
20 March 2024

POLITECNICO DI TORINO
Repository ISTITUZIONALE

DPI Solutions in Practice: Benchmark and Comparison / Rescio, Tommaso; Favale, Thomas; Soro, Francesca; Mellia,
Marco; Drago, Idilio. - ELETTRONICO. - (2021), pp. 37-42. (Intervento presentato al convegno 6th International
Workshop on Traffic Measurements for Cybersecurity (WTMC 2021)) [10.1109/SPW53761.2021.00014].

Original

DPI Solutions in Practice: Benchmark and Comparison

IEEE postprint/Author's Accepted Manuscript

Publisher:

Published
DOI:10.1109/SPW53761.2021.00014

Terms of use:

Publisher copyright

©2021 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any
current or future media, including reprinting/republishing this material for advertising or promotional purposes, creating
new collecting works, for resale or lists, or reuse of any copyrighted component of this work in other works.

(Article begins on next page)

This article is made available under terms and conditions as specified in the corresponding bibliographic description in
the repository

Availability:
This version is available at: 11583/2914814 since: 2021-07-23T16:15:58Z

IEEE

DPI Solutions in Practice:
Benchmark and Comparison

Tommaso Rescio, Thomas Favale, Francesca Soro, Marco Mellia
Politecnico di Torino, Italy

name.surname@polito.it

Idilio Drago
University of Turin, Italy

idilio.drago@unito.it

Abstract—Having a clear insight on the protocols carrying
traffic is crucial for network applications. Deep Packet Inspection
(DPI) has been a key technique to provide visibility into traffic.
DPI has proven effective in various scenarios, and indeed several
open source DPI solutions are maintained by the community.
Yet, these solutions provide different classifications, and it is
hard to establish a common ground truth. Independent works
approaching the question of the quality of DPI are already aged
and rely on limited datasets. Here, we test if open source DPI
solutions can provide useful information in practical scenarios,
e.g., supporting security applications. We provide an evaluation of
the performance of four open-source DPI solutions, namely nDPI,
Libprotoident, Tstat and Zeek. We use datasets covering various
traffic scenarios, including operational networks, IoT scenarios
and malware. As no ground truth is available, we study the con-
sistency of classification across the solutions, investigating root-
causes of conflicts. Important for on-line security applications, we
check whether DPI solutions provide reliable classification with
a limited number of packets per flow. All in all, we confirm that
DPI solutions still perform satisfactorily for well-known proto-
cols. They however struggle with some P2P traffic and security
scenarios (e.g., with malware traffic). All tested solutions reach
a final classification after observing few packets with payload,
showing adequacy for on-line applications.

Index Terms—DPI, Protocol Recognition, Traffic Analysis

I. INTRODUCTION

The internet is a continuously growing ecosystem com-
posed by diverse protocols and applications. The rise and
spread of smart devices, video-conference platforms as well as
the continuous appearance of sophisticate cyber-attacks keeps
changing the characteristics of traffic observed in the network.
Understanding protocols that are carrying specific flows in the
middle of such a variety of traffic has always been essential
for multiple applications, in particular for those supporting
network security like firewalls and IDS.

Deep Packet Inspection (DPI in short) has been the dom-
inant approach to perform protocol recognition, showing ef-
fectiveness in several traffic monitoring scenarios. DPI parses
traffic payload searching for signatures that characterize the
protocols. Indeed, many DPI solutions do exist and still find
important applications, despite the increasing usage of en-
crypted protocols. DPI is particularly useful in cyber-security
scenarios, such as for intrusion detection systems, firewalls
and other tools supporting security (e.g., flexible honeypots).

The research leading to these results has been funded by the Huawei R&D
Center (France) and the SmartData@PoliTO center for Big Data technologies.

The timely identification of a broad range of protocols re-
mains a key first step in the security use case, calling for
accurate, efficient and up-to-date DPI solutions. Yet, previous
efforts providing an independent evaluation of DPI are already
aged [1] or leverage on restrict traffic traces, which questions
the applicability of such results to practical scenarios.

We revisit the question on the quality of DPI-based proto-
col identification. We select and evaluate four popular, open
source projects implementing DPI, namely nDPI [2], Libpro-
toident [3], Tstat [4] and Zeek [5]. We first study their classi-
fication using passively captured traces, covering a wide range
of scenarios, i.e., traffic produced by IoT devices, collaborative
platforms/video-calls, malware, as well as production internet
traffic. Establishing a ground-truth is challenging when dealing
with such diverse traces composed by dozens of protocols. We
here evaluate the consistency of the classification provided by
the tools, relying on heuristics and domain knowledge to val-
idate the decision of each tool when finding conflicting cases.

After that, we investigate whether the DPI solutions operate
consistently when exposed to a limited number of packets per
flow. Indeed, network applications usually perform protocol
identification on-the-fly using the initial packets of each flow,
in order to take timely decisions. For this, we investigate the
number of packets per flow each solution needs to reach a
decision, as well as the consistency of such decisions as more
traffic is observed.

Our results show that:

• All tested solutions perform well when facing traces with
well-established protocols. This is particularly true for
popular protocols that account for the majority of pro-
duction traffic;

• Some DPI solutions struggle when facing unusual events,
such as massive scans or malware traffic;

• All tested tools reach a final decision already after ob-
serving the first packets with payload in a flow;

• nDPI outputs labels more often than others, and it usually
agrees with the majority when tools diverge about the
protocol of a flow.

To foster further research and contribute to the community,
we share our code and the instructions to build the complete
datasets used in our experiments.1

1https://smartdata.polito.it/dpi-in-practice/

https://smartdata.polito.it/dpi-in-practice/

Next, Sect. II summarizes the related work. Sect. III intro-
duces our datasets and methodology. Sect. IV describes the
results, and finally Sect. V concludes the paper.

II. RELATED WORK

DPI has been applied to protocol identification since the
early 2000s, when the usage of well-known ports for traffic
identification turned out to be unreliable. Multiple approaches
have been proposed. Some works rely on “shallow” packet
inspection [6], i.e., they parse only packet headers in the search
for protocol fingerprints. Such techniques still find practical
applications, as encryption protects protocol payloads. Oth-
ers propose efficient approaches for DPI, e.g., using pattern
matching [7] or finely-tailored DPI algorithms [8]. Finally,
some works rely on stateful information from multiple flows
to label traffic, e.g., leveraging the DNS to obtain the labels
used to classify encrypted traffic [4].

Many DPI tools have been introduced implementing such
techniques. Here we consider four alternatives, which have
been evaluated by original authors in [2], [3], [5], [9]. In
contrast to them, we perform an independent evaluation of the
tools, thus providing also a validation of the authors’ results.

Past works compare DPI solutions. Authors of [10] per-
form an extensive benchmark covering port-based classifica-
tion, packet signature algorithms etc. In [11], authors survey
approaches to overcome the lack of ground truth in such
studies. In some cases manual labelling of packet captures
is used for DPI comparisons [12], while other works rely on
active measurements to enrich captures with information about
underneath applications [13]–[15].

Closer to our analysis is the work presented in [1], where
authors also provide an independent comparison of DPI so-
lutions. In contrast to [1], we leave out of our evaluation
proprietary tools and libraries, since the lack of source code
makes it hard to explore and explain discrepant results. We
also refrain from evaluating tools no longer maintained. More
important, we provide an updated comparison of DPI tools
considering recent and real traces, thus covering scenarios not
evaluated in the previous work, with a particular focus on
modern security applications.

III. DATASETS AND METHODOLOGY

Fig. 1 summarizes our methodology. We describe the DPI
tools selected for testing (Sect. III-A). Then, we build up a
set of traces covering different traffic scenarios (Sect. III-B).
Next we process the traces with the DPI tools. As matching
the obtained labels requires ingenuity, we perform several
steps and build up heuristics to find discrepancies on the final
classifications (Sect. III-C).

A. Selection of DPI Tools

We restrict our analysis to DPI tools that perform protocol
identification (e.g., HTTP, TLS, SSH etc.), ignoring those
aiming at the identification of the services generating traffic
(e.g., Google, Facebook etc.) [16], [17]. Namely, we focus on
the following four alternatives:

Fig. 1. Testing methodology.

• nDPI [2] is an open-source DPI library written in C and
based on dissectors, i.e., functions that detect the given
protocols. It is an OpenDPI [18] fork optimized for per-
formance and supports more than 100 protocols.

• Libprotoident [3] is a C++ library that focuses on L7
protocols. It applies a lightweight approach that uses just
the first 4 bytes of payload. The idea is to overcome
drawbacks of DPI, i.e., computational complexity and
privacy risks. The library combines pattern matching with
algorithms based on payload sizes, port numbers and IP
matching. It supports over 200 protocols.

• Zeek2 – formerly Bro [5] – is a complete framework for
traffic analysis that also allows L7 protocol recognition.
It exploits a combination of protocol fingerprint matching
and protocol analyzers. It currently supports more than
70 protocols.

• Tstat [4] is a passive traffic monitoring tool that classifies
traffic flows. It identifies a set of L7 protocols using pay-
load fingerprint matching. It supports over 40 protocols.

Recall that we ignore projects no longer active. In particular,
we leave L7-filter out since it has been shown to produce
unreliable results in more recent scenarios [12]. Equally, we
ignore proprietary alternatives, given the intrinsic difficulty to
evaluate the root-causes of conflicting results without access
to source codes [2]. Finally, we do not evaluate tshark3 as it
has proved much slower than the alternatives.

B. Selection and pre-processing of traces

We consider four scenarios to compare the DPI alternatives,
including not only common internet protocols, but also proto-
cols encountered by security applications.

We select 421 different PCAP traces that are aggregated
in four macro-categories: (i) User, which includes ordinary
browsing activity of ISP users while at home; (ii) Media &
Games [19]–[21] that includes conference-calls, RTC appli-
cations, multimedia and gaming traffic; (iii) Malware [22],
which aggregates several samples of malware4 and security
experiments;5 and IoT [23], [24], captured in different labs
hosting a variety of IoT devices. We include both traces cap-
tured in our premises and third-party traces available on public
repositories. Traces cover multiple years, and total more than

2https://zeek.org
3https://www.wireshark.org/docs/man-pages/tshark.html
4https://www.malware-traffic-analysis.net
5https://www.netresec.com/?page=PcapFiles

https://zeek.org
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.malware-traffic-analysis.net
https://www.netresec.com/?page=PcapFiles

TABLE I
FLOWS EXPORTED BY THE DIFFERENT TOOLS BEFORE THE

PRE-PROCESSING.

Macrotrace Tool Flows
TCP UDP

User Traffic

Tstat 681 k 1.1 M
Libprotoident 678 k 1.1 M
nDPI 543 k 1.1 M
Zeek 804 k 1.2 M

Media & Games

Tstat 15 k 16 k
Libprotoident 15 k 14 k
nDPI 10 k 21 k
Zeek 17 k 16 k

Malware

Tstat 858 k 979 k
Libprotoident 858 k 993 k
nDPI 891 k 1 M
Zeek 1242 k 971 k

IoT

Tstat 118 k 50 k
Libprotoident 118 k 51 k
nDPI 120 k 62 k
Zeek 119 k 52 k

TABLE II
MACROTRACES CHARACTERISTICS WITH PRE-PROCESSING RESULTS.

Macrotrace
Flows PacketsTCP UDPComplete Ignored Original Filtered

User 440 k 241 k 1.1 M 118 M 10.1 M
Media&Games 11 k 4 k 16 k 81 M 2 M

Malware 392 k 466 k 979 k 33 M 26 M
IoT 39 k 79 k 50 k 5 M 2 M

143 GB of PCAP files. For brevity, we do not provide details
of each PCAP file here, instead describing only the aggregated
macrotraces. To allow others reproduce our results, we link
the public PCAP files in our website.6

We need to match flows as defined by each DPI tool for
comparing their performance.7 However, tools employ differ-
ent rules for defining and exporting flow records. For exam-
ple, each tool uses various timeouts to terminate flows that
become inactive. Equally, traffic flags (e.g., TCP FIN and
RST flags) are possibly used to identify the end of flows,
releasing memory in the traffic monitor. The way such rules
are implemented differs and, as a consequence, tools identify
and report different numbers of flows. Thus, we need ingenuity
to compare results.

Table I summarizes the number of flows reported by each
tool. We see major differences, e.g., Zeek usually identifies
more flows than Tstat, even when configured with similar
timeouts. This happens because of the way midstream traffic
and incomplete flows are processed by the tools.

Most of the cases creating discrepancies are however not
interesting for our analysis, since they usually refer to flows
that carry no payload. Indeed, a lot of flows without payload
is present in particular for the Malware traces due to internet
scanning traffic. These flows cannot be evaluated with DPI. As
such, we perform a pre-processing step using Tstat as refer-

6https://smartdata.polito.it/dpi-in-practice/
7We use the classic 5-tuple definition for a flow: Source IP address, desti-

nation IP address, source port, destination port and transport protocol.

TABLE III
LABEL STANDARDIZATION

Standardized
Label

Original
Label

p2p p2p, edonkey, emule, ed2k, cacaoweb,
kademlia, bittorrent, torrent

netbiosSmb netbios, smb, smb2, nbns
krb krb, kerberos, spnego-krb5spnego
dns dns, llmnr, mdns
sslTls ssl, tls
skype skype, skypetcp
ldap ldap, cldap
quic quic, gquic

TABLE IV
EXAMPLE OF FLOW LABEL CONSTISTENCY AND SCORE.

Flow ID Tool Reference
Label ScoreTstat Libprotoident nDPI Zeek

1 krb krb krb krb krb 1
2 unk unk unk unk unk 1
3 krb unk krb krb krb 0.75
4 unk unk krb krb krb 0.5
5 unk unk unk krb krb 0.25
6 unk sip unk p2p conflict 0
7 krb krb p2p p2p conflict 0

ence to keep in the final macrotraces only complete flows, i.e.,
UDP flows with payload and TCP flows with complete three-
way handshake. All remaining flows are discarded. Whenever
possible, we set the tools with similar timeout parameters for
the experiments that will follow. We next normalize results
ignoring the small percentage of flows that are not revealed
by tools other than Tstat to avoid artifacts related to the way
flow are expired or terminated. At last, we keep only the first
20 packets per flow in the final macrotraces to speed-up the
analysis (see column “Filtered”). We will show later that all
tested tools achieve a final protocol classification using a small
number of packets per flow. As such, this pre-processing step
does not impact results.

We report a summary of the final macrotraces in Table II.
We show the number of packets and flows reported by Tstat,
with the latter split as TCP and UDP. For TCP flows, we detail
the number of complete and ignored flows.

In total, our final macrotraces include more than 3 M flows,
and 40 M packets after all pre-processing steps are applied.

C. Matching flow labels

We need some ingenuity to normalize the output of the
tools and compare their classifications. First, we normalize
all labels, e.g., using always lower case and removing special
characters. Then, we manually verify the output strings to
identify possible synonyms used across tools. Table III reports
a subset of labels that require manual standardization. In total
we manually evaluated 225 labels, replacing cases such as
those in the right column of Table III by a single common
label (left column).

Next, we face the question on how to determine the label
for each flow in absence of ground truth. Indeed, the lack of
ground truth has pushed most of previous works to resort to

https://smartdata.polito.it/dpi-in-practice/

nDPI Libprotoident Zeek Tstat Reference Label0

20

40

60

80

100
P

er
ce

nt
ag

e

p2p

dns

http

sslTls

others

skype

unknown

(a) User Traffic Macrotrace

nDPI Libprotoident Zeek Tstat Reference Label0

20

40

60

80

100

P
er

ce
nt

ag
e

sslTls

dns

http

teredo

stun

others

quic

netbiosSmb

unknown

(b) Media & Games Macrotrace

nDPI Libprotoident Zeek Tstat Reference Label0

20

40

60

80

100

P
er

ce
nt

ag
e

dns

sslTls

http

others

unknown

(c) Malware Macrotrace

nDPI Libprotoident Zeek Tstat Reference Label0

20

40

60

80

100

P
er

ce
nt

ag
e

http

dns

ntp

sslTls

others

dhcp

stun

netbiosSmb

ssdp

unknown

(d) IoT Macrotrace

Fig. 2. Percentage of labelled flows for each tool. The last bar in the plots reports percentages for our reference label.

testbeds or emulated traffic that we want to avoid [11]. We
thus decide to focus on the consistency of different tools, i.e.,
we assume that the most common normalized label assigned
to a flow is the reference label for such flow, and calculate
a confidence score for each decision. In case of conflicts, we
manually verify each case.

Table IV reports examples of classification, along with the
per-flow confidence score. The easiest cases happen when
there is an unanimous decision towards the same protocol
(e.g., Flow 1) or towards the unknown label (e.g., Flow 2).
Both decisions result in a score equals to 1. When at least one
tool is able to recognize the protocol, we ignore the unknown
labels and pick the recognized label as reference label. Yet,
our confidence score is lower in this case, e.g., see Flow 5. It
rarely happens (e.g., Flow 6) that all tools recognize a different
protocol, or there is a draw (e.g., Flow 7). Some of these
cases have been solved by inspecting the source code of the
DPI tools, e.g., giving preference to labels found by pattern
matching over those guessed based on port numbers or other
heuristics. The few cases we could not resolve are ignored,
with confidence score equals to zero.

Finally, once the reference labels are defined, we calculate
performance metrics for each tool. We consider the following
metrics: (i) accuracy, the percentage of flows with label match-
ing the reference; (ii) precision (per protocol), the percentage
of such flows that match with the reference; and (iii) recall (per

protocol), the percentage of such flows the tool has classified
as the given protocol.

IV. RESULTS

We show a summary of the identified flows per tool and
we summarize the classification performance in the several
scenarios. Next, we discuss the performance in terms of the
number of packets required to reach a steady classification,
and briefly discuss computational performance of tools.

A. Labelled flows per protocol

Fig. 2 shows a break-down of the number of labelled flows
reported by each tool. Four plots depict results for the different
macrotraces. The last bar on each plot reports the percentage
of flows given by our reference label, i.e., the label selected
by the majority of tools. Each figure reports the most common
lables in order of popularity.

In the User Traffic case (top-left plot), Tstat shows the best
performance, reporting labels for around 85% of the flows.
All the libraries recognize popular protocols (e.g., HTTP, DNS
and TLS), but Libprotoident, nDPI and Zeek fail to recognize
some P2P traffic, thus leaving a larger number of flows marked
as unknown. Yet, notice how the number of unknown flows is
small for the reference label – i.e., flows marked as unknown
by Tstat are recognized by others.

ss
lT

ls
ht

tp nt
p

dh
cp

te
re

do p2
p

st
un

sk
yp

e

ne
tb

io
sS

m
b

qu
ic

ss
dp

ot
he

rs

Protocol

25

50

75

100
S

co
re

(%
)

Fig. 3. Average per flow confidence score for the top reference labels.

In the Media & Games case – Fig. 2(b) – all tools recognize
close to 80% of the flows. This trace is mostly composed by
HTTP, DNS and TLS traffic, which are well recognized by all
tools. The reference label reports again a lower percentage of
unknown than each single tool, showing potential for achieving
higher classifications by merging the output of different tools.

The analysis of the Malware macrotrace – Fig. 2(c) – leads
to worse numbers for all cases. The percentage of labelled
flows ranges from 66% to 70%. Here the presence of UDP
scans towards multiple ports impact results. Manual inspection
shows the presence of payload that matches the fingerprints
of scan UDP attacks against certain IoT devices. None of the
tools is able to identify the protocol of this malicious traffic,
calling for specialized DPI approach in security use cases.

In the IoT case – Fig. 2(d) – nDPI is the best performing,
labelling almost all flows. Tstat is penalized by the lack of
fingerprints for NTP, STUN and SSDP. All in all, most flows
in this trace are labelled by at least one tool (see the reference
label bar).

Finally, we evaluate the average confidence scores for dif-
ferent protocols. With this analysis, we aim at identifying pro-
tocols for which the tools demonstrate high consistency. Fig. 3
shows the average scores for flows labeled with one of the
top-20 protocols considering all four macrotraces. Common
protocols such as TLS, HTTP and NTP are recognized with an
average score higher or equal to 75% (left side of the figure).
That is, such protocols are consistently identified by at least
three tools on average. As we move to less popular labels,
the confidence scores reduce significantly. Indeed, the score is
reduced to around 25% for Netbios, QUIC and SSDP (right
side of the figure). In other words, only one tool outputs a
label for flows carrying these protocols, with others marking
flows as unknown.

B. Classification performance

We next quantify the percentage of flows classified by each
tool as well as their classification performance in respect to the
reference labels. Results are presented in Tab. V. We highlight
in bold the best performing tool per trace and metric.

Consider the first row group in the table. It reports the per-
centage of labelled flows, summarizing the results presented
in the previous section. As said, Tstat reports more labels for

TABLE V
SUMMARY OF CLASSIFICATION RESULTS.

Metric Library Macrotrace

User
Traffic

Games
&

Media
Malware IoT

Labelled
Flows

Tstat 0.85 0.77 0.67 0.73
Libprotoident 0.69 0.86 0.66 0.89
nDPI 0.63 0.86 0.70 0.98
Zeek 0.40 0.78 0.66 0.89

Accuracy

Tstat 0.85 0.77 0.67 0.73
Libprotoident 0.69 0.82 0.66 0.85
nDPI 0.62 0.79 0.70 0.98
Zeek 0.40 0.78 0.66 0.89

Average
Precision

Tstat 0.99 0.87 0.98 1
Libprotoident 0.96 0.91 0.99 0.80
nDPI 0.93 0.89 1 0.99
Zeek 1 0.97 1 1

Average
Recall

Tstat 0.71 0.62 1 1
Libprotoident 1 0.89 1 0.94
nDPI 0.82 0.78 1 1
Zeek 0.66 0.62 0.97 0.79

the User Traffic scenario, thanks to its abilities to spot P2P
flows. nDPI instead reaches the largest percentages in the other
scenarios, thanks to its capabilities to guess labels based on
multiple heuristics.

Considering accuracy (second row group), we see numbers
similar to those for labelled flows across all scenarios. That is,
the overall accuracy (with regards to the reference labels) is
driven by the percentage of unknown flows reported by each
tool. Yet, some particular cases can be noticed, such as minor
differences between nDPI and Libprotoident in the Media &
Games Macrotrace. These minor mismatches arise from cases
in which one of the tools, although capable to label the given
flow, disagree with the label given by the majority. As we see
in the table, these cases are rare and indeed confirm that once
tools labels a flow, the provided label is usually reliable.

Zeek wins when it comes to the average precision per pro-
tocol (third row group), almost always reaching 100%. That
is, when Zeek recognizes a protocol, its label matches the
reference. Yet, Zeek suffers in terms of average recall (fourth
row group), due to its limited set of labels. Libprotoident, on
the other hand, reaches the highest average recall per protocol
in most scenarios, which can be explained by its large set of
labels, with over 200 protocols. nDPI shows balanced numbers
for both precision and recall per protocol. nDPI find a good
number of labels (high recall) that usually match with the
reference (high precision).

C. How many packets are needed for DPI?

We analyze the performance of tools while limiting the
number of packets per flow. This test has been performed by
cutting off each flow after observing its n first packets with
payload, i.e., ignoring initial TCP handshake packets. Flows
composed by n or less packets with payload are kept un-
touched. The goal is to evaluate the number of packets needed
to reach a final classification, and whether labels change as
more packets are observed.

1 2 3 4 5 6 7 8 9 10
Packets per flow

0.6

0.8

1.0
A

ve
ra

ge
A

cc
u

ra
cy

nDpi

Libprotoident

Zeek

Tstat

Fig. 4. Average accuracy when increasing the number of packets per flow.
Tools reach a final classification already in the first packet with payload.

Fig. 4 shows the resulting average accuracy among all
macrotraces. Clearly results do not change when increasing
the number of packets, and all tools reach an almost steady
classification after just one packet. Some tools (e.g., nDPI)
increase accuracy further after observing the second packet
with payload, but gains are marginal. This result is particularly
relevant, as DPI tools are often used for real-time identification
of protocols on security applications. Note that nDPI has aver-
age accuracy slightly superior than others, with Libprotoident
and Tstat coming next.

Finally, we also controlled the performance of the tools
in terms of memory fingerprint and processing time. Here a
general conclusion is hard to be reached, since the tools are
delivered for different target scenarios. For example, the basic
installation of Zeek runs as multiple processes, prepared to
handle several Gbps. Libprotoident and nDPI are libraries that
can also be integrated in simple demonstration programs. In
our tests, all tool, but Zeek, present similar performance figures
when processing a single PCAP at a time.

V. CONCLUSIONS

We presented an evaluation of DPI solutions in several
traffic scenarios, comparing the consistency of their classifi-
cations. The tools are practically equivalent when the input
traffic is composed by popular and well-known protocols (e.g.,
HTTP, DNS and TLS). When applied to complex scenarios,
such as to traffic generated by Malware scans, DPI tools
struggle. We also observed discrepancies on the classification
of less popular protocols, with some protocols being supported
by only one of the tools. In sum, there is space for improving
these DPI tools by extending their label sets. Interestingly,
tools reach steady-state classification after one packet, sug-
gesting they can be exploited in online scenarios.

REFERENCES

[1] T. Bujlow, V. Carela-Español, and P. Barlet-Ros, “Independent compar-
ison of popular dpi tools for traffic classification,” Computer Networks,
vol. 76, pp. 75–89, 2015.

[2] L. Deri, M. Martinelli, T. Bujlow, and A. Cardigliano, “ndpi: Open-
source high-speed deep packet inspection,” in 2014 International Wire-
less Communications and Mobile Computing Conference (IWCMC).
IEEE, 2014, pp. 617–622.

[3] S. Alcock and R. Nelson, “Libprotoident: Traffic classification using
lightweight packet inspection.”

[4] M. Trevisan, A. Finamore, M. Mellia, M. Munafo, and D. Rossi,
“Traffic Analysis with Off-the-Shelf Hardware: Challenges and Lessons
Learned,” IEEE Commun. Mag., vol. 55, no. 3, pp. 163–169, 2017.

[5] V. Paxson, “Bro: a system for detecting network intruders in real-time,”
Computer networks, vol. 31, no. 23-24, pp. 2435–2463, 1999.

[6] A. Chaudhary and A. Sardana, “Software based implementation method-
ologies for deep packet inspection,” in 2011 international conference on
information science and applications. IEEE, 2011, pp. 1–10.

[7] M. Becchi, M. Franklin, and P. Crowley, “A workload for evaluating
deep packet inspection architectures,” in 2008 IEEE International Sym-
posium on Workload Characterization. IEEE, 2008, pp. 79–89.

[8] S. Kumar, J. Turner, and J. Williams, “Advanced algorithms for fast and
scalable deep packet inspection,” in 2006 Symposium on Architecture
For Networking And Communications Systems. IEEE, 2006, pp. 81–92.

[9] M. Mellia, R. L. Cigno, and F. Neri, “Measuring ip and tcp behavior
on edge nodes with tstat,” Computer Networks, vol. 47, no. 1, pp. 1–21,
2005.

[10] A. W. Moore and K. Papagiannaki, “Toward the accurate identification of
network applications,” in International Workshop on Passive and Active
Network Measurement. Springer, 2005, pp. 41–54.

[11] J. Yan, “A survey of traffic classification validation and ground truth
collection,” in 2018 8th International Conference on Electronics Infor-
mation and Emergency Communication (ICEIEC). IEEE, 2018, pp.
255–259.

[12] S. Alcock and R. Nelson, “Measuring the accuracy of open-source
payload-based traffic classifiers using popular internet applications,” in
38th Annual IEEE Conference on Local Computer Networks - Work-
shops, 2013, pp. 956–963.

[13] G. Szabó, D. Orincsay, S. Malomsoky, and I. Szabó, “On the validation
of traffic classification algorithms,” in International Conference on Pas-
sive and Active Network Measurement. Springer, 2008, pp. 72–81.

[14] F. Gringoli, L. Salgarelli, M. Dusi, N. Cascarano, F. Risso, and K. Claffy,
“Gt: picking up the truth from the ground for internet traffic,” ACM
SIGCOMM Computer Communication Review, vol. 39, no. 5, pp. 12–
18, 2009.

[15] P. Lizhi, Z. Hongli, Y. Bo, C. Yuehui, and W. Tong, “Traffic labeller:
collecting internet traffic samples with accurate application information,”
China Communications, vol. 11, no. 1, pp. 69–78, 2014.

[16] H. Kim, K. Claffy, M. Fomenkov, D. Barman, M. Faloutsos,
and K. Lee, “Internet traffic classification demystified: Myths,
caveats, and the best practices,” in Proceedings of the 2008 ACM
CoNEXT Conference, ser. CoNEXT ’08. New York, NY, USA:
Association for Computing Machinery, 2008. [Online]. Available:
https://doi.org/10.1145/1544012.1544023

[17] G. Aceto, A. Dainotti, W. de Donato, and A. Pescape, “Portload: Taking
the best of two worlds in traffic classification,” in 2010 INFOCOM IEEE
Conference on Computer Communications Workshops, 2010, pp. 1–5.

[18] J. Khalife, A. Hajjar, and J. Dı́az-Verdejo, “Performance of opendpi in
identifying sampled network traffic,” Journal of Networks, vol. 8, no. 1,
p. 71, 2013.

[19] A. Nisticò, D. Markudova, M. Trevisan, M. Meo, and G. Carofiglio, “A
comparative study of rtc applications,” To appear in the Proceedings of
the 22nd IEEE International Symposium on Multimedia, 2020.

[20] A. Dainotti, A. Pescapé, and G. Ventre, “A packet-level characterization
of network traffic,” in 2006 11th International Workshop on Computer-
Aided Modeling, Analysis and Design of Communication Links and
Networks. IEEE, 2006, pp. 38–45.

[21] A. Di Domenico, G. Perna, M. Trevisan, L. Vassio, and D. Giordano,
“A network analysis on cloud gaming: Stadia, geforce now and psnow,”
arXiv preprint arXiv:2012.06774, 2020.

[22] I. Sharafaldin, A. H. Lashkari, and A. A. Ghorbani, “Toward generating
a new intrusion detection dataset and intrusion traffic characterization.”
in ICISSP, 2018, pp. 108–116.

[23] A. Sivanathan, H. H. Gharakheili, F. Loi, A. Radford, C. Wijenayake,
A. Vishwanath, and V. Sivaraman, “Classifying iot devices in smart
environments using network traffic characteristics,” IEEE Transactions
on Mobile Computing, vol. 18, no. 8, pp. 1745–1759, 2018.

[24] A. Parmisano, S. Garcia, and M. Erquiaga, “A labeled dataset with ma-
licious and benign iot network traffic,” Stratosphere Laboratory: Praha,
Czech Republic, 2020.

https://doi.org/10.1145/1544012.1544023

	Introduction
	Related Work
	Datasets and Methodology
	Selection of DPI Tools
	Selection and pre-processing of traces
	Matching flow labels

	Results
	Labelled flows per protocol
	Classification performance
	How many packets are needed for DPI?

	Conclusions
	References

