optimize the performance
of the heat pump during operation, efficiently exploiting climate conditions and variable
energy tariffs for charging the thermal storages but with some violations of DR constraints.
Such an outcome suggests that DRL is more suitable for time-based DR, in line with
current literature.

On the other hand, the hybrid-DRL controller was designed to exploit the predic-
tive nature of the RL while maintaining the deterministic nature of the RBC, with the
aim to maximize economic benefits for the users and to minimize the violation of DR
constraints during incentive-based events, representing a valuable alternative to state-of-
the-art RBC controllers.

This approach seems to represent a promising trade-off between cost reduction, design
simplicity, and the ability to meet grid requirements. In addition, these benefits can further
increase with the amount of the energy flexibility bid in the flexibility market. However,
the practical implementation of a DRL-based controller still remains more complex than
an RBC but not far away from a feasible penetration in the real world. In this context, the
increasing availability of building-related data can be exploited to effectively pre-train
the RL agent and speed up the online learning process, while weather forecast, and grid
information can be easily retrieved through specific services.
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8. Conclusions and Future Works

The present work has shown the applicability of an adaptive control strategy based
on deep reinforcement learning to thermal storage management under incentive-based DR
programs. In particular, the study focused on different control paradigms, starting from two
standard rule-based controllers, one of them (i.e., RBC-2) designed to fulfill the DR program,
up to a more complex model-free DRL agent. Moreover, an additional hybrid solution,
which exploits the ability of DRL to optimize energy usage and the deterministic actions of
the RBC during the DR events, was proposed. The paper highlighted how participation in
DR programs could be useful for the users, that even with a simple RBC, costs could be
reduced by 9%. Moreover, these advantages could be enhanced using predictive controllers,
such as DRL or hybrid-DRL. The deployment of the agents on unseen DR schedules during
training confirmed the previous considerations on energy costs, highlighting the inability of
the DRL controller to fully adapt to the stochastic behavior of DR. Therefore, the DR income
for the DRL control agent was lower than the ones obtained for RBC-2 and hybrid-DRL
agent since it violated the DR program for 4% of the hours. The hybrid-DRL agent, instead,
mixed the benefits of the two approaches, using the rule-based controller to quickly react
to grid necessities while exploiting the predictive nature to reduce energy costs by 4% with
respect to RBC-2, thus representing a promising solution to further explore with different
configurations of energy systems and size of the cluster of buildings, also considering
practical applications.

Future works will be focused on the following aspects:

• The implementation of a decentralized approach for the DRL controllers, in which
all agents can cooperate. This approach could provide numerous opportunities. In
particular, the reward function can be designed differently for each building to decide
the relative importance among the objectives, such as flattening the load profile or
ensuring compliance with the DR program.

• Introducing dynamic electricity price tariffs and analysing the role of electrical stor-
ages, studying their effects on the buildings-to-grid interaction. These updates could
further increase the benefit resulting from using adaptive controllers.

• The development and implementation of a model-based control strategy, to be com-
pared with the proposed RBCs and DRL-based controllers.
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Abbreviations

Symbols
A Action space
a Action
aRBC-1 Action selected by the RBC-1
aRBC-2 Action selected by the RBC-2
cEl Electricity price
cEl, O f f−peak Off-peak electricity price
cEl, On−peak On-peak electricity price
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cPeak Peak cost per each kW
Ccooling Cooling storage capacity
CDHW DHW storage capacity
CPeak Total peak cost
Cstorage Storage Capacity
D Replay Buffer
DREvent Demand response event in the current time step
DRDuration Duration of demand response event
DRNotice 1 h ahead demand response forecast
DRPen Demand response penalty
DRPrize Demand response prize
ECooling,max Maximum hourly cooling demand
EDHW,max Maximum hourly DHW demand
HPSize Heat pump nominal thermal power
IDR Demand response income
IEnergy Energy-related demand response variable income
IFixed Demand response fixed income
IPower Power-related demand response fixed income
IVariable Demand response variable income
Kp Reward peak weight
P Transition Probabilities
PDistrict Aggregated electrical load
p1 Hybrid DRL reward prize
pP1 Power threshold prize
pP2 Power threshold penalty
PMonthly,Peak Monthly peak load
q Action-value
r Reward
RDR Demand response-related reward term
RP Power-related reward term
RP, o f f−peak Power-related reward term during off-peak hours
RP, on−peak Power-related reward term during on-peak hours
S State space
SP Set Point
s State
T Temperature
th o f f−peak Electric demand threshold during off-peak hours
thon−peak Electric demand threshold during on-peak hours
thPeak Peak load threshold
v State-value
w1 Peak-related hybrid DRL reward weight
wDR Demand response-related reward weight
wP Power-related reward weight
∆t Number of on-peak hours
α Temperature parameter
γ Discount factor
θ Soft-Q network parameters
λ Learning rate
φ Policy network parameters
τ Decay rate
H Shannon Entropy of the policy
π Policy
π* Optimal Policy
Abbreviations
A/S Ancillary Services
BEMS Building Energy Management System
CAP Capacity market Program
CBL Customer Baseload
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CF Capacity Factor
CHP Combined Heat and Power
COP Coefficient of Performance
CPP Critical Peak Pricing
DHW Domestic Hot Water
DLC Direct Load Control
DNN Deep Neural Network
DR Demand Response
DRL Deep Reinforcement Learning
DSF Demand Side Flexibility
DSM Demand Side Management
EV Electric Vehicles
HEV Hybrid Electric Vehicles
HVAC Heating, Ventilation and Air Conditioning
IEQ Indoor Environment Quality
LR Load Reduction
MDP Markov Decision Process
MILP Mixed Integer Linear Programming
MINLP Mixed Integer Non-Linear Programming
MPC Model Predictive Control
PV Photovoltaic
PSO Particle Swarm Optimization
RBC Rule Base Control
RES Renewable Energy Sources
RL Reinforcement Learning
RTP Real Time Pricing
SAC Soft Actor–Critic
SF Safety Factor
SOC State-of-Charge
TES Thermal Energy Storage
TOU Time Of Use

Appendix A

Table A1 lists the SAC hyperparameters used for the DRL and hybrid-DRL controllers.

Table A1. Settings of the DRL controllers hyperparameters.

Variable Value

DNN architecture 2 Layers
Neurons per hidden layer 256

DNN Optimizer Adam
Batch size 512

Learning rate λ 0.001
Discount rate γ 0.99

Decay rate τ 0.005
Learning starts 2208

Target model update 1
Episode Length 2208 Control Steps (92 days)

Training Episodes 40
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