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Fast and Accurate Estimation of Fuel-Optimal

Trajectories to Near-Earth Asteroids

Luigi Mascoloa, Alessia De Iuliisa, Lorenzo Casalinoa,∗

aPolitecnico di Torino, Department of Mechanical and Aerospace Engineering, Corso Duca

degli Abruzzi, 24, Torino, 10129, Italy

Abstract

This paper proposes an improved method for the preliminary evaluation of
minimum-propellant trajectories to Near-Earth Asteroids (NEAs). The method
applies to missions from Earth to asteroids with small eccentricity and inclina-
tion. A planar and a plane-change problem can be distinguished. In the planar
problem, the solution assumes that multiple burn arcs are performed in corre-
spondence of the apsides of the target asteroid in order to change the initial
spacecraft orbit (i.e., Earth’s orbit) into the target one. The number of arcs is
established once the time of flight is given (1 burn at each apsis per revolution,
1 revolution per year can be assumed). The length and propellant consumption
of each arc to attain the required changes of semi-major axis and eccentric-
ity are computed by a procedure based on Edelbaum’s approximation, which
is well-suited to the problem at hand, as eccentricity changes are expected to
be small for feasible missions. No numerical integration is required, but only
the numerical solution of a three-unknown algebraic system is needed, making
the procedure extremely fast. Plane change is taken into account assuming a
constant out-of-plane thrust angle during each burn. A previous simple formu-
lation used an averaged thrust effect over one revolution and neglected the fact
that plane changes are more effective at the nodes. Several improvements are
here introduced, which greatly increase the method accuracy. The influences of
the eccentricity change, the angle between the asteroid line of nodes and line
of apsides, and the expected length of the arc are considered: In fact, when
the eccentricity is small, the thrust arc can be performed at the nodes where
the inclination is efficiently changed, with little penalty in the planar maneu-
ver. An efficient plane change is also performed when the angle between the
asteroid line of nodes and line of apsides is small and/or the length of the arc is
large, because, in this case, the node is comprised in the apsidal burn. A simple
corrective formula accounts for this effect. The new method shows remarkable
accuracy. The results comparison with solutions obtained with an indirect op-
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timization method for a set of more than 60 NEAs shows a 0.95 correlation
coefficient in the propellant masses. The estimation error is below 10% for 75%
of the targets, below 15% for 95% of the targets, and always below 20%.

Keywords: Near-Earth Asteroids - Trajectory Optimization - Edelbaum
Approximation - Electric Propulsion

Nomenclature

a = semi-major axis, AU
c = effective exhaust velocity, m/s
e = eccentricity
ex, ey = eccentricity vector components
i = inclination, deg
K = correction factor
k0, k1, k2, k3 = correction parameters
m = mass, kg
mp = propellant mass, kg
n = number of revolutions
r = radius, AU
ra = aphelion radius, AU
rp = perihelion radius, AU
Ω = right ascension of the asc. node, deg
T = thrust, N
α = in-plane thrust angle, deg
β = out-of-plane thrust angle, deg
∆i2π = 1-rev. inclination change, deg
∆m = propellant consumption error, kg
∆PA = total propulsive effort at perihelion
∆AP = total propulsive effort at aphelion
∆t = burn arc time length, s
∆V = velocity increment, m/s
∆ϑ = burn arc angular length, deg
Λ = control law coefficient
ϑ = right ascension, deg
ϑe = reference right ascension, deg
Ω = argument of periapsis, deg
Subscripts
0 = initial
AP = aphelion maneuver
avg = average
E = Earth
PA = perihelion maneuver
R.23 = results of Ref. 23
ref = reference value
T = target
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1. Introduction

Electric Propulsion (EP) is a realistic and serious alternative to chemical
propulsion. The large specific impulse of EP enables missions that would require
prohibitive amounts of propellant with chemical propulsion. EP is limited by
the available electric power onboard the spacecraft; hence it is suitable for low-
thrust long-duration missions. For these reasons, the use of EP, in particular
ion propulsion, has already been adopted for different missions aimed at Near-
Earth asteroids (NEAs), such as Hayabusa to (25143) Itokawa [1] and Hayabusa
2 to (162173) Ryugu [2], and at main-belt asteroids, such as DAWN [3], which
reached (4) Vesta and (1) Ceres. The use of ion propulsion for NEAs exploration
is the object of this paper.

NEAs are asteroids with a perihelion distance of less than 1.3 AU. Their
scientific interest lies in their status as unchanged remnant debris from the solar
system formation process. Furthermore, they give the possibility to observe
specific features not accessible in planets and, in the future, they could also be
exploited for their raw materials [4, 5]. Given their proximity with the Earth,
missions to many NEAs require low ∆V and propellant consumption. Up to
date, a large number of NEAs are already known, and this set is constantly
growing as a result of new objects’ discoveries. Such a broad set of targets
provides opportunities for different scientific missions to new objects.

Usually, direct and indirect methods are employed for the optimization of
low-thrust space trajectories [6], whereas evolutionary algorithms are less used
and less viable methods for these problems. The main issue, when a large set of
targets is considered, is that the trajectory optimization for the entire set could
be extremely demanding and time-consuming. Preliminary estimation methods
can be employed for an initial selection of the most promising targets and reduce
the computational burden related to the optimization process. The availability
of an accurate estimation of the transfer cost enables the identification of the
most attractive targets (in terms of dynamics), and an exact optimization can
be performed only for the most promising ones.

In a recent paper Mereta and Izzo [7] compared the accuracy of several es-
timation techniques. The authors used the European Space Agency mission
M-ARGO, aimed at rendezvous with a NEA with the use of EP, as a case study
for these comparisons. In particular, they considered exact solutions obtained
with a direct optimization method based on a nonlinear programming approach
as a benchmark. Two different propulsion systems (i.e., nuclear and solar EP)
were considered. These nominally exact results were compared to solutions
obtained considering a two-impulse transfer (Lambert’s problem solution) and
three-impulse trajectories. Results show a good general accuracy of the dif-
ferent approximations, but also a certain degree of unpredictability, with some
estimation errors up to 30%.

Several preliminary estimation methods have been presented in the litera-
ture, using different approximation levels that affect the accuracy of the results.
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Two-impulse multiple-resolution and three-impulse transfers, using Lambert’s
problem solution, can be considered the fastest and easiest method to approx-
imate the cost of a transfer. Low-fidelity models, used to allow for closed-form
integration with a state variables representation using Chebychev polynomials
[8] and shape-based methods [9, 10] are characterized by increased complexity
and consequent improved estimation capabilities. Shape-based methods have
thoroughly been used [11, 12, 13, 14, 15] to preliminary design missions to
NEAs (among other targets, such as comets and planets), usually in conjunc-
tion with more sophisticated refinement methods (e.g., analytic expansion and
nonlinear programming solvers). They showed great versatility, as they can be
applied to different problems and asteroid classes, and good accuracy: average
errors slightly above 10% were, for instance found in Ref. [14] for rendezvous
missions to NEAs in comparison to exact solutions. Perturbation theory was
used in Refs. [16, 17] to approximate low-thrust transfers and estimate both
transfer cost and control laws; they usually require discretization of the tra-
jectory and relatively large sets of unknowns (several tens) resulting in very
high accuracy but relatively large computational times (from several seconds to
minutes per trajectory). As an alternative, semi-analytical methods based on
large databases of pre-computed trajectories to several targets have also been
employed [18, 19]. However, these methods are not specifically developed for
NEAs. More recently, artificial neural networks and machine learning [20, 21]
have also been proposed for the estimation of transfers to NEAs, and showed
very encouraging results.

This Article presents an alternative to these approaches. The method is
suited for the analysis of low-thrust, multiple-revolution, minimum-fuel transfers
between orbits, which, as in Edelbaum’s approximation [22], have small changes
of semi-major axis, eccentricity, and inclination. It was specifically developed
to deal with rendezvous transfers from Earth to the most accessible NEAs, but
can be employed also for transfers between asteroids when the above-mentioned
three orbital elements are similar, either NEAs or in the Main Belt.

This method applies to small eccentricity and inclination changes with the
use of low thrust, as in Edelbaum’s approximation [22]. No integration of the
equations of motion is required since the approach produces a set of algebraic
equations, which is numerically solved to determine the mission cost. The low
computational complexity (two simple three-variable algebraic systems must be
solved to define a transfer) is combined with higher accuracy compared to meth-
ods with similar complexity, such as, multiple-revolution Lambert’s problem or
three impulse transfers. The computational time is drastically reduced and the
preliminary evaluation of large sets of possible targets is quick and accurate.
The proposed approach is based on Edelbaum solution for continuous thrust-
ing, and it is adapted to the analysis of NEAs minimum-fuel trajectories with
EP (with coast arcs). An initial version of the method was recently presented
in Ref. [23], where the solution accuracy was similar to the other simple ap-
proximate methods treated in [7]. In the present Article, the method is revised
with the introduction of correction factors that take the geometry of the transfer
problem into account. The estimation accuracy is greatly improved compared
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to the previous work [23] and the existing algebraic methods commonly used in
transfer estimation [7], while the computational cost, even though machine and
implementation dependent, is similar.

The estimation accuracy is greatly improved compared to the previous work
and the other existing methods with comparable computational cost. Section 2
presents the basic guidelines to define the sequence of burns. Section 3 presents
the solution of the planar problem, and Section 4 integrates the out-of-plane
problem into the planar solution. Section 5 presents and discusses the results.

2. Trajectories to NEAs

Both the ∆V and propellant cost of a mission to reach a NEA are strongly
related to the required changes in the orbital parameters from the starting orbit
to the target one. Asteroids that require significant changes of eccentricity and
inclination with respect to the departure orbit, e.g., Earth’s one, are selected as
mission objectives only when they present unique characteristics to justify the
significant cost, such as (433) Eros reached by the NEAR spacecraft [24]. With
few exceptions, the vast majority of asteroids considered for science missions
are those characterized by small changes of eccentricity and inclination with
respect to Earth’s reference orbit. Indeed, favorable targets have semi-major
axes close to 1 AU, and small to null eccentricities and inclinations. Therefore,
the present research develops a method to approximate the cost of transfers to
the most easily reachable NEAs, namely those characterized by almost circular
orbits with little inclination.

A preliminary analysis is carried out to define which kind of orbit mod-
ifications are required and, consequently, a suitable sequence of burns. The
planar problem is considered in this phase, whereas inclination changes will be
addressed in Section 4. Earth is the departure planet and a circular orbit with 1-
AU radius is initially assumed (aE = 1 and eE = 0). The most straightforward
transfer is accomplished with two in-plane impulsive maneuvers that modify
perihelion and aphelion to attain the target values. A perihelion impulse pro-
vides ra = aT (1 + eT ), whereas an aphelion impulse produces rp = aT (1− eT ).
These two impulses, in opposition to one another and aligned with the line of
apsides of the target, accomplish the required orbit changes by causing specific
semi-major axis and eccentricity variations, ∆a and ∆e. One can easily obtain
the required orbital elements change at the perihelion to modify the aphelion
radius (PA) and at the aphelion to modify the perihelion radius (AP), which
are

∆aPA = ∆ePA = [(aT − 1) + eT ]/2 (1)

∆aAP = −∆eAP = [(aT − 1)− eT ]/2 (2)

It is worth noting that Eqs. (1) and (2) assume that the impulses are both
applied at 1 AU from the Sun. In the real case, the second impulse is applied
at a different radius, as the first one has modified the apsidal distance. These
effects are neglected here for the sake of simplicity, as the expected accuracy
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improvements are deemed too small to justify the additional complexity. The
cost of each maneuver is therefore not influenced by the previous ones: a single
evaluation of the burn effect can be used for all the maneuvers performed at one
apsis, instead of performing separate evaluations.

A chemical propulsion system can perform the impulses required to achieve
the target orbit. Given that EP is used here, the low thrust provided by the
propulsion system could achieve the required orbital changes only with long
thrusting arcs. In this case, however, the thrust effect is spread among differ-
ent orbital positions and becomes less effective than the impulse placed at the
most favorable one (i.e., the apsis). A single burn may not even be capable
of providing the required changes. This problem is solved if sufficient time is
available and more revolutions are performed: Each maneuver is equally split
into smaller burns with a shorter duration, conveniently placed close to the line
of apsides.

The targets considered in this paper have revolution periods of about 1 year.
In this case, a mission with a trip time close to n years usually has n passages
through the apsides, allowing for n equal perihelion burns and n equal aphelion
burns. Each burn must therefore provide a fraction 1/n of the total semi-major
axis and eccentricity change. Again, the effect of previous burns on the following
ones is neglected.

The eccentricity vector, with ex and ey components on the ecliptic plane, is
introduced to assure the proper alignment of the line of apsides. In particular,
by projecting along reference directions x and y the eccentricity vectors of Earth
and target, one has

∆ex = eT cos(ΩT + ωT )− eE cos(ΩE + ωE) (3)

∆ey = eT sin(ΩT + ωT )− eE sin(ΩE + ωE) (4)

The values ∆a and ∆e are introduced taking the Earth’s actual orbit into
account

∆a = aT − aE (5)

∆e =
√

∆e2x +∆e2y (6)

In the n burns scenario, the following changes of orbital elements must be at-
tained: For each perihelion maneuver, one has

∆aPA = (∆a+∆e)/(2n) (7)

∆ePAx = ∆aPA(∆ex/∆e) (8)

∆ePAy = ∆aPA(∆ey/∆e) (9)

and, for aphelion maneuvers,

∆aAP = (∆a−∆e)/(2n) (10)

∆eAPx = −∆aAP (∆ex/∆e) (11)

∆eAPy = −∆aAP (∆ey/∆e) (12)
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The necessary contributions to change the eccentricity vector and achieve
the proper direction, at the perihelion or at the aphelion, are proportional to
the semi-major axis variations imposed at the same locations.

3. Planar Problem

Section 2 has defined the orbital changes that must be provided by each
burn. The evolution of the orbital elements under the influence of thrusting can
be described by Gauss planetary equations[25]. Edelbaum’s approximation [22]
considers almost circular orbits and small inclination in addition to small thrust,
and is perfectly suited to the targets of interest in this article. In nondimensional
form the relevant equations are

V
da

dt
= 2a(T/m) cosα cosβ (13)

V
de

dt
= 2(T/m) (cosϑ cosα cosβ + sinϑ sinα cosβ) (14)

V
dı

dt
= (T/m) cosϑ sinβ (15)

The thrust direction must be properly controlled during each burn to minimize
the propellant consumption while performing the required change of orbital
elements. The in-plane thrust angle α and the out-of-plane angle β are intro-
duced to express the in-plane thrust component along the radial direction as
T sinα cosβ, along the velocity direction as T cosα cosβ, and the out-of-plane
component as T sinβ.
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Figure 1: Optimal control law in Edelbaum’s
planar problem.

The planar case considers only
semi-major axis and eccentricity; a
minimum-time problem can be solved
with an indirect approach and the op-
timal control law for a simultaneous
change of semi-major axis and eccen-
tricity can be expressed as a func-
tion of two parameters, namely, ϑe

and λ, which are related to line of
apsides position and relative magni-
tudes of changes in eccentricity and
semi-major axis [26]. The optimal
control angle α is shown in figure 1
as a function of the angular position
with respect to ϑe for different val-
ues of λ. Two solutions exist at each
point, which differ by 180 degrees.
The values of the parameters and the
solution that must be selected are im-
plicitly determined by the problem
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boundary conditions. However, the orbital elements equations cannot be an-
alytically integrated with the optimal control law and numerical integration or
the use of elliptic integrals is required.

The optimal curve do not differ significantly from a linear trend, and a
linear control law [26] that approximates the optimal one is adopted here. In
particular, either α = Λ(ϑ−ϑe) or α = π+Λ(ϑ−ϑe), depending on the sign of
∆a, provide a good approximation by properly selecting Λ and using the same
ϑe of the exact solution. The angle ϑ = ϑe corresponds to the point where the
thrust is either concurrent with (for ∆a > 0) or opposite to (for ∆a < 0) the
spacecraft velocity, with α = 0 or π, respectively. Thrust remains close to the
velocity direction when Λ, which varies between 0 and 1, is small. Large values
of Λ see more significant variations of the thrust direction.

The linear control law allows for analytical integration and provides three
equations [26] that relate the required changes ∆a, ∆ex, and ∆ey to Λ, ϑe, and
the burn angular length ∆ϑe. The relations involve the in plane acceleration,
that is, spacecraft mass and, in the complete problem, out-of-plane thrust angle
β. The burn evaluation is thus turned into a simple three-variable algebraic
system, which is easily solved with an iterative procedure. Tentative values are
assumed for Λ, ϑe, and ∆ϑ (in addition to β and using the initial mass), and the
corresponding ∆a, ∆ex, and ∆ey are analytically determined [26]. Tentative
values are corrected according to a Newton’s scheme to achieve the required
orbital changes, given by Eqs. (7)-(9) or (10)-(12). The solution requires the
value of the out-of-plane thrust angle, which is kept constant during each burn
and progressively adjusted during the iterations to achieve the required plane
change, as shown in Section 4. Tentative values for unknown quantities can be
easily guessed to start the procedure using averaged effects of thrust components
along a complete revolution [22, 26]. After each iteration, the average mass is
computed and used with the updated β to evaluate the thrust acceleration for
the following iteration.

After convergence, the time duration ∆t = ∆ϑ/(dϑ/dt) is computed from
∆ϑ assuming the circular angular velocity at the average radius between Earth
and asteroid perihelion for the perihelion maneuver, and between Earth and
asteroid aphelion for the corresponding burn. The propellant consumption of
each burn is then determined as ∆t T/c. The consumption influence at one
apsis is neglected when evaluating the average mass for the burns at the opposite
apsis.

This evaluation of the transfer is made at different departure points, by
varying the initial angle ϑ0 at 5-degree steps over a complete revolution. The
best initial angle for each maneuver is easily selected by a direct comparison
of the solutions at 5-degree steps. All the burns are summed up to eventually
evaluate the estimation of the optimal overall transfer consumption. The overall
propellant mass is therefore mp = n(∆tPA +∆tAP )T/c .
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4. Plane Change

Maneuver combination is beneficial; in-plane and out-of-plane thrust com-
ponents add up as vectors so the thrust effort for a combined maneuver is lower
than the sum of the individual efforts. For instance, the vectorial sum of two mu-
tually perpendicular and equal ∆V s is only about 70% of their scalar sum; when
a ∆V is much larger than the other one, the vectorial sum almost coincides with
the larger ∆V (but the percentage gain over the scalar sum is marginal). As
a consequence, the approximation assumes that inclination is adjusted during
the apsidal burns necessary for the in-plane problem. A suitable out-of-plane
thrust angle, which is assumed to be constant during each burn, is adopted
(more properly, β assumes a constant positive value during the half revolution
centered at the ascending node and the opposite negative value during the half
revolution centered at the descending node). The required overall inclination
change is ∆i = iT , since iE ≈ 0. The total change is split between the burns
assuming that each maneuver provides an inclination change proportional to
the change of the in-plane orbital elements, that is, ∆PA = |∆aPA|+ |∆ePA| or
∆AP = |∆aAP |+ |∆eAP | for the two apsides. Actually, an optimal ∆i split be-
tween the burns exist, but its evaluation would make the estimation procedure
complex and increase the computational burden. In order to maintain simplic-
ity and computational speed, the repartition follows here an empirical rule of
thumb. Based on the observation that the savings from maneuver combination
are larger when the ∆V are similar, good results are expected when a larger
∆i is associated to a larger in-plane burn. Numerical verification has shown
that the optimal repartition gives only marginal improvements (a few %) with
respect to the adopted rule, well within the limits of accuracy expected from
the method. One has

∆iPA = ∆PA/(∆PA+∆AP )∆i/n (16)

∆iAP = ∆AP/(∆PA+∆AP )∆i/n (17)

From Edelbaum’s approximation, the differential equation that expresses the
inclination change with respect to the angular position is

di = (T/m) sinβ cosϑdϑ (18)

where ϑ = 0 corresponds to the ascending node. The advantage of thrusting
at the nodes, where di = (T/m) sinβdϑ is clearly visible. However, a generic
burn spans a finite angle ∆ϑ and the evaluation of its effect is difficult, even for
constant thrust angle. A simple expression for ∆i can be obtained for constant-
β over 1 revolution (∆ϑ = 2π, with a sign switch after half revolution), that is,
∆i2π = 4(T/m) sinβ. The average thrusting effect is therefore

∆i = ∆i2π/(2π) = (2/π)(T/m) sin β∆ϑ (19)

and was used in Ref. [23] to update the required out-of-plane angle β, given the
required inclination change of each burn. The average rate of inclination change

9



does not account for the position of the burn with respect to the nodes and
affects the estimation in many cases. In particular, consumptions are underesti-
mated when the line of apsides is close to the line of nodes, while overestimated
when lines of nodes and apsides are in quadrature [23]. The assumption of a
constant out-of-plane angle and the position of the apsides with respect to the
nodes’ location are indeed critical for the estimation accuracy. For this reason,
a correction factor K is introduced here to evaluate more consistently the effect
of the out-of-plane thrusting, namely by assuming

∆i = ((2/π)(T/m) sin β∆ϑ)/K (20)

K = k0 + k1k2k3 (21)

The terms k0, k1, k2, k3 are functions of the different orbital parameters or
factors that influence the propellant consumption. In particular, three effects
are considered: the angle ΩT between the target line of nodes and apsides, the
target eccentricity, and the angular length of the burns. The adopted values are
here explained.

The value k0 = 0.6 corresponds to the cost of a plane change precisely at
the node. The exact value would be 2/π, which is slightly larger, but the lower
value is preferred. The use of an approximate control law usually overestimates
the consumption, and the use of a lower value for k0 partially offsets this fact
by reducing the propellant estimation.

The factor k1 = 1 − cos(2ΩT ) penalizes the thrusting effect when apsides
and nodes are in quadrature (ΩT = π/2, 3π/2), whereas no penalty is added
when nodes are close to apsides (ΩT = 0, π, 2π).

The factor k2 = 1.5eT reduces the penalty for small eccentricities and causes
a large penalty for large eccentricity changes. In fact, when the eccentricity is
small, the burns to change perihelion and aphelion can be moved away from
the lines of apsides and close to the line of nodes with little penalty on the
consumption. For instance, if the target eccentricity is zero, the problem con-
cerns the transfer between circular orbits, and the burns to change aphelion and
perihelion can be placed at arbitrary angular positions. The burn location close
to the line of apsides is instead crucial to minimize cost when the eccentricity
is large.

Finally, the factor k3 = (3+ cos∆ϑ)/4 accounts for the burn angular length
and reduces the penalty for large arcs. In fact, burns that extend for more than
90 degrees always comprise both the line of nodes and the line of apsides. In
this case, a variable out-of-plane angle can be adopted in the optimal solution,
to increase the out-of-plane thrust component at the nodes, where plane change
is more efficiently obtained, thus reducing its cost. The coefficients are selected
in order to have K between 0.6 and 1.35 (for a 0.25 target eccentricity). The
minimum value corresponds to plane change at the nodes; the maximum value
corresponds to plane change performed at about 60 degrees from the line of
nodes.

Equation (20) is used in this paper to evaluate the cost of the out-of-plane
maneuver and results compared to the estimations without corrections of Ref.

10



[23]. The approximate solution relies on analytical expressions and is extremely
fast; the complete analysis for each asteroid (72 departure points for both peri-
apsis and apoapsis burns) requires about 1 second on a standard 64-bit Intel i7
3.6 GHz processor. This computational time is comparable to similar analysis
with methods based on solutions of Lambert’s problem and impulsive maneu-
vers (when the number of parameters that describe the trajectory is only few
units, three per arc in our case, and a simple algebraic system must be solved).
It is at least one order of magnitude lower, in comparison to methods based on
direct transcription, even when analytical formulas are used, as the number of
variables is much lower.

5. Results

The present work considers the same study-case shown in Ref. [7]; in par-
ticular, the focus is here on the 75 NEAs that presented the smallest propellant
consumption. A 20-kg spacecraft with solar EP system (3100 s specific impulse
1.74 mN thrust at 1 AU), starting its mission between 2020 and 2023 (included),
travels to the selected targets with a maximum 3-year time of flight. Reference
solutions are evaluated with an indirect optimization method [27, 28]. The he-
liocentric transfer from Earth to the asteroid in the two-body problem model
is optimized to minimize the propellant consumption. It is worth noting that
the dynamical and propulsion system models used here are not exactly the ones
used in Ref. [7]. Furthermore, this work considers optimal phasing instead
of rendezvous transfer. Consequently, a direct comparison between the results
with Ref. [7] is not possible, but they still are significantly consistent.

The estimations presented here concern transfers that insert the spacecraft
into the same orbit around the Sun as the asteroid, but do not enforce ren-
dezvous. They represents optimal phasing conditions, in the sense that the
solution would correspond to minimal rendezvous consumption if the asteroid
were correctly placed [28]. Actual favorable rendezvous opportunities require
proper phasing between Earth and asteroid and a procedure to evaluate mission
opportunities is also derived. Both the overall angular length and time of flight
can be easily estimated: the initial and final positions of each burn are known,
so departure and final points are given, depending on the preferred sequence
(perihelion or aphelion burn first, both options are readily evaluated). The ini-
tial position provides available departure dates, that is, once a year, when the
Earth is at the departure point. The time of flight is estimated from the transfer
angular length using the average angular velocity between Earth and asteroid.
The position of the asteroid at the corresponding arrival date can be compared
to the expected arrival position, and favorable rendezvous opportunities happen
when the angle between them is sufficiently small. The procedure proves to be
effective and also capable of estimating the penalty of rendezvous trajectories
with respect to optimal phasing solutions [23]: angular differences below 1 de-
gree have an almost zero penalty, whereas values close to 90 degrees may show
a ∆V increase up to 30 %. It is worth noting that the preliminary search of
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targets is usually only focused on the best opportunities, i.e., the cases were the
difference is small.

In the present section, results from the indirect optimization method are
compared to the proposed approximate solutions based on Edelbaum’s approx-
imation from Ref. [23], and to the new results after the introduction of the
correction factors presented in Section 4. In most cases, the solutions based on
Edelbaum’s approximation present starting points slightly before either perihe-
lion or aphelion, with an almost tangential thrusting (relatively small values of
Λ). These solutions remarkably replicate the efficient impulsive scenario used
to define the burn sequence.

Among the 75 targets mentioned above, 14 asteroids were excluded because
of their large inclination (greater than 5 degrees), large change in semi-major
axis (greater than 0.2 AU), or large eccentricity (greater than 0.25). These
values seem to be at the applicability limit of Edelbaum’s approximation, which
is the basis for this analysis. When transfers with larger variations are sought,
lower accuracy is expected. A detailed analysis of the applicability to these
transfers has not yet been carried out, but tweaks to the algorithm could be
required to allow for the treatment of these cases. Relevant orbital elements
and results are shown in Table 1 for the remaining 61 targets. In particular, the
reference propellant mass mp provided by the indirect method can be considered
as the “true” optimal solution, and the errors of the estimations with respect to
this value in Ref. [23] (∆m(R.23)) and after the introduction of the correction
factor (∆m and its percentage of the propellant mass with the corresponding
rank) are presented. The true solutions generally respect the supposed sequence
of perihelion and aphelion burns of the approximate analysis, and the results
differences can be ascribed to the used simplifications. The purpose of the
paper is only the estimation of the propellant mass and does not aim at the
estimation of the control law. However, results show a good agreement in terms
of arc structure, lengths and (average) thrust angles.

It is evident from the results that the introduction of the correction factor
K remarkably improves the estimation, even though in some cases the error is
increased. (It is worth noting that these are improvements of the estimations,
not improvements of the actual propellant consumption, which is represented
by mp). The average magnitude of the error < |∆m| > after the correction
is reduced to 0.12 kg, a 50 % decrease compared to the value of Ref. [23]
< |∆m(R.23)| >= 0.18 kg. The average error is down to 0.09 kg from 0.12 kg
(-25 %). The correlation coefficient between reference and estimated propellant
mass is 0.96. Despite the average overestimation of the propellant consumption
by about 5%, results are still extremely satisfactory, given the approximate
method’s simplicity and speed. Note that an “a posteriori” tuning of k0 could
easily solve this issue.

When the correction is not applied, several asteroids showed either under-
estimation (-0.31 kg in the worst case) or overestimation (up to 0.56 kg) of the
propellant consumption. Severe underestimation occurred for asteroids charac-
terized by large values of eccentricity (above 0.15) and apsides-nodes quadra-
ture, such as 2013 RV9, 2012 UW68, 2008 TX3. Asteroids 2014 QH33 and
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Table 1: Orbital elements, propellant consumption and estimation errors for the selected
asteroid set.

asteroid a e i Ω rp ra mp ∆m(R.23) ∆m rank ∆m% Rank
AU deg deg AU AU kg kg kg

1 2013 RV9 1.167 0.20 3.511 108.8 0.93 1.40 2.53 -0.31 0.15 40 5.96 31
2 2012 UW68 1.136 0.16 2.472 102.4 0.96 1.31 1.91 -0.25 -0.02 14 -0.92 14
3 2008 TX3 1.179 0.19 2.382 249.9 0.96 1.40 2.14 -0.22 0.16 42 7.37 39
4 2014 QH33 1.085 0.19 2.832 264.4 0.88 1.29 2.50 -0.21 0.02 22 0.66 22
5 2006 QV89 1.192 0.22 1.071 236.7 0.92 1.46 2.23 -0.20 0.25 56 10.98 48
6 2012 UY68 1.175 0.23 2.901 35.8 0.91 1.44 2.47 -0.19 0.16 41 6.34 32
7 2016 TP11 1.037 0.18 1.538 108.2 0.85 1.22 2.17 -0.17 0.00 18 0.06 18
8 2012 HK31 1.074 0.12 2.205 96.7 0.94 1.20 1.82 -0.17 -0.12 3 -6.35 3
9 2015 PL57 1.121 0.14 1.631 115.3 0.96 1.28 1.79 -0.15 -0.02 12 -1.35 12

10 2011 CG2 1.178 0.16 2.757 283.9 0.99 1.36 2.18 -0.15 0.15 38 6.77 34
11 2017 EB3 1.039 0.15 2.84 247.5 0.88 1.20 2.24 -0.13 -0.08 6 -3.50 8
12 2016 UE 1.057 0.15 1.088 296.5 0.90 1.22 1.52 -0.12 -0.01 15 -0.62 15
13 2015 FG36 1.100 0.17 3.514 300.6 0.91 1.29 2.48 -0.12 -0.01 16 -0.32 16
14 2012 UV136 1.007 0.14 2.213 288.6 0.87 1.15 1.74 -0.10 -0.04 9 -2.26 10
15 2014 UY 1.174 0.17 3.565 245.6 0.97 1.38 2.29 -0.09 0.20 47 8.51 43
16 2012 EC 1.152 0.14 0.914 333.9 0.99 1.31 1.57 -0.07 0.06 26 3.73 28
17 2007 UY1 0.951 0.18 1.019 273.6 0.78 1.12 2.04 -0.05 0.14 36 6.59 33
18 2016 TB57 1.102 0.12 0.298 147.8 0.97 1.24 1.06 -0.03 0.03 25 2.93 26
19 2016 CF137 1.090 0.10 2.445 301.5 0.98 1.20 1.43 -0.03 -0.09 5 -6.18 4
20 2009 CV 1.116 0.15 0.943 181.4 0.95 1.28 1.54 -0.02 0.11 32 6.80 35
21 2014 YD 1.072 0.09 1.736 34.1 0.98 1.16 1.11 -0.01 -0.13 2 -11.82 1
22 2017 BF30 1.045 0.13 3.624 256.1 0.91 1.18 2.12 -0.01 -0.03 11 -1.48 11
23 2007 DD 0.987 0.12 2.624 77.6 0.87 1.10 1.70 -0.01 -0.06 7 -3.52 6
24 2013 BS45 0.992 0.08 0.773 150.7 0.91 1.07 1.01 0.00 0.08 30 7.60 40
25 2010 WR7 1.046 0.24 1.563 159.1 0.80 1.29 2.33 0.01 0.20 48 8.36 42
26 2001 QJ142 1.062 0.09 3.104 64.0 0.97 1.15 1.74 0.01 -0.15 1 -8.52 2
27 2016 TB 18 1.078 0.08 1.527 305.6 0.99 1.17 1.02 0.02 -0.04 10 -3.51 7
28 2017 HK1 0.909 0.15 1.51 258.7 0.78 1.04 1.76 0.02 0.06 28 3.64 27
29 2009 HC 1.039 0.13 3.778 269.9 0.91 1.17 2.03 0.03 0.01 20 0.48 19
30 2004 JN1 1.085 0.18 1.5 2.1 0.89 1.28 1.65 0.05 0.13 34 8.05 41
31 2006 FH36 0.955 0.20 1.587 154.7 0.77 1.14 1.97 0.07 0.19 46 9.78 46
32 2004 VJ1 0.944 0.16 1.294 332.3 0.79 1.10 1.77 0.09 0.20 50 11.24 49
33 2003 SM84 1.125 0.08 2.796 87.4 1.03 1.22 1.68 0.10 0.01 19 0.49 20
34 2001 CQ36 0.938 0.18 1.258 344.4 0.77 1.10 1.86 0.10 0.22 51 11.60 52
35 2017 HZ24 0.908 0.22 1.812 312.2 0.71 1.10 2.43 0.11 0.17 43 7.05 37
36 2009 OS5 1.144 0.10 1.695 120.9 1.03 1.26 1.47 0.16 0.14 37 9.42 45
37 2015 BM510 0.947 0.12 1.589 357.3 0.83 1.06 1.45 0.19 0.18 45 12.23 54
38 2010 HA 0.960 0.20 2.183 185.7 0.77 1.15 1.93 0.22 0.22 52 11.45 51
39 2009 RT1 1.156 0.11 4.15 136.5 1.03 1.28 2.15 0.22 0.02 23 0.84 23
40 2014 YN 0.892 0.13 1.208 15.8 0.77 1.01 1.60 0.23 0.20 49 12.39 55
41 2005 TG50 0.923 0.14 2.401 200.9 0.80 1.05 1.68 0.25 0.06 29 3.81 29
42 2000 AE205 1.165 0.14 4.459 150.3 1.00 1.32 2.24 0.25 0.06 27 2.69 25
43 2013 WA44 1.101 0.06 2.302 176.7 1.03 1.17 1.20 0.28 0.03 24 2.20 24
44 2016 FY2 0.869 0.18 1.868 205.0 0.72 1.02 2.14 0.28 0.15 39 7.05 36
45 2006 XP4 0.873 0.22 0.515 346.0 0.69 1.06 2.42 0.31 0.33 62 13.78 57
46 2013 XY20 1.131 0.11 2.863 18.2 1.01 1.25 1.51 0.31 0.11 33 7.07 38
47 2013 HP11 1.185 0.13 4.156 9.5 1.04 1.33 2.21 0.33 0.08 31 3.82 30
48 2017 BF29 1.181 0.13 2.614 203.8 1.02 1.34 1.76 0.34 0.30 60 17.20 61
49 2015 VV 1.137 0.11 4.007 177.2 1.02 1.26 1.87 0.35 -0.02 13 -0.99 13
50 2003 LN6 0.856 0.21 0.66 211.6 0.68 1.04 2.11 0.36 0.31 61 14.58 58
51 2014 SD304 1.168 0.11 2.294 19.3 1.04 1.29 1.59 0.36 0.28 58 17.31 62
52 2013 EM89 1.178 0.12 2.411 189.9 1.04 1.32 1.68 0.37 0.28 59 16.72 60
53 2019 PA7 1.154 0.09 3.472 93.3 1.05 1.26 1.80 0.40 0.25 55 13.58 56
54 1999 AO10 0.912 0.11 2.623 8.0 0.81 1.01 1.54 0.44 0.13 35 8.69 44
55 2001 BB16 0.855 0.17 2.026 195.6 0.71 1.00 2.10 0.45 0.24 54 11.38 50
56 1996 XB27 1.189 0.06 2.465 58.2 1.12 1.26 1.77 0.47 0.27 57 15.04 59
57 2015 TZ24 1.192 0.10 3.35 3.2 1.07 1.31 1.95 0.47 0.23 53 11.77 53
58 2014 MF18 0.886 0.16 2.614 350.4 0.74 1.03 1.76 0.48 0.18 44 10.07 47
59 2007 TF 15 1.109 0.05 4.253 28.9 1.06 1.16 1.77 0.50 -0.09 4 -5.14 5
60 2014 EK24 1.008 0.07 4.805 63.7 0.94 1.08 1.86 0.54 0.01 21 0.64 21
61 2011 AA37 1.096 0.02 3.817 131.5 1.08 1.11 1.53 0.55 -0.05 8 -3.16 9
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2006 QV89 are farther from quadrature and closer to apsides-nodes alignment
(36 and 45 degrees between them, respectively), but have eccentricity above
0.22. A large value of K penalizes these solutions and increases the propellant
consumption; the error becomes positive but, as expected, smaller in absolute
magnitude, except for 2006 QV89, which shows a slight increase to about 11%
of the propellant mass. The large eccentricity excessively penalizes this case.
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Figure 2: Orbit shape for large-error asteroids.

In Ref. [23], eighteen asteroids
showed errors above +0.3 kg, while
ten asteroids presented errors larger
than +0.4 kg. Most of these as-
teroids are close to an apsides-nodes
alignment (1999 AO10, 2001 BB16,
2015 TZ24, 2014 MF18, 2007 TF15,
2011 AA37, 2012 WH) and the opti-
mal solution takes advantage of this
favorable geometry. This effect is
caught by the correction factor K,
which becomes small due to k2, prop-
erly reducing the consumption esti-
mation when thrusting at the nodes
becomes possible. Hence, an impres-
sive reduction of the error magnitude
is obtained. A similar improvement
occurs for small-eccentricity large-
inclination asteroids (2019 PA7, 1996
XB27, 2014 EK24) for the combined
effect of small values of k1 and k3.
The corrected estimations still show
some asteroids with negative errors,
but the worst underestimation is now only -0.15 kg and is larger than 0.1 kg in
absolute magnitude for only three cases. On the other side, an overestimation
above +0.2 kg occurs for only twelve asteroids and above +0.3 kg only for three
of them. Asteroids 2003 LN6 and 2006 XP4 have very small periapsis. The
real optimal solution performs more than three revolutions in the 3-year time
of flight; hence, with four passages at one of the apsis, it can take advantage of
shorter and more efficient arcs. If the number of thrust arcs is constrained to
3 at each apsis by reducing the time of flight, the actual consumption is larger
and the estimation error decreases to about +0.2 kg for both cases.

As regards asteroid 2017 BF29, the relatively large error has a less clear
explanation, but, in general, large errors occur when the periapsis is either small
or larger than 1. Figure 2 shows the shape of the asteroids’ orbits that present
the greatest values of error in the propellant estimation, together with Earth’s
orbit, assumed to be circular. For ease of comparison and simpler analysis, all
orbits are rotated so that the perihelia lie on the positive X axis. Orbits are
barely distinguishable, as two groups arise: a family of outer orbits with respect
to the Earth, and a family of inner orbits, except for a minimum intersecting arc.
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These groups are both characterized by relatively large values of eccentricity,
and Edelbaum’s model starts to suffer from the hypothesis of almost circular
orbits.

The thrust angle and the orbit evolution for a transfer to 2001 QJ142 are
shown in Figure 3 . The spacecraft performs only two perigee burns at the first
two passages to achieve most of the aphelion change (with α close to 0 and with
the expected almost linear behavior). The small variation of rp is reflected in
the aphelion burn arcs, which are moved away from the aphelion and shifted
towards the node; during these burns, the inclination is changed with large β
and small adjustments of perihelion and aphelion (a similar effect will be seen
for asteroid 2017 BF 29). In this case, the mission does not follow the strategy
of uniform split between apsides burns, but, despite this, the estimation error
remains sufficiently small, at about 10%.

Figure 4 presents the thrust angles and the orbit evolution over time for the
asteroid 2006 XP4. This transfer has four apogee burns to reduce rp due to the
short revolution period. However, a four-month reduction of the time of flight
can prevent the fourth burn, with a propellant consumption mp = 2.55 kg. This
value corresponds to an error of only 0.2 kg, or 7.5 % of the propellant mass.
In this case, the correction has little effect on the results and actually worsen
the error, since ΩT is close to 360 degrees, and apsis and nodes are close to each
other. Shape and inclination are adjusted synergistically and the correction
factor, which is close to the minimum value 0.6, has little effect because of
the small inclination of the asteroid orbit. The large eccentricity is again the
primary source of error.

Figure 5 shows the results for the transfer to asteroid 2017 BF29. In this
case, regular perigee burns are used to change the aphelion, even though they
are not perfectly centered at the apsis. In similarity to 2001 QJ142, the required
perihelion change is small, and aphelion burns are replaced by node burns in
order to change the inclination more efficiently. This fact explains the overes-
timation of the approximate solution, as the real optimal trajectory can take
advantage of both node vicinity and large radius and perform an efficient incli-
nation change.

From these examples, which concern the worst estimations provided by the
method, it is clear that the basic assumptions to define the burn sequence sub-
stantially replicate the real scenario. Alternation of burns at the apsides, linear
variation of α in the in-plane control strategy, and effect of eccentricity and
line of nodes position on the out-of-plane corrections substantially replicate the
real scenario of the optimal solutions, and therefore explain the excellent per-
formance of the estimation method.

6. Conclusions

An analytical method for the evaluation of orbital transfers to NEAs with
small eccentricity and inclination has been improved and tested. An analysis of
systematic errors of an original formulation has led to the modified method pre-
sented in this article. The improvements introduced do not affect the strengths
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Figure 3: Thrust angles and orbit evolution for optimal transfer to 2001 QJ142.
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Figure 4: Thrust angles and orbit evolution for optimal transfer to 2006 XP4.
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Figure 5: Thrust angles and orbit evolution for optimal transfer to 2017 BF29.

of the method; it does not require the integration of the equations of motion
and is sufficiently fast and accurate for the analysis of large sets with hundreds
of potential targets in a matter of minutes. Even though examples concerns
only trajectories with Earth departure, the method can easily be applied also to
NEA-NEA transfers, as far as the eccentricities remain small. For instance, this
methodology was employed for the preliminary design of the reference trajectory
for the proposed mission NEST – Near-Earth Space Trekker (https://www.oa-
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roma.inaf.it/nest/2018/12/20/ciao-mondo/) . The spacecraft was required to
rendezvous with 3-4 asteroids in sequence and hundreds of NEA-NEA trajecto-
ries had been successfully evaluated to select suitable targets.

Insight on the interaction between the plane-change and planar maneuvers
defines a correction factor that significantly improves the estimations. All the
targets have errors below 20% (whereas this value was exceeded in 14 cases in
the previous version of the method) and for 94% of them (versus 71%) the error
is below 15 %. The method supposes optimal-phasing conditions but can be
easily modified to consider the actual rendezvous conditions and optimal launch
windows, while adding the estimation of the propellant mass necessary for the
phasing. In addition, the thrust angles provided by the estimation, can be used
as a first guess for a more accurate analysis and transfer optimization.
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